Треугольник
Треугольник является базовой фигурой геометрии, встречающейся повсеместно. Расчет всех геометрических фигур и тел основаны на наличии в них тех или иных треугольников, благодаря чему становится возможным применить множество теорем и формул, несвойственных конкретным фигурам по отдельности. Равносторонние треугольники, равнобедренные треугольники и прямоугольные треугольники составляют каркас решения геометрических задач, и обладая множеством дополнительных построений внутри треугольника, они предоставляют огромное количество значений тех или иных длин. Все биссектрисы, медианы, высоты, радиусы окружностей, вписанных или описанных около таких треугольников, можно рассчитать в этом разделе через геометрический калькулятор. Для этого необходимо ввести любые имеющиеся вводные данные, и калькулятор выдаст не только значения всех остальных параметров треугольника, но и объяснит преобразования формул, использованные для этих расчетов.
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Высота равностороннего треугольника – свойства, формулы и примеры нахождения
Формулы, используемые для этого, несложны. Вывод выражений основан на свойствах треугольника, при этом точка пересечения высот считается замечательной и даже имеет своё название — ортоцентр.
Общие сведения
Три отрезка, не принадлежащие одной прямой, каждый из которых соединяется с другими в двух точках, образуют геометрическую фигуру — треугольник. Прямые линии — это стороны, а точки их соприкосновения вершины. Один из отрезков, обычно который проходит параллельно горизонтальной плоскости, называют основанием.
В зависимости от размера внутренних углов замкнутой фигуры, треугольники разделяют на следующие виды:
- остроугольные — все углы тела не превышают 90 градусов;
- тупоугольные — один из разворотов имеет тупую форму;
- прямоугольные — размер одного из трёх углов составляет 90 градусов.
По числу равных сторон треугольные фигуры разделяют на разносторонние, равнобедренные, равносторонние. Последние часто называют правильными, так как все стороны у такого объекта равны друг другу. Кроме этого, из особенностей равносторонней фигуры можно отметить, что центры вписанной и описанной окружности совпадают, а каждый из углов равен 60 градусам. Сумма всех углов треугольника равняется 180 градусам.
В любой трёхугольной фигуре можно построить так называемые 3 замечательные линии: медиана, биссектриса и высота.
В правильном треугольнике эти 3 отрезка совпадают, то есть линия, опущенная из вершины к противолежащей стороне, одновременно являясь медианой, биссектрисой и высотой, образует прямой угол с основанием. При этом она делит его пополам. Фактически высота играет роль катета.
Получается, что в середине фигуры можно построить 3 отрезка, которые и будут высотами. Две из них будут опущены на боковые грани, а одна на основание. Точка пересечения перпендикулярных линий называется ортоцентром. Она располагается внутри геометрического тела и совпадает с центром вписанной окружности.
Для трёхугольного тела существует 2 теоремы. Одна из них утверждает, что противолежащие боковые стороны имеют одинаковую длину, а вторая, что если 2 угла невырожденного треугольника равны, то грани, противоположные им, также равны.
Интересно то, что эти правила справедливы как для абсолютной, так и сферической геометрии.
Свойства равносторонней фигуры
При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.
Равностороннее тело с тремя углами обладает следующими особенностями:
- в нём все углы одинаковые и равны 60 градусов;
- середина пересечения отрезков, совпадающих с высотой, биссектрисой и медианой, является центром геометрического тела;
- радиус описанной окружности превышает радиус вписанной в 2 раза;
- в равностороннем треугольнике длины всех элементов выражаются через длину стороны.
Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.
Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:
- радиус описанной окружности: R = (a * √3) / 3;
- диаметр вписанного круга: r = (a * √3) / 6;
- медиана: h = (a * √3) / 2;
- площадь: s = (a2 * √3) / 4;
- периметр: p = 3 * a.
Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 60 0 = (AB * √3) / 2.
Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.
При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.
Формула высоты
В равностороннем треугольнике длина стороны равна произведению удвоенной высоты и квадратного корня из трёх. Эту формулу легко доказать, используя теорему Пифагора. Так как высота одновременно является и биссектрисой, она, проведённая на противоположное основание, разделяет треугольник на 2 симметричные фигуры. Исходя из того, что отрезок — это перпендикуляр, полученные геометрические тела будут прямоугольными.
Гипотенуза будет являться гранью основного тела, одним из катетов — проведённая линия, а вторым — половина основания. Последнее утверждение правдиво, так как в равносторонней фигуре все стороны равны. Соответственно, используя теорему Пифагора: c 2 = b 2 + a 2 , для рассматриваемого случая можно записать следующую формулу: a 2 = h 2 + a 2 / 2 2 , где: a — грань. После математических преобразований выражение примет вид: a = (2 * h) / √3. Отсюда уже можно вывести формулу для нахождения длины: h = (a * √3) / 2.
Аналогичное определение можно получить, используя для доказательства формулу Герона. Отрезок, являющийся высотой, можно найти из выражения: h = (2 * √p * (p — a) * (p — b) * (p — a)) / b. В равенстве p является периметром и находится как сумма всех сторон: p = (a + b + a). Так как одна из граней делится пополам, формулу можно привести к виду: p = (a + b + a) / 2 = a + b / 2.
После подстановки полученного выражения в формулу Герона, оно примет вид: h = 2 * √((a + b/2) * (b/2) * (a -b/2) * (b/2)) / b. Используя формулу сокращённого умножения: разность квадратов, равенство можно привести к виду: (a + b / 2) * (a — b / 2) = a 2 — (b / 2) 2 .
Для упрощения выражения под корень можно внести двойку и знаменатель b. Таким образом, формула примет вид: h = √(2 2 * (a 2 — (b/2) 2 * (b/2) 2 ) * b 2 ). Выполнив ряд сокращений, равенство можно будет представить: h = √(a 2 — (b 2 /4)). Из-за того, что стороны в трёхугольной фигуре совпадают, окончательный вариант можно записать: h = (a√3) / 2. Что и следовало доказать.
Высоту можно определить, и зная радиус вписанной окружности. Её можно найти по формуле: r = (a √ 3) / 6. Если выражение переписать как r = (1 / 3) * ((a √3) / 2), возможно увидеть, что второй множитель как раз и есть высота. Соответственно, r = (1/3) * h. Отсюда: h = 3 * r. Это довольно простая формула, которая часто используется при геометрических вычислениях, поэтому её тоже нужно запомнить.
Решение примеров
Самостоятельное решение задач позволяет закрепить теоретические знания и запомнить формулы. Существуют определённые типы примеров, с помощью которых можно довольно быстро проработать весь изученный материал. Вот некоторые из них, рассчитанные на учеников восьмых классов средней школы:
- Определить высоту равносторонней фигуры, если её грань равняется 6 см. Решение задачи нужно строить следующим образом. У такого треугольника все стороны равны. Так как высота является медианой, она делит противоположную сторону вершины, из которой опущена, на 2 равные части. Треугольник можно обозначить ABC, а искомый перпендикуляр BH. Образованное геометрическое тело является прямоугольным. Причём, согласно условию, у него известна гипотенуза и катет. Оставшийся катет, который и является высотой, легко найти по теореме Пифагора: BH 2 + 3 2 = 6 2 . Отсюда: BH 2 = 25. Высота рассматриваемой фигуры будет равна 5 см.
- Сторона правильного треугольного тела равна √3. Узнать, чему будет равен радиус описанной окружности. Эту задачу можно решить, воспользовавшись свойством высоты в равностороннем треугольнике: точка пересечения медиан делит их в отношении 2 :1. Для наглядности можно нарисовать треугольник c вершинами ABC и высоту AK, а точку пересечения обозначить буквой O. Линия AO будет искомым радиусом окружности и составлять 2/3 от всей высоты AK. Длина отрезка равна: AK = √ (AB2 — AK2). Отсюда: R = (2 * √ (AB2 — AK2)) / 3 = (2 * √ (√ 32 — (3/2)2)) / 3 = 1. Задача решена.
Проверить правильность решения можно, используя онлайн-калькуляторы. Это интернет-сервисы, которые позволяют своим пользователям в автоматическом режиме вычислять различные математические примеры. Свои услуги они предоставляют бесплатно, от пользователя требуется только установленный веб-обозреватель и подключение к сети.
Важно ещё, что калькуляторы не только выдают быстро правильный ответ, но и показывают пошаговое решение. Это очень удобно, когда необходимо определить, на каком этапе была допущена ошибка.
Кроме этого, на своих страницах такого рода сервисы содержат краткий теоретический материал и даже примеры заданий. Так что калькуляторы будут полезны и на стадии обучения.
[spoiler title=”источники:”]
http://nauka.club/matematika/geometriya/vysot%D0%B0-ravnostoronnego-treugolnika.html
[/spoiler]
Правильный (равносторонний, или равноугольный) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Содержание
- 1 Свойства
- 2 Правильный сферический треугольник
- 3 Теоремы о равностороннем треугольнике или содержащие его
- 4 См. также
- 5 Примечания
Свойства[править | править код]
Правильный тетраэдр состоит из четырёх правильных треугольников.
Пусть a — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.
- Радиус вписанной окружности правильного треугольника, выраженный через его сторону:
- Радиус описанной окружности правильного треугольника, выраженный через его сторону:
- Периметр правильного треугольника:
- Высоты, медианы и биссектрисы правильного треугольника:
- Площадь правильного треугольника рассчитывается по формулам:
- Радиус описанной окружности равен двойному радиусу вписанной окружности:
- Правильными треугольниками можно замостить плоскость.
- В правильном треугольнике окружность девяти точек совпадает с вписанной окружностью.
Правильный сферический треугольник[править | править код]
Для любого значения в интервале от 60 до 180 градусов существует правильный сферический треугольник с равными этому значению углами.
Теоремы о равностороннем треугольнике или содержащие его[править | править код]
- Задача Наполеона
- Прямая Симсона одно из свойств
- Теорема Вивиани
- Теорема Морли
- Теорема Наполеона
- Теорема Помпею
- Теоремы Тебо 2 и 3
- Точки Аполлония
- Точки Торричелли
См. также[править | править код]
- Замечательные прямые треугольника
- Замечательные точки треугольника
- Равнобедренный треугольник
- Теорема Чевы
- Треугольник
- Треугольник Рёло
Примечания[править | править код]
Символ Шлефли |
|
---|---|
Многоугольники |
|
Звёздчатые многоугольники |
|
Паркеты на плоскости |
|
Правильные многогранники и сферические паркеты |
|
Многогранники Кеплера — Пуансо |
|
Соты |
{4,3,4} |
Четырёхмерные многогранники |
|
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
- Определение равностороннего треугольника
-
Свойства равностороннего треугольника
-
Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
-
Свойство 1
- Пример задачи
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
- CD перпендикулярна AB => ∠ADC = ∠BDC = 90°
- AD = DB
- ∠ACD = ∠DCB = 30°
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Тупоугольный треугольник содержит тупой угол. То есть угол более 90 градусов. Два других угла в таком треугольнике острые.
Равносторонний треугольник, свойства, признаки и формулы
Равносторонний треугольник — это треугольник, у которого все стороны одинаковой длины и все углы одинаковой величины (60°).
Равносторонний треугольник (понятие, определение):
Равносторонний треугольник — это треугольник, у которого все стороны одинаковой длины и все углы одинаковой величины (60°).
Равносторонний треугольник также называют правильным или равносторонним треугольником.
По определению, каждый прямоугольный (равнобедренный) треугольник также является равнобедренным, но не каждый равнобедренный треугольник является прямоугольным (равносторонним). Другими словами, правильный треугольник — это частный случай равнобедренного треугольника.
Рисунок 1: Равнобедренный треугольник
AB = BC = AC — стороны треугольника, ∠ ABC = ∠ BAC = ∠ AC = 60° — углы треугольника.
Свойства равностороннего треугольника:
1. в равностороннем треугольнике все стороны имеют одинаковую длину.
2. в равностороннем треугольнике углы равны и составляют 60°.
3. в равностороннем треугольнике каждая диагональ, проведенная к каждой стороне, является биссектрисой угла, а высота и равны друг другу.
В равностороннем треугольнике биссектриса угла, проведенная к каждой стороне, является средней линией, а высота и равны друг другу.
В равностороннем треугольнике высота, проведенная на каждой стороне, является биссектрисой угла, а средняя линия и равны друг другу.
Рисунок 2. равнобедренный треугольник
4. в равностороннем треугольнике высоты, биссектрисы углов, медианы и медианы пересекаются в точке, называемой центром равностороннего треугольника. Он также является центром эндоцикла и перицикла.
Рисунок 3. равнобедренный треугольник
R — радиус окружности, r — радиус эндо окружности.
5. радиус окружности равнобедренного треугольника в два раза больше радиуса эндокруга.
6. пересечение высот, биссектрис и медиан правильного треугольника делит каждую из них в соотношении 2:1, измеренном от вершин.
Рисунок 4. равнобедренный треугольник
AO : OK = BO : OA = CO : OD = 2 : 1
Определение равностороннего треугольника
Равносторонний (или прямоугольный) треугольник — это треугольник, у которого все стороны равны по длине. То есть, AB = BC = AC .
Примечание: Правильный многоугольник — это выпуклый многоугольник с равными сторонами и углами между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. То есть, a = b = c = 60° .
Свойство 2
Высота равностороннего треугольника равна биссектрисе угла, из которого он образован, среднему и центру.
CD — медиана, высота и среднее значение AB и биссектриса угла ACB.
- CD перпендикулярна AB =>∠ADC = ∠BDC = 90°
- AD = DB
- ∠ACD = ∠DCB = 30°
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и средние значения всех сторон пересекаются в одной точке.
Свойство 4
Центры акроокружности и окружности совпадают и пересекаются на пересечении медиан, высот, биссектрис углов и центров.
Свойство 5
Решение Примените формулы, приведенные выше, чтобы найти неизвестные величины:
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r .
Свойство 6
Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и перпендикуляров совпадают — это одна и та же точка. Эта точка называется центром треугольника.
Почему? Рассмотрим равносторонний треугольник.
Он равнобедренный независимо от того, какая сторона взята за основание — он равнобедренный со всех сторон, так сказать.
Таким образом, каждая высота в равностороннем треугольнике также является биссектрисой угла, медианой и средним перпендикуляром!
В равностороннем треугольнике не (12) отдельных линий, как в обычном треугольнике, а только три!
Центр равностороннего треугольника — это центр конечной окружности и перикруга, а также пересечение высот и медиан.
Пример задачи
Свойство 3. В равностороннем треугольнике радиус перикруга в два раза больше радиуса конечного круга. (R=2cdot r)
Теперь должно быть понятно, почему это так.
Публикации по теме:
- Нахождение площади квадрата: формула и примеры
- Нахождение площади прямоугольника: формула и пример
- Нахождение площади треугольника: формула и примеры
- Нахождение площади круга: формула и примеры
- Нахождение площади ромба: формула и примеры
- Нахождение площади трапеции: формула и примеры
- Нахождение площади параллелограмма: формула и примеры
- Нахождение площади эллипса: формула и пример
- Нахождение площади выпуклого четырехугольника: формула и пример
- Нахождение периметра квадрата: формула и задачи
- Нахождение периметра прямоугольника: формула и задачи
- Нахождение периметра ромба: формула и задачи
- Нахождение периметра трапеции: формула и задачи
- Нахождение периметра параллелограмма: формула и задачи
- Нахождение длины окружности: формула и задачи
- Теорема Пифагора для прямоугольного треугольника: формула и задачи
- Теорема косинусов для треугольника: формула и задачи
- Теорема о сумме углов треугольника: формула и задачи
- Тригонометрические функции острого угла в прямоугольном треугольнике
- Нахождение объема конуса: формула и задачи
- Нахождение объема куба: формула и задачи
- Нахождение объема шара: формула и задачи
- Нахождение объема пирамиды: формула и задачи
- Нахождение площади правильного шестиугольника: формула и примеры
- Нахождение объема тетраэдра: формула и задачи
- Нахождение объема призмы: формула и задачи
- Нахождение площади поверхности куба: формула и задачи
- Нахождение площади поверхности цилиндра: формула и задачи
- Нахождение площади поверхности конуса: формула и задачи
- Нахождение площади поверхности шара (сферы): формула и задачи
- Нахождение площади поверхности вписанного в цилиндр шара
- Нахождение радиуса шара: формула и примеры
- Нахождение радиуса круга: формула и примеры
- Нахождение радиуса цилиндра: формула и примеры
- Нахождение площади правильной призмы: формула и задачи
- Нахождение площади правильной пирамиды: формулы
- Формула Герона для треугольника
- Теорема Менелая: формулировка и пример с решением
- Теорема о внешнем угле треугольника: формулировка и задачи
- Теорема Чевы: формулировка и пример с решением
- Теорема Стюарта: формулировка и пример с решением
- Теорема о трех перпендикулярах
- Теорема Фалеса: формулировка и пример решения задачи
- Геометрическая фигура: треугольник
- Признаки равенства треугольников
- Признаки подобия треугольников
- Признаки равенства прямоугольных треугольников
- Свойства равнобедренного треугольника: теория и задача
- Определение и свойства медианы треугольника
- Определение и свойства медианы прямоугольного треугольника
Свойства равностороннего треугольника
Свойство 1. В равностороннем треугольнике все углы равны между собой и равны (^>)
Естественно, не правда ли? Три одинаковых угла, в сумме (^>), значит, каждый по (^>)
Рассмотрим рисунок: Точка(O) является центром треугольника.
Таким образом, (OB) — это радиус окружности (обозначается (R)), а (OK) — радиус эндоцикла (обозначается (r)).
Но точка (O) также является пересечением пространств! Напомним, что медианы делятся пересечением в соотношении (2:1), считая от вершины.
Поэтому (OB=2cdot OK), т.е. (R=2cdot r).
Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются длиной стороны.
Давайте убедимся в этом.
Это уже должно быть понятно:
Мы постоянно работаем над улучшением этого учебника, и вы можете помочь нам. Доступ и неограниченное использование учебника Юклава (более 100 статей по всем темам ЕГЭ и ОГЭ, более 2000 решенных задач, более 20 вебинаров — практических занятий).
Радиус вписанной окружности равностороннего треугольника
Открыть ответы…
Свойства равностороннего треугольника
Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})
Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})
Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).
Почему так? А посмотрим-ка на равносторонний треугольник.
Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.
Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!
В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!
Итак, ещё раз:
Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. (R=2cdot r)
Уже должно быть очевидно, отчего так.
Посмотри на рисунок: точка( O) – центр треугольника.
Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).
Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.
Поэтому (OB=2cdot OK), то есть (R=2cdot r).
Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.
Давай удостоверимся в этом.