Решение как найти ребро прямоугольного параллелепипеда

Четырехугольная призма, в основании которой находится параллелограмм, является параллелепипедом. В параллелепипеде 6 граней: 4 — боковые и 2 — его основание. Грани, как правило, представляют собой параллелограмм. Противолежащие грани параллельны и равны. Параллелепипеды бывают прямыми и наклонными. У прямого параллелепипеда боковые грани являются прямоугольниками. Прямой параллелепипед, в основании которого лежит прямоугольник, называется прямоугольным. У него все шесть граней — прямоугольники, противоположные стороны которых параллельны и равны, а все углы — прямые. Прямоугольный параллелепипед строится на трех ребрах, расположенных друг к другу под прямым углом. Длины этих ребер, обладающих общим концом, называются его измерениями.

Боковое ребро прямоугольного параллелепипеда можно рассчитать несколькими способами, в зависимости от исходных данных.
Если известны объем (V) и два ребра (b, c) правильного параллелепипеда, третье ребро (а) будет равно частному от деления объема на произведение двух ребер (b×c):

a = V / bc

Если известна площадь боковой поверхности и два ребра (b, c), находим неизвестное ребро (а) путем деления площади боковой поверхности (S) на удвоенную сумму двух известных ребер 2 (b+c).

a = Sб.п. / 2 (a+c)

Если известны два ребра (b, c) и полная площадь поверхности (S п.п.), неизвестное ребро (а) находим по формуле:

a = (Sп.п. — 2bc) / 2 (b+c)

Проведенный внутри параллелепипеда отрезок, соединяющий противоположные вершины двух его оснований, является диагональю параллелепипеда (D). Отрезок, соединяющий противоположные вершины одного из оснований, является диагональю основания (d). Внутри прямоугольного параллелепипеда можно построить прямоугольный треугольник, у которого гипотенузой будет диагональ параллелепипеда D, одним из катетов — диагональ основания d, другим — боковое ребро параллелепипеда (а). Используя теорему Пифагора, выразим квадрат диагонали основания d (гипотенузу) как сумму квадратов его сторон (катетов) b, с. Отсюда, квадрат длины диагонали прямоугольного параллелепипеда (D) равен сумме квадратов трёх его измерений (а,b,с). Зная ребра и диагональ параллелепипеда, находим боковое ребро по формуле:

a = √D2 + d2 = √D2 + b2 + c2

Боковое ребро параллелепипеда
где b, c — ребра параллелепипеда, a — боковое ребро параллелепипеда, D — диагональ параллелепипеда, d — диагональ основания.

Калькулятор расчета длины бокового ребра правильного параллелепипеда

Прямоугольный параллелепипед строится на ребрах трех длин, расположенных под прямым углом друг к другу. Зная ребра параллелепипеда, можно найти все возможные параметры, характеризующие его. В первую очередь, каждая грань параллелепипеда представляет собой прямоугольник с двумя одинаковыми сторонами, периметр же всего объемного тела ищется как умноженная на четыре сумма всех сторон-ребер параллелепипеда.
P=4(a+b+c)

Площадь прямоугольного параллелепипеда складывается из площадей всех его граней, то есть шести прямоугольников, попарно конгруэнтных. Площадь каждого прямоугольника равна произведению его сторон, поэтому чтобы найти площадь параллелепипеда, необходимо сложить эти произведения.
S=2ab+2bc+2ac=2(ab+bc+ac)

Чтобы вычислить объем прямоугольного параллелепипеда, зная его ребро, нужно перемножить их между собой, так как объем любого прямого тела с двумя основаниями равен произведению площади основания на высоту тела, а в основании параллелепипеда находится прямоугольник, площадь которого также равна произведению – его сторон.
V=abc

У прямоугольного параллелепипеда есть четыре диагонали – диагонали его боковых граней и основания, и диагональ самого параллелепипеда, проходящая через его внутреннее пространство. Все диагонали рассчитывается через прямоугольные треугольники по теореме Пифагора, где они являются гипотенузами. Для диагоналей боковых граней и основания катетами являются ребра параллелепипеда, а для четвертой диагонали, катеты представляют собой боковое ребро и диагональ основания. (рис. 22.1,22.2,22.3,22.4)
d_1=√(a^2+c^2 )
d_2=√(a^2+b^2 )
d_3=√(b^2+c^2 )
d_4=√(a^2+〖d_3〗^2 )=√(a^2+b^2+c^2 )

Угол α, образованный внутренней диагональю прямоугольного параллелепипеда и диагональю основания, можно вычислить через отношение тангенса – бокового ребра а и диагонали основания d3.(рис.22.5)
tan⁡α=a/d_3 =a/√(b^2+c^2 )

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$а$ – длина;

$b$ – ширина;

$с$ – высота(она же боковое ребро);

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$V$ – объем.

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_{бок}=P_{осн}·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

$S_{п.п}=2(ab+bc+ac).$

Дополнительные сведения, которые пригодятся для решения задач:

Куб

$а$ – длина стороны.

$V=a^3;$

$S_{бок}=4а^2;$

$S_{п.п}=6а^2;$

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) – треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

$V={1}/{3}S_{осн}·h$

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

Площадь треугольника.

  • $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$.
  • $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  • Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$.
  • $S=p·r$, где $r$ – радиус вписанной окружности.
  • $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности.
  • Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны. 

В основании лежит четырехугольник.

  1. Прямоугольник.
    $S=a·b$, где $а$ и $b$ – смежные стороны.
  2. Ромб.
    $S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба.
    $S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.
  3. Трапеция.
    $S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.
  4. Квадрат.
    $S=a^2$, где $а$ – сторона квадрата.

Пример:

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Решение:

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

$V={S_{прямоугольника}·h}/{3}={a·b·h}/{3}$, где $a$ и $b$ – стороны прямоугольника.

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

$СС_1=АА_1=4$

$V={А_1В_1·A_1D_1·СС_1}/{3}={8·12·4}/{3}=128$

Ответ: $128$

Теорема Пифагора.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Как определить рёбра прямоугольного параллелепипеда?

та грань, которая находится сверху, называется верхней; а грань, на которой фигура стоит, называется нижней, или основанием, и эти две грани равны. Вершины параллелепипеда — это вершины его граней, рёбра — отрезки, соединяющие вершины параллелепипеда.

Что такое рёбра 5 класс?

Стороны граней называются рёбрами, а вершины граней – вершинами параллелепипеда. …

Сколько рёбер у прямоугольного параллелепипеда записать цифрой?

Заметьте, прямоугольный параллелепипед имеет 6 граней, 12 ребер и 8 вершин.

Сколько рёбер у параллелепипеда?

Параллелепипед имеет 8 вершин, 12 ребер, 6 граней. Все грани – параллелограммы и разбиваются на три пары равных и параллельных граней. Вершины разбиваются на 4 пары противоположных вершин, т.

Как найти ребро?

Все грани куба являются квадратами, в которых ребро куба становится стороной квадрата и связано отношениями с его площадью и диагональю. Найти ребро куба, зная диагональ основания, можно разделив ее на корень из двух.

Где находятся ребра?

Ребро́ (лат. costa, др. -греч. πλευρά) — одна из парных дугообразных плоских костей, идущих от позвоночника к грудине и составляющих грудную клетку у позвоночных животных.

Что такое рёбер?

Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше). В многоугольниках ребро является отрезком, лежащим на границе и чаще называется стороной многоугольника.

Какой параллелепипед называется кубом?

Прямоуго́льный параллелепи́пед (кубоид) — многогранник с шестью гранями, каждая из которых является в общем случае прямоугольником. Противолежащие грани параллелепипеда равны. Рёбра параллелепипеда, сходящиеся в одной вершине, взаимно перпендикулярны.

Сколько одинаковых ребер у параллелепипеда?

Во-вторых, прямоугольный параллелепипед имеет восемь вершин и двенадцать ребер. Ребра прямоугольного параллелепипеда – это стороны его граней, а вершины параллелепипеда являются вершинами граней.

Сколько вершин в пирамиде?

У нее 4 вершины, 4 грани и 6 ребер. В одной вершине треугольной пирамиды сходятся три ребра.

Сколько вершин рёбер и граней имеет куб?

Куб
Элементы 6 граней 12 рёбер 8 вершин Χ = 2
Грани квадраты
Конфигурация вершины 4.4.4
Двойственный многогранник правильный октаэдр

Где ребро куба?

Куб — это многогранник, поверхность которого состоит из шести квадратов. Грани куба – это стороны куба, которые представляют собой квадрат. Ребра куба – это стороны граней куба.

Как найти площадь в кубе?

Площадь куба — это сумма площади всех его сторон. Все стороны куба равны, поэтому, чтобы найти площадь куба, надо найти площадь одной из его сторон и умножить на 6.

Где находится первое ребро у человека?

Верхняя часть грудной клетки начинается в зоне плечей, а первые ребра находятся сразу под ключицами с левой и правой стороны. По этой причине их практически невозможно прощупать.

Сколько дней болит трещина ребра?

Обычно этот процесс занимает от 30 до 50 дней. Некоторые даже после легкой травмы ощущают дискомфорт в течение нескольких недель, а средняя травма может напоминать о себе 2-3 месяца и более. Если боль не ослабляется, а усиливается, отправляйтесь к доктору. В редких случаях требуется повторение лечебной схемы.

Где находятся ребра у человека?

costa, др. -греч. πλευρά) — одна из парных дугообразных плоских костей, идущих от позвоночника к грудине и составляющих грудную клетку у позвоночных животных.

Где начинаются ребра у человека?

Верхняя часть грудной клетки начинается в зоне плечей, а первые ребра находятся сразу под ключицами с левой и правой стороны. По этой причине их практически невозможно прощупать. Нижние ребра крепятся практически у начала поясницы и защищают другие жизненноважные органы – печень и почки.

Светлана Цюпко



Мастер

(2055),
закрыт



6 лет назад

Дополнен 6 лет назад

13целых 2 /9см-ширина
На 4 целых и 4/9меньше ширины, высота
На 10целых, 7/9 больше высоты, длинна

Лучший ответ

Наталия Бельская

Оракул

(57436)


6 лет назад

13 2/9см – ширина
13 29 – 4 4/9 = считай – высота
к сосчитанному + 10 7/9 = считай – длина

Остальные ответы

Alexander Alenitsyn

Высший разум

(754423)


6 лет назад

Если ничего, кроме того, что 5-й класс, не дано, то никак не найти.

Булатова Римма

Искусственный Интеллект

(126417)


6 лет назад

У параллелепипеда 12 ребер.
Каждое из 4-х ребер равно длине параллелепипеда.
Каждое из 4-х других равно ширине параллелепипеда.
И каждое из 4-х последних равно высоте параллелепипеда.

Похожие вопросы

Добавить комментарий