Уважаемые студенты!
Заказать решение задач по 200+ предметам можно здесь всего за 10 минут.
Производная функции
Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.
Как найти?
Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:
- Вынос константы за знак производной: $$ (Cu)’ = C(u)’ $$
- Производная суммы/разности функций: $$ (u pm v)’ = (u)’ pm (v)’ $$
- Производная произведения двух функций: $$ (u cdot v)’ = u’v + uv’ $$
- Производная дроби: $$ bigg (frac{u}{v} bigg )’ = frac{u’v – uv’}{v^2} $$
- Производная сложной функции: $$ ( f(g(x)) )’ = f'(g(x)) cdot g'(x) $$
Примеры решения
Пример 1 |
Найти производную функции $ y = x^3 – 2x^2 + 7x – 1 $ |
Решение |
Производная суммы/разности функций равна сумме/разности производных: $$ y’ = (x^3 – 2x^2 + 7x – 1)’ = (x^3)’ – (2x^2)’ + (7x)’ – (1)’ = $$ Используя правило производной степенной функции $ (x^p)’ = px^{p-1} $ имеем: $$ y’ = 3x^{3-1} – 2 cdot 2 x^{2-1} + 7 – 0 = 3x^2 – 4x + 7 $$ Так же было учтено, что производная от константы равна нулю. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’ = 3x^2 – 4x + 7 $$ |
Пример 2 |
Найти производную функции $ y = sin x – ln 3x $ |
Решение |
По правилу производной разности: $$ y’ = (sin x – ln 3x)’ = (sin x)’ – (ln 3x)’ = $$ По таблице интегрирования находим: $$ (sin x)’ = cos x $$ $$ (ln x)’ = frac{1}{x} $$ С учетом того, что аргумент натурального логарифма отличен от $ x $, то нужно домножить ещё на производную самого аргумента: $$ y’ = (sin x)’ – (ln 3x)’ = cos x – frac{1}{3x} cdot (3x)’ = $$ После упрощения получаем: $$ = cos x – frac{1}{3x} cdot 3 = cos x – frac{1}{x} $$ |
Ответ |
$$ y’ = cos x – frac{1}{x} $$ |
Пример 3 |
Найти производную функции $ y = (3x-1) cdot 5^x $ |
Решение |
В данном примере стоит произведение двух функций, а производная произведения находится по формуле номер 3: $$ (u cdot v)’ = u’v + uv’ $$ $$ y’ = ( (3x-1) cdot 5^x )’ = (3x-1)’ 5^x + (3x-1) (5^x)’ = $$ Производная первой функции вычисляется как разность фунций: $$ (3x-1)’ = (3x)’ – (1)’ = 3(x)’ – (1)’ = 3 $$ Вторая функция является показательной, производная которой находится по формуле: $ (a^x)’ = a^x ln a $: $$ (5^x)’ = 5^x ln 5 $$ Продолжаем решение с учетом найденных производных: $$ y’ = (3x-1)’ 5^x + (3x-1) (5^x)’ = 3 cdot 5^x + (3x-1) 5^x ln 5 $$ |
Ответ |
$$ y’ = 3cdot 5^x + (3x-1) 5^x ln 5 $$ |
Пример 4 |
Найти производную функции $ y = frac{ln x}{sqrt{x}} $ |
Решение |
Производную дроби найдем по четвертой формуле. Положим $ u = ln x $ и $ v = sqrt{x} $. Тогда их производные по таблице основных элементарных функций равны: $$ u’ = (ln x)’ = frac{1}{x} $$ $$ v’ = (sqrt{x})’ = frac{1}{2sqrt{x}} $$ Используя формулу №4 получаем: $$ y’ = bigg ( frac{ln x}{sqrt{x}} bigg )’ = frac{ frac{1}{x} cdot sqrt{x} – ln x cdot frac{1}{2sqrt{x}} }{x} = $$ Выносим множитель $ frac{1}{2sqrt{x}} $ в числителе за скобку: $$ y’ = frac{2-ln x}{2xsqrt{x}} $$ |
Ответ |
$$ y’ = frac{2-ln x}{2xsqrt{x}} $$ |
Пример 5 |
Найти производную функции $ y = ln sin 3x $ |
Решение |
Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение. $$ y’ = (ln sin 3x )’ = frac{1}{sin 3x} cdot (sin 3x)’ = $$ Заметим, что аргумент синуса отличен от $ x $, поэтому тоже является сложной функцией: $$ = frac{1}{sin 3x} cdot cos 3x cdot (3x)’ = frac{1}{sin 3x} cdot cos 3x cdot 3 $$ Учитывая определение котангенса $ ctg x = frac{cos 3x}{sin 3x} $ перепишем полученную производную в удобном компактном виде: $$ y’ = 3ctg 3x $$ |
Ответ |
$$ y’ = 3ctg 3x $$ |
Простое объяснение принципов решения производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.
Алгоритм решения производных
Производная функции есть предел отношения приращения этой функции к приращению её аргумента при стремлении последнего к нулю, при условии существования данного предела.
Для вычисления производных вам потребуется таблица производных. Кроме того, существуют формулы для нахождения сложных производных.
Процесс нахождения производный называется дифференцированием.
Таблица простых производных
Формулы сложных производных
– производная суммы (разницы).
– производная произведения.
– производная частного.
Нужна помощь в написании работы?
Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Заказать работу
Примеры решений производных
Задача
Найти производную функции
Решение
Заданная функция является сложной и её производная равна произведению производной от косинуса на производную от его аргумента:
Ответ
Задание
Найти производную функции
Решение
Обозначим , где . Тогда, согласно правила вычисления производной сложной функции, получим:
Ответ
Задача
Найти производную функции при .
Решение
.
.
Ответ
.
Задача
Найти производную функции .
Решение
.
После приведения подобных членов получаем:
.
Ответ
y’=x^3·cos(x)+6·x·cos(x)-6·cos(x)+6·sin(x).
Задача
Найти производную функции .
Решение
В этом примере квадратный корень извлекается из суммы . Поэтому сначала вычисляем производную от квадратного корня, а затем умножаем ее на производную от подкоренного выражения:
.
Ответ
.
Задача
Найти производную функции .
Решение
Применяя правила дифференцирования дробей, получаем:
.
Применяя правила дифференцирования котангенса, получаем:
.
Учитывая, что и , после упрощения получим:
.
Ответ
.
Задача
Найти производную функции .
Решение
Применяя правила дифференцирования дробей, получаем:
.
Ответ
.
Задача
Найти производную функции .
Решение
Применяя правила дифференцирования дробей, получаем:
.
Ответ
.
Задача
Найти производную функции .
Решение
Дифференцирование можно произвести в два этапа: вначале продифференцировать степень функции арксинус, а затем произвести дифференцирование самого арксинуса, перемножив результаты:
.
Ответ
.
Задача
Найти производную функции .
Решение
По правилам дифференцирования показательной функции с основанием , производная этой функции равна произведению самой функции на производную функции, являющейся показателем степени:
.
Ответ
.
Таблица производных, правила нахождения производных
- Таблица производных основных функций
- Основные правила нахождения производной
- Правило дифференцирования сложной функции
- Логарифмическая производная
- Производная обратной функции
- Производная функции, заданной параметрически
- Производная неявной функции
Таблица производных основных функций
Основные правила нахождения производной
Если
– постоянная и
,
– функции, имеющие производные, то
1) Производная от постоянного числа равна нулю.
2) Производная от переменной равна единице
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
3) Производная суммы равна сумме производных
Пример 1
Найдем производную функции
4) Производная произведения постоянной на
некоторую функцию равна произведению этой постоянной на производную от заданной
функции.
Пример 2
Найдем производную функции
5) Производная
произведения функций
Пример 3
Найдем производную функции
6) Производная
частного:
Пример 4
Найдем производную функции
Правило дифференцирования сложной функции
или в других обозначениях:
Пример 5
Найдем производную функции
Пример 6
Найдем производную функции
Логарифмическая производная
Логарифмической производной функции
называется производная от логарифма этой
функции, то есть:
Применение предварительного логарифмирования функции иногда
упрощает нахождение ее производной.
Пример 7
Найдем производную функции
Прологарифмируем заданную
функцию:
Искомая производная:
Производная обратной функции
Если для функции
производная
,
то производная обратной функции
есть
или в других обозначениях:
Пример 8
Найдем производную
,
если
Имеем:
Следовательно:
Производная функции, заданной параметрически
Если зависимость функции
и аргумента
задана посредством параметра
то
или в других обозначениях:
Пример 9
Найдем производную функции
Воспользуемся формулой:
Производная неявной функции
Если зависимость между
и
задана в неявной форме
(*)
то для нахождения производной
в простейших случаях достаточно:
1) вычислить производную по
от левой части равенства (*), считая
функцией от
;
2) приравнять эту производную к нулю, то есть положить:
3) решить полученное уравнение относительно
.
Пример 10
Найдем производную функции
Вычисляем производную от
левой части равенства:
Решаем уравнение
относительно
:
Искомая производная:
Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная – одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Константу можно вынести за знак производной. Более того – это нужно делать. При решении примеров по математике возьмите за правило – если можете упростить выражение, обязательно упрощайте.
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Решение:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Решение:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Пример:
Решение:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.
Примеры решения задач с производными
Производная функции является основным понятием дифференциального исчисления.
Она характеризует скорость изменения функции в указанной точке. Производная широко используется при решении целого
ряда задач по математике, физике и другим наукам, в особенности при изучении скорости различного рода процессов.
Именно поэтому мы собрали на сайте более 200 примеров решения производных и постоянно добавляем новые! Список тем находится в правом меню.
Перед изучением примеров вычисления производных советуем изучить теоретический материал по теме:
прочитать определения, правила дифференцирования, таблицу производных и
другой материал по производным.
Таблица производных и правила дифференцирования
Основные ссылки – таблица производных,
правила дифференцирования и
примеры решений (10 шт).
Пример
Задание. Найти производную функции
Решение. Так как производная суммы равна сумме производных, то
Воспользуемся формулами для производных показательной и обратной тригонометрической функций:
Ответ.
Больше примеров решений →
Производные сложных функций
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание.Найти производную функции
Решение. По правилу дифференцирования сложной функции:
В свою очередь производная также берется по правилу дифференцирования сложной функции:
Ответ.
Больше примеров решений →
Применение дифференциала в приближенных вычислениях
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Вычислить приближенно ,
заменяя приращение функции ее дифференциалом.
Решение. Рассмотрим функцию .
Необходимо вычислить ее значение в точке .
Представим данное значение в виде следующей суммы:
Величины и
выбираются так, чтобы в точке можно было бы
достаточно легко вычислить значение функции и ее производной, а
было бы достаточно малой величиной. С учетом этого, делаем вывод, что
, то есть
,
.
Вычислим значение функции в точке
:
Далее продифференцируем рассматриваемую функцию и найдем значение
:
Тогда
Итак,
Ответ.
Больше примеров решений →
Геометрический смысл производной
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Найти тангенс угла наклона касательной к графику функции
в точке
.
Решение. Из геометрического смысла производной получаем, что производная функции
, вычисленная при заданном значении
, равна тангенсу угла, образованного
положительным направлением оси и
положительным направлением касательной, проведенной к графику этой функции в точке с абсциссой
, то есть
Найдем производную от заданной функции:
в точке имеем:
Тогда окончательно получим, что
Ответ.
Больше примеров решений →
Механический смысл производной
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Точка движется по закону .
Чему равна скорость в момент времени ?
Решение. Найдем скорость точки как первую производную от перемещения:
В момент времени скорость равна
Ответ.
Больше примеров решений →
Уравнение касательной, нормали и угол между прямыми
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Записать уравнение касательной к графику функции
в точке
Решение. Найдем значение функции в заданной точке:
Найдем производную заданной функции по правилу дифференцирования произведения:
Вычислим её значение в заданной точке
Используя формулу
запишем уравнение касательной:
Ответ. Уравнение касательной:
Больше примеров решений →
Производные высших порядков
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Найти производную второго порядка от функции
Решение. Находим первую производную как производную сложной функции:
Вторую производную находим как от произведения, предварительно вынеся по правилам дифференцирования коэффициент 3 за
знак производной. Также будем учитывать, что первый множитель –
– есть сложной функцией:
Ответ.
Больше примеров решений →
Механическое смысл второй производной
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Уравнение движения материальной точки вдоль оси имеет вид
(м). Найти ускорение
точки в момент времени
c.
Решение. Ускорение заданной точки найдем, взяв вторую производную от перемещения по времени:
Первая производная
(м/с)
вторая производная
(м/с2)
В момент времени c
(м/с2)
Ответ. (м/с2)
Больше примеров решений →
Дифференциалы высших порядков
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Найти дифференциал третьего порядка функции
Решение. По формуле
Найдем третью производную заданной функции:
Тогда
Ответ.
Больше примеров решений →
Производная функции, заданной неявно
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Найти производную неявно заданной функции
Решение. Продифференцируем обе части данного выражения по
, учитывая, что
функция от
и производная от неё берется как от сложной функции.
Выразим из этого равенства
Ответ.
Больше примеров решений →
Производная функции, заданной параметрически
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Найти производную от функции заданной параметрически
Решение. Найдем производные и
Подставляя найденные значения и
в формулу
получим
Ответ.
Больше примеров решений →
Логарифмическое дифференцирование
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Найти производную функции
Решение. Применим логарифмическое дифференцирование:
Тогда, продифференцировав левую и правую часть, будем иметь:
Отсюда получаем, что
Ответ.
Больше примеров решений →
Формулы Маклорена и Тейлора
Основные ссылки – теоретический материал и
примеры решений (10 шт).
Пример
Задание. Разложить в ряд Тейлора функцию
в точке
.
Решение. Найдем производные:
Итак, ,
,
. Значение функции в точке
Таким образом,
Ответ.
Больше примеров решений →
Вы поняли, как решать? Нет?