Равносторонний треугольник как найти радиус решение

Радиус вписанной окружности в равносторонний треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника

Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.

Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:

(1)

Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:

( small r=frac<large a> <large 2>cdot sqrt<frac<large 2a-a><large 2a+a>> ) ( small =frac<large a> <large 2>cdot sqrt<frac<large a><large 3a>> ) ( small =frac<large a><large 2 cdot sqrt<3>> )

( small r=frac<large a><large 2 cdot sqrt<3>> ) (2)

или, умножив числитель и знаменатель на ( small sqrt <3>):

( small r=frac<large sqrt<3>> <large 6 >cdot a ) (3)

Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):

Ответ:

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника

Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:

( small h^2+left( frac<large a> <large 2>right) ^2=a^2.)

( small h^2+ frac<large a^2> <large 4>=a^2; ; ) ( small frac<large 3><large 4>a^2 =h^2; ; ) ( small a^2=frac<large4h^2><large 3>.)

( small a= frac<large 2h><large sqrt<3>> .) (4)

Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы

( small r= large frac> ) (5)

Подставляя (4) в (5), получим:

( small r= large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 4h^2><large 3>+4h^2>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 16h^2><large 3>>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+frac<large 4h><large sqrt<3>>> ) ( small = large frac< 2h^2>< 6h>small =large frac<1> <3>small cdot h )

То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:

( small r = large frac<1> <3>small cdot h ) (6)

Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):

Ответ:

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:

( small S= 3cdot sqrt<3>r^2.)

( small r^2= large frac<3 cdot sqrt<3>> ) ( small = large frac <sqrt<3> cdot S > <9>)
( small r= large frac <sqrt[4]<3>> <3>small cdot sqrt ) (7)

Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):

Ответ:

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c – стороны треугольника

p – полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a – сторона треугольника

r – радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a – равные стороны равнобедренного треугольника

b – сторона ( основание)

α – угол при основании

О – центр вписанной окружности

r – радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a – равные стороны равнобедренного треугольника

b – сторона ( основание)

h – высота

О – центр вписанной окружности

r – радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

.

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Фигура Рисунок Формула Обозначения
Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник
Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Равнобедренный треугольник

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

с помощью формулы Герона получаем:

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

то, в случае равнобедренного треугольника, когда

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

то, в случае равностороннего треугольника, когда

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Доказательство . Рассмотрим рисунок 9.

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

[spoiler title=”источники:”]

http://www-formula.ru/2011-09-24-00-40-48

http://www.resolventa.ru/uslugi/uslugischoolrost.htm

[/spoiler]

Радиус вписанной окружности в равносторонний треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Содержание

  1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
  2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
  3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника

Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.

Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:

Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:

То есть

или, умножив числитель и знаменатель на ( small sqrt{3} ):

Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):

Ответ:

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника

Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:

Тогда:

Откуда:

Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы

Подставляя (4) в (5), получим:

То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:

Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):

Ответ:

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:

Откуда:

Тогда:

Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):

Ответ:

Смотрите также:

  • Окружность, описанная около треугольника
  • Радиус описанной окружности около треугольника онлайн
  • Радиус описанной окружности около равнобедренного треугольника онлайн
  • Радиус описанной окружности около равностороннего треугольника онлайн
  • Радиус описанной окружности около прямоугольного треугольника онлайн
  • Радиус вписанной в треугольник окружности онлайн

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

  • Формулы вычисления радиуса описанной окружности

    • Произвольный треугольник

    • Прямоугольный треугольник

    • Равносторонний треугольник

  • Примеры задач

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Формула расчета радиуса описанной вокруг треугольника окружности

Треугольник abc с описанной вокруг окружностью с радиусом R

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Прямоугольный треугольник с описанной вокруг окружностью

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Формула расчета радиуса описанной около равностороннего треугольника окружности

Равносторонний треугольник c описанной вокруг окружностью

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Пример расчета площади треугольника по формуле Герона

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Пример расчета радиуса описанной вокруг треугольника окружности через его стороны и площадь

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Пример нахождения гипотенузы в прямоугольном треугольнике по Теореме Пифагора

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Радиус описанной окружности равностороннего треугольника


радиус описанной окружности равностороннего треугольника

сторона – сторона треугольника

высота – высота

радиус – радиус описанной окружности

Формула радиуса  описанной  окружности  равностороннего  треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Формула радиуса  описанной  окружности  равностороннего  треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Подробности

Автор: Administrator

Опубликовано: 09 сентября 2011

Обновлено: 13 августа 2021

Свойства равностороннего треугольника

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})

Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник.

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!

В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!

Итак, ещё раз:

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.

Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. (R=2cdot r)

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка( O) – центр треугольника.

Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).

Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Поэтому (OB=2cdot OK), то есть (R=2cdot r).

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Добавить комментарий