Здравствуйте, уважаемые читатели. В этой статье рассмотрим задачи по геометрии за 8-9 класс. Задачи на нахождение площади треугольника. Они встречаются в 15 задании ОГЭ по математике.
В статье будут рассмотрены несколько формул вычисления площади треугольника.
Первая теорема
Площадь треугольника равна половине произведения его высоты на сторону, к которой она проведена.
Задача №1
Сторона треугольника равна 16, а высота, проведённая к этой стороне, равна 19. Найдите площадь этого треугольника
Решение
Задача №2
У треугольника со сторонами 2 и 10 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 5. Чему равна высота, проведённая ко второй стороне?
Решение
Площадь треугольника равна половине произведения его высоты на сторону, к которой она проведена. Поэтому площадь треугольника в каждом случае будет одинаковой.
Задача №3
На стороне AC треугольника ABC отмечена точка D так, что AD=6, DC=10. Площадь треугольника ABC равна 48. Найдите площадь треугольника BCD.
Решение
Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла, делит треугольник на два треугольника, площади которых относятся как m:n:
Отрезок AD относиться к отрезку DC как 6:10. Значить площадь треугольника ABD составляет 6 частей от площади треугольника АВС, а площадь треугольника DBC – 10 частей. Вся площадь треугольника ABC равна 16 частей. По условию площадь треугольника АВС равна 48. Значит площадь треугольника ВСD=(48/16)*10=30.
Ответ 30
Задача №4
Два катета прямоугольного треугольника равны 4 и 10. Найдите площадь этого треугольника.
Решение
Вторая теорема
Площадь прямоугольного треугольника равна половине произведения его катетов.
Ответ 20
Задача №5
В прямоугольном треугольнике один из катетов равен 4, а угол, лежащий напротив него равен 45°. Найдите площадь треугольника
Решение:
Если в прямоугольном треугольнике, один из острых углов равен 45 градусам, то и второй острый угол равен 45 градусам, так как сумма острых углов в прямоугольном треугольнике равна 90 градусов. Если в треугольнике два угла равны, то этот треугольник равнобедренный.
Значит в треугольнике катеты равны 4 ( a=b=4). Найдем площадь равнобедренного прямоугольного треугольника:
Ответ 8
Задача №6
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 8 и 17.
Решение
Вспомним что такое катет и гипотенуза.
Стороны прямоугольного треугольника, которые образуют прямой угол, называются катеты, а третья сторона – гипотенуза.
Чтобы вычислить площадь прямоугольного треугольника, необходимо вычислить второй катет. Для этого воспользуемся теоремой Пифагора.
Теорема Пифагора
Квадрат гипотенузы равен сумме квадратов катетов.
Зная оба катета прямоугольного треугольника, вычислим его площадь:
Ответ 60
Задача №7
Катеты прямоугольного треугольника равны 21 и 72. Найдите высоту, проведенную к гипотенузе.
Решение
В этой задаче, чтобы найти высоту, проведенную к гипотенузе, необходимо воспользоваться двумя формулами нахождения площади треугольника. Первая формула (для прямоугольного треугольника): половина произведения его катетов. Вторая формула: половина произведения высоты на сторону, к которой эта высота проведена. Площадь, вычисленная разными формулами одной фигуры, одинаковая. Для решения, нам понадобятся размеры гипотенузы. Вычислим ее:
Теперь найдем, чему будет равна высота:
Ответ 20,16
Задача №8
Боковая сторона равнобедренного треугольника равна 25, а основание равно 48. Найдите площадь этого треугольника.
Решение.
В этой задаче, площадь треугольника найдем по формуле Герона. Для этого нужно знать полупериметр (периметр, деленный на 2) треугольника и длину каждой стороны.
В равнобедренном треугольнике, боковые стороны равны. Найдем периметр треугольника. Периметр треугольника – это сумма всех длин сторон треугольника
Ответ 168
Задача №9
В прямоугольном треугольнике гипотенуза равна 82, а один из острых углов равен 45°. Найдите площадь треугольника.
Решение
Если в прямоугольном треугольнике, один из острых углов равен 45 градусам, то и второй острый угол равен 45 градусам, так как сумма острых углов в прямоугольном треугольнике равна 90 градусов. Если в треугольнике два угла равны, то этот треугольник равнобедренный.
В нашем случает получается треугольник прямоугольный и равнобедренный т.е. катеты треугольника равны. Найдем катеты прямоугольного треугольника через теорему Пифагора.
Пусть катеты прямоугольного треугольника это Х
Ответ 1681
Задача №10
Решение
Третья теорема. Теорема о площади треугольника (9 класс)
Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.
Ответ 50
Спасибо, что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог
Примеры решения задач разной сложности на нахождение периметра и площади
Условные обозначения и формулы
- a — длина
- b — ширина
- P — периметр
- S — площадь
Квадрат → определение
P = a + a + a + a; P = a · 4 — периметр квадрата
S = a · a; S = a² — площадь квадрата
Прямоугольник → определение
P = a + b + a + b; P = 2a + 2b; P = (a + b) · 2 – периметр прямоугольника
S = a · b — площадь прямоугольника
Задачи
Треугольник → определение
S = ½ · a · h – площадь треугольника
P = a + b + c – периметр треугольника
Задачи
Круг → определение
P = πD; P = 2πR — длина окружности
S = πR2; S = πD2 : 4 – площадь круга
Задачи
30 задач – от простого к сложному
Задача №1
Найди периметр квадрата со стороной 8 см.
Решение:
8 · 4 = 32 (см)Ответ: периметр квадрата 32 см.
Задача №2
Найди периметр квадрата со стороной 16 см.
Решение:
16 · 4 = 64 (см)Ответ: периметр квадрата 64 см.
Задача №3
Периметр квадрата 16 см. Найди его сторону.
Решение:
16 : 4 = 4 (см)Ответ: сторона квадрата 4 см.
Задача №4
Найди периметр прямоугольника со сторонами 9 и 6 см.
Решение:
(9 + 6) · 2 = 30 (см)Ответ: периметр прямоугольника 30 см.
Задача №5
Найди периметр прямоугольника со сторонами 7 и 8 см.
Решение:
(7 + 8) · 2 = 30 (см)Ответ: периметр прямоугольника 30 см.
Задача №6
Найди длину прямоугольника, если его ширина 7 см, а периметр равен 40 см.
Решение:
Вариант Ⅰ
У прямоугольника противоположные стороны равны, то есть две равных ширины и две равных длины.
Если одна ширина (сторона) 7 см, то и другая (противоположная) тоже 7 см.
7 + 7 = 14 (см)
Периметр состоит из суммы длин четырёх сторон прямоугольника, сумму двух противоположных сторон мы уже узнали, тогда сумма двух других противоположных сторон (длин) будет равна:
40 – 14 = 26 (см)
Теперь узнаем длину одной стороны:
26 : 2 = 13 (см)Ответ: длина прямоугольника 13 см.
или
Вариант Ⅱ
P = (a + b) · 2 — периметр прямоугольникаили
(a + b) · 2 = P, где a — длина = ?, b — ширина = 7 см, P — периметр = 40 см.
Составим уравнение:
(а + 7) · 2 = 40
2а + 14 = 40
2а = 40 – 14
2а = 26
а = 26 : 2
а = 13Ответ: длина прямоугольника 13 см.
Задача №7
Найди ширину прямоугольника, если его длина 10 см, а периметр равен 30 см.
Решение:
Вариант Ⅰ
У прямоугольника противоположные стороны равны, то есть две равных ширины и две равных длины.
Если одна длина (сторона) 10 см, то и другая (противоположная) тоже 10 см.
10 + 10 = 20 (см)
Периметр состоит из суммы длин четырёх сторон прямоугольника, сумму двух противоположных сторон мы уже узнали, тогда сумма двух других противоположных сторон будет равна:
30 – 20 = 10 (см)
Теперь узнаем ширину одной стороны:
10 : 2 = 5 (см)Ответ: ширина прямоугольника 5 см.
или
Вариант Ⅱ
P = (a + b) · 2 — периметр прямоугольникаили
(a + b) · 2 = P, где a — длина = 10 см, b — ширина = ?, P — периметр = 30 см.
Составим уравнение:
(10 + b) · 2 = 30
20 + 2b = 30
2b = 30 – 20
2b = 10
b = 10 : 2
b = 5Ответ: ширина прямоугольника 5 см.
Задача №8
Ширина прямоугольника 14 см. Длина на 5 см больше. Найди его периметр и площадь.
Решение:
14 + 5 = 19 (см)
(19 + 14) · 2 = 66 (см)
19 · 14 = 266 (см²)Ответ: периметр прямоугольника 66 см; площадь прямоугольника 266 см².
Задача №9
Длина прямоугольника 7 см. Ширина на 3 см меньше. Найди его периметр и площадь.
Решение:
7 – 3 = 4 (см)
(7 + 4) · 2 = 22 (см)
7 · 4 = 28 (см²)Ответ: периметр прямоугольника 22 см; площадь прямоугольника 28 см².
Задача №10
Периметр квадрата 24 см. Найди его площадь.
Решение:
24 : 4 = 6 (см)
6 · 6 = 36 (см²)Ответ: площадь квадрата 36 см².
Задача №11
Периметр квадрата 36 см. Найди его площадь.
Решение:
36 : 4 = 9 (см)
9 · 9 = 81 (см²)Ответ: площадь квадрата 81 см².
Задача №12
Ученику нужно было начертить прямоугольник со сторонами 5 см и 9 см, а он начертил его со сторонами 6 и 8 см.
На сколько см² он ошибся?Решение:
5 · 9 = 45 (см²)
6 · 8 = 48 (см²)
48 – 45 = 3 (см²)Ответ: он ошибся на 3 см².
Задача №13
Ученику нужно было начертить прямоугольник со сторонами 10 см и 8 см, а он начертил его со сторонами 8 см и 6.
На сколько см² он ошибся?Решение:
10 · 8 = 80 (см²)
8 · 6 = 48 (см²)
80 – 48 = 32 (см²)Ответ: он ошибся на 32 см².
Задача №14
Периметр прямоугольника 36 см. Длина его 4 см. Найди площадь прямоугольника.
Решение:
4 + 4 = 8 (см)
36 – 8 = 28 (см)
28 : 2 = 14 (см)
14 · 4 = 56 (см²)Ответ: площадь прямоугольника 56 см².
Задача №15
Сторона квадрата 6 см. Найди длину прямоугольника с таким же периметром и шириной 3 см.
Решение:
6 · 4 = 24 (см)
3 + 3 = 6 (см)
24 – 6 = 18 (см)
18 : 2 = 9 (см)Ответ: длина прямоугольника 9 см.
Задача №16
Сторона квадрата 18 см. Найди длину прямоугольника с таким же периметром и шириной 14 см.
Решение:
18 · 4 = 72 (см)
14 + 14 = 28 (см)
72 – 28 = 44 (см)
44 : 2 = 22 (см)Ответ: длина прямоугольника 22 см.
Задача №17
Площадь прямоугольника 40 см². Ширина его 4 см.
Чему равен периметр прямоугольника?Решение:
40 : 4 = 10 (см)
(10 + 4) · 2 = 28 (см)Ответ: периметр прямоугольника 28 см.
Задача №18
Площадь прямоугольника 40 см². Длина его 8 см.
Чему равен периметр прямоугольника?Решение:
40 : 8 = 5 (см)
(8 + 5) · 2 = 26 (см)Ответ: периметр прямоугольника 26 см.
Задача №19
Ширина прямоугольника 15 см, длина 20 см.
Найди длину другого прямоугольника с той же площадью, если его ширина в 3 раза меньше ширины первого прямоугольника.Решение:
в первом действии узнаём площадь по формуле a · b = S
15 · 20 = 300 (см²) — S одного и другого прямоугольника
теперь ширину второго
15 : 3 = 5 (см) — ширина другого прямоугольника
и отвечаем на вопрос задачи применив формулу S : a = b
300 : 5 = 60 (см)Ответ: длина другого прямоугольника 60 см.
Задача №20
Длина прямоугольника b = 32 см. Ширина a = 4 см.
Найди длину другого прямоугольника с такой же площадью, если его ширина в 2 раза больше ширины первого прямоугольника.Решение:
узнаем площадь прямоугольников по формуле a · b = S
32 · 4 = 128 (см²) — S первого прямоугольника
теперь ширину второго прямоугольника
4 · 2 = 8 (см) — ширина другого прямоугольника
применив формулу S : a = b узнаем длину другого
128 : 8 = 16 (см)Ответ: длина другого прямоугольника 16 см.
Задача №21
Какой участок земли потребует большую ограду: прямоугольный размерами 32 м и 2 м или квадратный, имеющий ту же площадь?
Решение:
Ⅰ. Прямоугольный участок
32 · 2 = 64 (м²) — S прямоугольного участка = 64 (м²)
(32 + 2) · 2 = 68 (см) — P прямоугольного участка = 68 (см)Ⅱ. Квадратный участок (имеющий площадь прямоугольного = 64 м²)
Если S квадрата = a · a, тогда, из формулы, узнаем сторону квадратного участка S : a = a
(у квадрата все стороны равны, тогда a · a = S — таблицу умножения мы знаем, подберём значения a и заменим их — 8 · 8 = S или 8 · 8 = 64 или 64 = 8 · 8 или 64 : 8 = 8)
64 : 8 = 8 (м) — любая сторона квадратного участка = 8 (м)
8 · 4 = 32 (м) — периметр квадратного участка = 32 (м)Ⅲ. P прям. – P квадр. = разница периметров
68 – 32 = 36 (м) — разница периметровОтвет: потребует большую ограду прямоугольный на 36 м.
Задача №22
Какая комната потребует больше плинтуса: прямоугольная размерами 4 м и 9 м или квадратная, имеющая ту же площадь?
Решение:
(4 + 9) · 2 = 26 (м) — P периметр прямоугольной комнаты
4 · 9 = 36 (м²) — S площадь прямоугольной комнаты
(из условия задачи квадратная комната имеет ту же площадь 36 м², а из определения площади квадрата знаем, что все стороны равны a = a = a = a, смотрим таблицу умножения и видим 6 · 6 = 36, то есть любая из сторон a = 6
запишем (приведём) формулу площади квадрата S = a · a в форму нахождения её стороны S : a = a
36 : 6 = 6 (м) — любая из сторон квадратной комнаты
6 · 4 = 24 (м) — P периметр квадратной комнаты
26 – 24 = 2 (м)Ответ: потребует больше плинтуса прямоугольная на 2 м.
Задача №23
Ребро куба равно 2 сантиметров. Найти площадь всех граней куба.
Решение:
Куб — многогранник, поверхность которого состоит из шести одинаковых по площади квадратов.
У куба 8 вершин, 12 рёбер, 6 граней (поверхностей).
Если S = a · a — площадь квадрата, тогда
S = (a · a) · 6 — площадь всех граней куба, из условия задачи a = 2, тогда S = 2 · 2 · 6
2 · 2 · 6 = 24 (см²)Ответ: площадь всех граней куба равна 24 см².
Задача №24
Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.
Решение:
Для решения потребуются формулы:
S = a · a; S = a² — площадь квадрата (у квадрата все стороны равны)
S = a · b — площадь прямоугольника (у прямоугольника противоположные стороны равны)
Далее всё очень просто:Квадрат A.
S = a · a или a · a = S — формула площади квадрата, тогда
8 · 8 = 64 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 1 = 4 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь вырезанного прямоугольника
64 – 4 = 60Ответ: площадь получившейся фигуры равна 60.
Квадрат B.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 2 = 8 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 – 8 = 41Ответ: площадь получившейся фигуры равна 41.
Квадрат C.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
5 · 1 = 5 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 – 5 = 44Ответ: площадь получившейся фигуры равна 44.
Задача №25
- Найдите площадь фигуры, изображённой на рисунке A.
- Найдите площадь фигуры, изображённой на рисунке B.
- Найдите площадь фигуры, изображённой на рисунке C.
- Найдите площадь фигуры, изображённой на рисунке D.
- Найдите площадь фигуры, изображённой на рисунке E.
(!) Фигуры расположены на листе в клетку, где каждая клетка – квадрат со стороной равной 1см.
Определение:
Неправильный четырехугольник – фигура, у которой стороны не равны и не параллельны.
Решение:
разобьём неправильные четырехугольники A, B, D на два прямоугольных треугольника и прямоугольник, а неправильные четырехугольники C, E на два прямоугольных треугольника и квадрат.Применив формулы площади треугольника , квадрата и прямоугольника легко решим поставленную задачу
Фигура A.
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника
½ ·2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры A
12 + 2,5 + 4 = 18,5 см²Ответ: площадь фигуры A 18,5 см²
Фигура B.
S = a · b — формула площади прямоугольника, тогда
5 · 1 = 5 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ · 6 · 5 = 15 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 1 = 0,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры B
5 + 15 + 0,5 = 18,5 см²Ответ: площадь фигуры B 20,5 см²
Фигура C.
S = a · a; S = a² — формула площади квадрата, тогда
5 · 5 = 25 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 6 = 3 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры C
25 + 3 + 2,5 = 30,5 см²Ответ: площадь фигуры C 30,5 см²
Фигура D.
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры D
12 + 2,5 + 4 = 18,5 см²Ответ: площадь фигуры A 18,5 см²
Фигура E.
S = a · a; S = a² — формула площади квадрата, тогда
2 · 2 = 4 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 3 · 4 = 6 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 2 · 2 = 2 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры E
4 + 6 + 2 = 12 см²Ответ: площадь фигуры E 12 см².
Задача №26
Найдите площади и периметры фигурок. Сделайте вывод.
Определение:
Периметр – сумма длин всех сторон фигуры выраженый в милиметрах, сантиметрах, дециметрах, метрах и т.д.Площадь фигуры – геометрическое понятие, размер плоской фигуры выраженый в мм², см², дм², м² и т.д.
Пусть каждая из сторон клетки равна 1 см, тогда
применив формулу площади квадрата S = a · a получим площадь одной клетки 1 · 1 = 1 см²Фигура A — прямоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура A имеет четыре стороны, тогда
1 + 4 + 1 + 4 = 10 см — периметр фигуры.Фигура B — квадрат состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура B имеет четыре стороны, тогда
2 + 2 + 2 + 2 = 8 см — периметр фигуры.Фигура C — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура C имеет шесть сторон, тогда
3 + 1 + 2 + 1 + 2 + 1 = 10 см — периметр фигуры.Фигура D — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура D имеет восемь сторон, тогда
1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 = 10 см — периметр фигуры.Фигура E — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура E имеет восемь сторон, тогда
1 + 1 + 1 + 3 + 1 + 1 + 1 + 1 = 10 см — периметр фигуры.Вывод:
Фигуры A, B, C, D, E имеют одинаковую площадь, но наименьший периметр имеет квадрат.
У разных по форме плоских фигур, с одинаковой площадью, наименьший периметр всегда имеет квадрат.
Задача №27
Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (катет) b = 8 см
Найдём гипотенузу прямоугольного треугольника по формуле: a² + b² = c²Решение:
6² + 8² = c²
6 · 6 + 8 · 8 = c²
36 + 64 = с²
с² = 36+64
с² = 100
с = 10
Найдём периметр прямоугольного треугольника по формуле: p = a + b + c
p = 6 + 8 + 10 = 24Ответ: периметр прямоугольника равен 24 см.
см. Площадь треугольника
Задача №28
Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (гипотенуза) с = 10 см
Найдём гипотенузу прямоугольного треугольника по формуле: a² + b² = c²Решение:
6² + b² = 10²
6 · 6 + b² = 10 · 10
36 + b² = 100
b² = 100 – 36
с² = 64
с = 8
Найдём периметр прямоугольного треугольника по формуле: p = a + b + c
p = 6 + 8 + 10 = 24Ответ: периметр прямоугольника равен 24 см.
см. Площадь треугольника
Задача №29
В треугольной пластине abc у которой один из углов 90°, сторона a равна 20 сантиметрам, а сторона b равна 10 сантиметрам просверлили отверстие диаметром 3 сантиметра. Какую оставшуюся площадь пластины нужно покрасить?
Решение:
Мы знаем что площадь – S треугольника равна половине – ½ произведения его основания – a умноженная на высоту – h,
то есть S = ½ · a · h, а Формула площади круга S = πd² : 4, число π ≈ 3,14.
1) По условию задачи пластина имеет форму прямоугольника со сторонами abc, в данном случае сторона b является высотой треугольника.
Тогда формула будет выглядеть так – S = ½ · a · b
подставим значения в эту формулу
½ · 10 · 20 = 100 (см²) — площадь треугольника
2) Подставим значения в формулу и узнаем площадь круга S = πd² : 4
3,14 · 3² : 4 = 3,14 · 9 : 4 = 7,065 (см²)
3) Теперь мы можем ответить на вопрос поставленный в задаче
100 – 7,065 = 92,935 см² — оставшуюся площадь пластиныОтвет: нужно покрасить 92,935 см².
Задача №30
На садовом участке Петя построил для цыплят круглый вольер радиусом 5 метров. Участок имеет прямоугольную форму с длинной 120 метров и шириной равной 8 диаметрам вольера. Сколько потребуется метров металлической сетки чтобы огородить участок и вольер?
Решение:
Для решения задачи нам потребуются вычислить периметры участка и вольера.
1) В первом действии узнаем диаметр вольера, нам известен радиус 5 метров, тогда по формуле диаметр равен двум радиусам D = 2R
5 · 2 = 10 (м) — диаметр вольера
2) Если ширина участка равна 8 диаметрам вольера, тогда
10 · 8 = 80 м — ширина участка
3) Далее по формуле P = (a + b) · 2 — периметр прямоугольника
120 + 80 · 2 = 400 (м)
4) Теперь по формуле P = 2πR — длина окружности (периметр) вольера
2 · 3,14 · 5 = 2 · 3,14 · 5 = 31,4 (м)
5) В последнем действии сложим периметры участка и вольера ответим на вопрос задачи
400 + 31,4 = 431,4 (м)Ответ: потребуется 431,4 метров металлической сетки.
Коротко:
Известные и великие математики
ученые древности, средневековья и современности, и их вклад в мировую науку
Рене Декарт
математик, философ
Дата рождения: 31 марта 1596 г.
Место рождения: Декарт, Турень, Абсолютная монархия во Франции
Дата смерти: 11 февраля 1650 г. (53 года), Стокгольм, Швеция
Биография
Родился 31 марта 1596 года в городе Ла-Э-ан-Турен (ныне Декарт), департамент Эндр и Луара, Франция. Декарт происходил из старинного, но обедневшего дворянского рода, был младшим (третьим) сыном в семье. Начальное образование Декарт получил в иезуитском колле́же Ла Флеш, где его учителем был Жан Франсуа.
В коллеже Декарт познакомился с Мареном Мерсенном (тогда — учеником, позже — священником), будущим координатором научной жизни Франции, и Жаком Валле де Барро. Религиозное образование только укрепило в молодом Декарте скептическое отношение к тогдашним философским авторитетам. Позже он сформулировал свой метод познания: дедуктивные (математические) рассуждения над результатами воспроизводимых опытов.
В 1612 году Декарт закончил коллеж, некоторое время изучал право в Пуатье, затем уехал в Париж, где несколько лет чередовал рассеянную жизнь с математическими исследованиями. Затем он поступил на военную службу (1617) — сначала в революционной Голландии (в те годы — союзнице Франции), затем в Германии, где участвовал в недолгой битве за Прагу (Тридцатилетняя война).
В Голландии в 1618 году Декарт познакомился с выдающимся физиком и натурфилософом Исааком Бекманом, оказавшим значительное влияние на его формирование как учёного. Несколько лет Декарт провёл в Париже, предаваясь научной работе, где, помимо прочего, открыл принцип виртуальных скоростей, который в то время никто ещё не был готов оценить по достоинству.
Затем — ещё несколько лет участия в войне (осада Ла-Рошели). По возвращении во Францию оказалось, что свободомыслие Декарта стало известно иезуитам, и те обвинили его в ереси. Поэтому Декарт переезжает в Голландию (1628), где проводит 20 лет в уединённых научных занятиях.
В 1634 году он заканчивает свою первую, программную книгу под названием «Мир» (Le Monde), состоящую из двух частей: «Трактат о свете» и «Трактат о человеке». Вскоре, однако, одна за другой, появляются другие книги Декарта.
Кардинал Ришельё благожелательно отнёсся к трудам Декарта и разрешил их издание во Франции. Протестантские же богословы Голландии наложили на них проклятие (1642)
В 1649 году Декарт, измученный многолетней травлей за вольнодумство, поддался уговорам шведской королевы Кристины (с которой много лет активно переписывался) и переехал в Стокгольм. Почти сразу после переезда он серьёзно простудился и вскоре умер.
Его труды:
- Сформулировал (хотя и не доказал) основную теорему алгебры
- Методы решения алгебраических уравнений
- Классификация алгебраических кривых
- Сформулировал точное «правило знаков» для определения числа положительных корней уравнения
- Исследовал алгебраические функции (многочлены)
- Исследования Декарта в области к механики, оптики и общему строению Вселенной
- Математически вывел закон преломления света
- Понятие о рефлексе
- Классическое построение философии рационализма
- Теория близкодействия
- Метод радикального сомнения
- Картезианский дуализм
В память о Декарте:
- Великий физиолог И. П. Павлов поставил памятник-бюст Декарту возле своей лаборатории
- В честь учёного названы его родной город
- Назван кратер на Луне
- Назван астероид (3587) Descartes
- Декартова система координат
- Декартов лист
- Декартов овал
- Декартово дерево
- Декартово произведение
***
Цитата: У одного человека зачастую больше шансов сделать открытие, нежели у нескольких, занимающихся одной проблемой.
ПЕРИМЕТР
Периметр – сумма длин всех сторон плоской геометрической фигуры. Чаще всего периметр измеряется в сантиметрах, метрах и километрах.
Чаще всего периметр обозначается буквой P.
Периметр прямоугольника – удвоенная сумма длины и высоты – 2∙(a+b)
Периметр квадрата – произведение любой его стороны на 4, так как стороны равны.
ПЛОЩАДЬ
Площадь – характеристика замкнутой геометрической фигуры, которая показывает ее размер. Чаще всего площадь измеряется в квадратных сантиметрах, квадратных метрах и квадратных километрах.
В отличие от периметра, не существует универсальной формулы площади. Для каждого типа фигур площадь вычисляется по своей особой формуле. Мы будем рассматривать только прямоугольники, квадраты и составные фигуры из прямоугольников и квадратов.
Чаще всего площадь обозначается буквой S.
Площадь прямоугольника – произведение длины на высоту.
Хотите, чтобы ваш ребёнок обучался самостоятельно?
Вам поможет наш ВИДЕОКУРС
Разделим этот прямоугольник на квадраты
Мы получили 15 квадратов внутри этого прямоугольника – это и есть те самые 15 квадратных сантиметров, которые составляют площадь прямоугольника.
Площадь квадрата – произведение длины стороны на саму себя.
СОСТАВНЫЕ ФИГУРЫ
Разделим эту фигуру на прямоугольник и квадрат
Высота прямоугольника составит 5 – 3 = 2
СООТНОШЕНИЕ ПЛОЩАДИ И ПЕРИМЕТРА
Фигуры с одной и той же площадью могут иметь разный периметр
Почему у нас изменился периметр, хотя площадь, т.е. число квадратиков внутри фигуры, осталась прежней?
Потому что изменилось число граней квадратиков, которые участвуют в формировании сторон фигуры, т.е. перметра. В первой фигуре – большом квадрате, в формировании сторон участвовали по две внешних грани каждого маленького квадратика – общее число таких граней 8, и периметр равен 8.
Во второй фигуре у нас в формировании сторон участвуют по три грани у двух крайних квадратиков и по две грани внутренних квадратов. Общее число таких граней 10, и периметр равен 10.
ОБЪЁМ
Объём – количественная характеристика пространства, занимаемого телом или веществом. Чаще всего объём измеряется в кубических сантиметрах, кубических дециметрах, кубических метрах и литрах.
1 л = 1 дм3
Не существует универсальной формулы объема. Для каждого типа фигур объём вычисляется по своей особой формуле. Мы будем рассматривать только прямоугольные параллелепипеды.
Чаще всего объём обозначается буквой V.
Прямоугольный параллелепипед – замкнутая фигура, у которой 6 прямоугольных граней (передняя, задняя, нижняя, верхняя и две боковые), и каждая из граней расположены под прямым углом к соседним.
Объём прямоугольного параллелепипеда – произведение его длины, ширины и высоты
Зная объём и две стороны, мы можем найти третью сторону:
c = (V:a):b = V:S
ВИДЕОКУРС 2plus2.online по решению олимпиадных задач по математике для 4 класса и задач из вступительных экзаменов в 5-й класс физматшколы.
ЗАДАЧИ
Задача 1. Найдите периметр и площадь прямоугольника, у которого ширина 10 см, и она меньше длины на 6 см.
x = 10 см – ширина
1. Найдём длину
y = 10 + 6 = 16 см
2. Найдём периметр
P = 2∙(10+16) = 52 см
3. Найдём площадь
S = 10∙16 = 160 см2
Ответ: P = 52 см, S = 160 см2
Задача 2. Какую ширину имеет прямоугольник, длина которого 50 см, а площадь совпадает с площадью квадрата периметром 80 см?
1. Вычислим сторону квадрата
4∙n = 80 – периметр
n = 20 см
2. Вычислим площадь квадрата
20∙20 = 400 см2
3. Вычислим ширину прямоугольника
50∙x = 400 см2
x = 8 см
Ответ: 8 см
Задача 3. Чему равна ширина прямоугольника, длина которого равна 15 м, а площадь 7500 дм2 ?
1 дм = 10 см, 1 м = 100 см, 1 м = 10 дм
1. Переведём длину прямоугольника в дм
x = 15∙10 = 150 дм
2. Найдём ширину прямоугольника
150∙y = 7500
y = 7500:150 = 50 дм
Ответ: 50 дм
Задача 4. Длина прямоугольника равна 60 см, и она в 3 раза больше ширины стороны.
1. Найдите площадь этого прямоугольника.
2. Найдите площадь квадрата, который имеет такой же периметр, как и прямоугольник.
3. Найдите периметр квадрата, площадь которого в 12 раз меньше площади прямоугольника.
1. Найдём ширину прямоугольника
x = 60:3 = 20 см
2. Найдём площадь прямоугольника
S = 60∙20 = 1200 см
2. Найдём периметр прямоугольника
P = 2∙(60+20) = 160 см
3. Найдём сторону квадрата
y = 160:4 = 40 см
4. Найдём площадь квадрата
Sкв = 40∙40 = 1600 см2
5. Найдём площадь квадрата, которая в 12 раз меньше площади прямоугольника:
Sкв2 = 1200:12 = 100 см2
6. Найдём сторону такого квадрата
Площадь квадрата = 100 см2
Из таблицы умножения мы знаем, что 10∙10 = 100, значит сторона квадрата = 10 см
7. Найдём периметр такого квадрата
P = 10∙4 = 40 см
ВИДЕОКУРС 2plus2.online по решению олимпиадных задач по математике для 4 класса и задач из вступительных экзаменов в 5-й класс физматшколы.
Задача 5. В прямоугольнике АВСД сторона АВ 3 см, сторона ВС на 1 см длиннее, а диагональ ВД на 2 см длиннее АВ. Найдите периметр и площадь прямоугольника АВСД и треугольника АВД.
1. Найдём сторону ВС
ВС = 3+1 = 4
2. Найдём диагональ ВД
ВД = 3+2 = 5
3. Найдём периметр АВСД
P = 2∙(3+4) = 14 см
4. Найдём площадь АВСД
Sавсд = 3∙4 = 12 см2
5. Найдём периметр треугольника АВД
Pавд = 3 + 5 + 4 = 13 см
6. Найдём площадь треугольника АВД
Треугольник АВД занимает половину площади прямоугольника АВСД
Sавд = Sавсд:2
Sавд = 12:2 = 6 см2
Задача 6. В аквариум в форме прямоугольного параллелепипеда, основание которого имеет стороны 80 и 40 см, налили до краёв 160 л. воды. Какова высота аквариума?
Решение
1. Переведём литры в кубические дециметры
1 л = 1 дм3, 160 л = 160 дм3
2. Переведём стороны аквариума в дециметры
1 дм = 10 см, 80 см = 8 дм, 40 см = 4 дм
3. Найдём высоту аквариума
V = a∙b∙c, a = 8, b = 4
c = (V:a):b
c = (160:8):4 = 5 дм
c = 5∙10 = 50 см
Ответ: 50 см
Для решения задач на нахождения периметра и площади прямоугольников и квадратов необходимо освоить следующие основные формулы:
a — длина
b — ширина
P — периметр
S — площадь
Формулы площади и периметра для квадрата
P = a + a + a + a; P = a · 4 — периметр квадрата
S = a · a; S = a² — площадь квадрата
Формулы площади и периметра для прямоугольника
P = a + b + a + b; P = 2a + 2b;
P = (a + b) · 2 — периметр прямоугольника
S = a · b — площадь прямоугольника
Примеры решения задач разной сложности на нахождение периметра и площади
Задача 1
Каков периметр треугольника ABC?
Ответ: периметр треугольника равен 125 см.
Задача 2
Красный треугольник является равносторонним со стороной 23 сантиметров. Чему равен его периметр?
Ответ: Все три стороны равностороннего треугольника равны. Таким образом, его периметр равен 23 · 3 = 69 см.
Задача 3
Равнобедренный треугольник имеет периметр 37 сантиметров, а его основание имеет длину 9 сантиметров. Каждая из двух других сторон будет иметь длину _____ см.?
Ответ: Равнобедренный треугольник имеет две равные стороны. Сумма равных сторон будет 37 – 9 = 28 см. Значит, каждая из них будет равна 28 : 2 = 14 см.
Задача 4
У Тимы есть сад в форме квадрата со стороной 9 метров. Какова длина забора, который опоясывает сад?
Ответ: Все стороны квадрата равны. Длина забора P равна длине стороны умноженной на 4. P = 4 · 9 = 36 метров.
Задача 5
В прямоугольнике ABCD красная сторона составляет 18 см, а синяя сторона 12 см. Чему равен периметр прямоугольника?
Ответ: Периметр прямоугольника равен 60 см.
Задача 6
Длина прямоугольника 8 дм, ширина 7 дм. Найди его площадь?
Ответ: Площадь прямоугольника 56 м².
Задача 7
Площадь витрины квадратной формы 64м². Узнай ее периметр.
Ответ: Периметр витрины равен 32 м.
Задача 8
Длина прямоугольника 9 дм, ширина 7 см. Найдите его площадь.
Ответ: Площадь прямоугольника равна 630 см².
Задача 9
Парк имеет форму прямоугольника с длиной 24 метра и шириной 18 метров. Если на его сторонах надо посадить деревья с отступом в 2 метра друг от друга, то сколько нужно деревьев?
Ответ: 42 дерева.
Задача 10
Каков периметр синей фигуры?
Ответ: Здесь есть два квадрата, у которых есть общая часть стороны. Так как сторона квадрата равна 10 см и часть стороны равна 8 см, то общая часть 2 см, а оставшаяся часть второго квадрата равна 8 см.
Периметр равен 10 + 10 + 8 + 10 + 10 + 10 + 8 + 10 = 76 см.
Задача 11
Два прямоугольных участка имеют одинаковую площадь. Длина первого – 48 м, а ширина 30 м. Чему равна длина второго участка, если его ширина на 6 м больше ширины первого участка?
Ответ: Длина второго участка 40 м.
Задача 12
Найди периметр квадрата со стороной 8 см.
Ответ: Периметр квадрата 32 см.
Задача 13
Сторона квадрата 6 см. Найди длину прямоугольника с таким же периметром и шириной 3 см.
Решение:
6 · 4 = 24 (см) -находим периметр квадрата
3 + 3 = 6 (см) -сумма ширины прямоугольника
24 — 6 = 18 (см)- сумма двух длин прямоугольника
18 : 2 = 9 (см)
Ответ: Длина прямоугольника 9 см.
Задача 14
Длина бассейна прямоугольной формы 15 м. Найди периметр бассейна, если его площадь 120 м2.
Решение:
120:15=8 (м)- ширина бассейна
(8+15)·2= 46 (м)
Ответ: Периметр бассейна 46 метров
Задача 15
Периметр квадрата 8 см. Из трех таких квадратов сложили прямоугольник. Найди периметр получившегося прямоугольника.
Решение:
8:4=2 (см)- сторона квадрата
2+2+2+2+2+2+2+2=16(см)
Ответ: Периметр прямоугольника 16 см.
Задача 16
Ученику нужно было начертить прямоугольник со сторонами 5 см и 9 см, а он начертил его со сторонами 6 и 8 см. На сколько см² он ошибся?
Решение:
5 · 9 = 45 (см²)
6 · 8 = 48 (см²)
48 — 45 = 3 (см²)
Ответ: Ученик ошибся на 3 см²
Задача 17
Ширина окна прямоугольной формы 4 дм, а длина в 2 раза больше. Вычисли площадь окна.
Решение:
4·2=8 (дм) -длина окна
8·4=32 (дм²)
Ответ: Площадь окна 32 дм²
Задача 18
Один прямоугольный участок имеет длину 36 м, а ширину 20 м. Найдите ширину другого участка с такой же площадью, если его длина на 6 м меньше длины первого участка.
Ответ: Ширина другого участка 24 м.
Задача 19
У какой фигуры площадь больше и на сколько: у квадрата со стороной 4 см или у прямоугольника со сторонами 2 см и 6 см?
Ответ: Площадь квадрата больше на 4 см.
Задача 20
Длина стороны квадрата 6 см. Узнайте площадь и периметр квадрата.
Ответ: Площадь квадрата 36 см², периметр квадрата 24 см.
Задача 21
У прямоугольника длина 7 см, ширина 5 см. Узнайте площадь и периметр прямоугольника.
Ответ: Площадь прямоугольника 35 м², периметр прямоугольника 24 см.
Задача 22
Сторона клумбы квадратной формы 8 м. 7/16 всей площади клумбы засажено ромашками, а остальная площадь – незабудками. На какой площади клумбы посажены незабудки?
Решение:
1) 8 ∙ 8 = 64 (площадь клумбы)
2) 64 : 16 = 4(1/16 клумбы)
3) 4 ∙ 7 = 28 (плошадь клумбы засаженая ромашками)
4) 64 – 28 = 36
Ответ: Незабудками засажено 36 м².
Задача 23
Длина прямоугольника 6 см. Чему равна его площадь, если периметр составляет 18 см?
Решение:
1) 6 ∙ 2 = 12
2) 18 – 12 = 6
3) 6 : 2 = 3 (ширина прямоугольника)
4) 3 ∙ 6 = 18
Ответ: Площадь прямоугольника 18 м².
Задача 24
Площадь прямоугольного стола 4800 кв см. Его ширина 60 см. Чему равен его периметр?
Решение:
1) 4800 : 60 = 80 (длина стола)
2) 60 ∙ 2 = 120 см
3) 80 ∙ 2 = 160 см
4) 120 + 160 = 280 см
Ответ: Периметр стола 280 см.
Задача 25
Периметр прямоугольника 40 см. Одна сторона 5 см. Чему равна его площадь?
Решение:
1) 5 ∙ 2 = 10
2) 40 – 10 = 30
3) 30 : 2 = 15 (другая сторона прямоугольника)
4) 5 ∙ 15 = 75
Ответ: Площадь прямоугольника 75 см².
Задача 26
Площадь квадрата 49 кВ дм. Узнайте его периметр.
Решение:
1) 49 : 7 = 7 (сторона квадрата)
2) 7 ∙ 4 = 28 (периметр квадрата)
Ответ: Периметр квадрата равен 28 дм.
Задача 27
Ширина окна прямоугольной формы 4 дм, а длина в 2 раза больше. Вычислите площадь окна.
Решение:
1) 4 ∙ 2 = 8 (длина окна)
2) 4 ∙ 8 = 32
Ответ: Площадь окна равна 32 м².
Задача 28
Длина участка земли 54 м. ширина – 48 м. 5/9 площади засажено картофелем. Остальная часть участка – капустой. Какая площадь засажена капустой?
Решение:
1) 54 ∙ 48 = 2592 (площадь участка земли)
2) 2592 : 9 = 288 (1/9 площади)
3) 288 ∙ 5 = 1440 (5/9 площади)
4) 2592 – 1440 = 1152
Ответ: Капустой засадили 1152 м².
Задача 29
Найди периметр квадрата со стороной 16 см.
Ответ: Периметр квадрата 64 см.
Задача 30
Найди длину прямоугольника с помощью уравнения, если его ширина 7 см, а периметр равен 40 см.
Решение:
P = (a + b) · 2 — периметр прямоугольника
или
(a + b) · 2 = P,
где a — длина = ?, b — ширина = 7 см, P — периметр = 40 см.
Составим уравнение:
(а + 7) · 2 = 40
2а + 14 = 40
2а = 40 – 14
2а = 26
а = 26 : 2
а = 13
Ответ: Длина прямоугольника 13 см.
Задача 31
Найди ширину прямоугольника, если его длина 10 см, а периметр равен 30 см.
Ответ: Ширина прямоугольника 5 см.
Задача 32
Периметр квадрата 24 см. Найди его площадь.
Решение:
24 : 4 = 6 (см)
6 · 6 = 36 (см²)
Ответ: Площадь квадрата 36 см².
Задача 33
Периметр прямоугольника 36 см. Длина его 4 см. Найди площадь прямоугольника.
Ответ: Площадь прямоугольника 56 см².
Задача 34
Площадь прямоугольника 40 см². Ширина его 4 см. Чему равен периметр прямоугольника?
Решение:
40 : 4 = 10 (см)
(10 + 4) · 2 = 28 (см)
Ответ: Периметр прямоугольника 28 см.
Задача 35
Ребро куба равно 2 сантиметров. Найти площадь всех граней куба.
Решение:
Куб — многогранник, поверхность которого состоит из шести одинаковых по площади квадратов.
У куба 8 вершин, 12 рёбер, 6 граней (поверхностей).
Если S = a · a — площадь квадрата, тогда
S = (a · a) · 6 — площадь всех граней куба, из условия задачи a = 2, тогда S = 2 · 2 · 6
2 · 2 · 6 = 24 (см²)
Ответ: Площадь всех граней куба равна 24 см².
Задача 36
Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.
Ответ: Площадь получившейся фигуры равна 44.
Задача 37
Площадь одной клетки равна 1см.
- Найдите площадь фигуры, изображённой на рисунке A.
- Найдите площадь фигуры, изображённой на рисунке B.
- Найдите площадь фигуры, изображённой на рисунке C.
- Найдите площадь фигуры, изображённой на рисунке D.
- Найдите площадь фигуры, изображённой на рисунке E.
Ответ: Площадь фигуры A 18,5 см², площадь фигуры B 20,5 см², площадь фигуры C 30,5 см², площадь фигуры A 18,5 см², площадь фигуры E 12 см².
Задача 38
Найдите площади и периметры фигурок. Сделайте вывод.
Ответ: Пусть каждая из сторон клетки равна 1 см, тогда применив формулу площади квадрата S = a · a получим площадь одной клетки 1 · 1 = 1 см²
Фигура A — прямоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура A имеет четыре стороны, тогда 1 + 4 + 1 + 4 = 10 см — периметр фигуры.
Фигура B — квадрат состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура B имеет четыре стороны, тогда 2 + 2 + 2 + 2 = 8 см — периметр фигуры.
Фигура C — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура C имеет шесть сторон, тогда 3 + 1 + 2 + 1 + 2 + 1 = 10 см — периметр фигуры.
Фигура D — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура D имеет восемь сторон, тогда 1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 = 10 см — периметр фигуры.
Фигура E — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура E имеет восемь сторон, тогда 1 + 1 + 1 + 3 + 1 + 1 + 1 + 1 = 10 см — периметр фигуры.
Вывод: Фигуры A, B, C, D, E имеют одинаковую площадь, но наименьший периметр имеет квадрат. У разных по форме плоских фигур, с одинаковой площадью, наименьший периметр всегда имеет квадрат.
Задача 39
Квадрат в данной фигуре имеет периметр 24 см. Синий треугольник – периметр 15 см. Каков периметр красной фигуры?
Ответ: Периметр красной фигуры равен 27 см.
Задача 40
Периметр каждого из зеленых квадратов 12 см. Каков периметр большого квадрата?
Ответ: Периметр равен 36 см.
Задача 41
Площадь прямоугольника 72 см2. Какова длина и ширина прямоугольника, если ширина в 2 раза меньше, чем его длина?
Ответ: Длина прямоугольника равна 12 см. а ширина – 6 см.
Задача 42
Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (катет) b = 8 см.
Ответ: Периметр прямоугольника равен 24 см.
Задача 43
Периметр красного квадрата равен 16см. Красные треугольники равносторонние. Каково расстояние проползет улитка по пути ABCDFGHA?
Ответ: Расстояние пройденное улиткой будет равно 28 см.
Задача 44
В зале длиной 12 м и шириной 8 м надо покрыть пол квадратными плитками. Сколько потребуется плиток, если площадь каждой плитки 4 дм2?
Ответ: 2400 плиток.
Задача 45
Каков периметр зеленой зоны, если ширина синей зоны равна 3 метра?
Ответ: Периметр зеленой зоны равен 100 метров.
Задача 1
Длина прямоугольника 8 дм, ширина 7 дм. Найди его площадь?
Решение:
- 1) 8 ∙ 7 = 56
- Ответ: Площадь прямоугольника 56 м².
Задача 2
Площадь витрины квадратной формы 64м². Узнай ее периметр.
Решение:
- 1) 1) 64 : 8 = 8 (сторна витрины)
- 2) 2) 8 ∙ 4 = 32 (периметр витрины)
- Ответ: 32 м.
Задача 3
Длина прямоугольника 9 дм, ширина 7 см. Найдите его площадь.
Решение:
- 1) 1) 90 ∙ 7 = 630
- Ответ: 630 см².
Задача 4
Два прямоугольных участка имеют одинаковую площадь. Длина первого – 48 м, а ширина 30 м. Чему равна длина второго участка, если его ширина на 6 м больше ширины первого участка?
Решение:
- 1) 48 ∙ 30 = 1440 (площадь первого участка)
- 2) 30 + 6 = 36 (ширина второго участка)
- 3) 1440 : 36 = 40
- Ответ: длина второго участка 40 м.
Задача 5
Один прямоугольный участок имеет длину 36 м, а ширину 20 м. Найдите ширину другого участка с такой же площадью, если его длина на 6 м меньше длины первого участка.
Решение:
- 1) 36 ∙ 20 = 720 (площадь первого участка)
- 2) 36 – 6 = 30 (длина другого участка)
- 3) 720 : 30 = 24
- Ответ: ширина другого участка 24 м.
Задача 6
У какой фигуры площадь больше и на сколько: у квадрата со стороной 4 см или у прямоугольника со сторонами 2 см и 6 см?
Решение:
- 1) 4 ∙ 4 = 16 (площадь квадрата)
- 2) 2 ∙ 6 = 12 (площадь прямоугольника)
- 3) 16 – 12 = 4
- Ответ: площадь квадратата больше на 4 см.
Задача 7
Длина стороны квадрата 6 см. Узнайте площадь и периметр квадрата.
Решение:
- 1) 6 ∙ 6 = 36
- 2) 6 ∙ 4 = 24
- Ответ: площадь квадрата 36 см², периметр квадрата 24 см.
Задача 8
У прямоугольника длина 7 см, ширина 5 см. Узнайте площадь и периметр прямоугольника.
Решение:
- 1) 7 ∙ 5 = 35
- 2) 7 ∙ 2 = 14
- 3) 5 ∙ 2 = 10
- 4) 10 + 14 = 24
- Ответ: площадь прямоугольника 35 м², периметр прямоугольника 24 см.
Задача 9
Сторона клумбы квадратной формы 8 м. 7/16 всей площади клумбы засажено ромашками, а остальная площадь – незабудками. На какой площади клумбы посажены незабудки?
Решение:
- 1) 8 ∙ 8 = 64 (площадь клумбы)
- 2) 64 : 16 = 4(1/16 клумбы)
- 3) 4 ∙ 7 = 28 (плошадь клумбы засаженая ромашками)
- 4) 64 – 28 = 36
- Ответ: незабудками засажено 36 м².
Задача 10
Длина прямоугольника 6 см. Чему равна его площадь, если периметр составляет 18 см?
Решение:
- 1) 6 ∙ 2 = 12
- 2) 18 – 12 = 6
- 3) 6 : 2 = 3 (ширина прямоугольника)
- 4) 3 ∙ 6 = 18
- Ответ: площадь прямоугольника 18 м².
Задача 11
Площадь прямоугольного стола 4800 кв см. Его ширина 60 см. Чему равен его периметр?
Решение:
- 1) 4800 : 60 = 80 (длина стола)
- 2) 60 ∙ 2 = 120 см
- 3) 80 ∙ 2 = 160 см
- 4) 120 + 160 = 280 см
- Ответ: периметр стола 280 см.
Задача 12
Периметр прямоугольника 40 см. Одна сторона 5 см. Чему равна его площадь?
Решение:
- 1) 5 ∙ 2 = 10
- 2) 40 – 10 = 30
- 3) 30 : 2 = 15 (другая сторона прямоугольника)
- 4) 5 ∙ 15 = 75
- Ответ: площадь прямоугольника 75 см².
Задача 13
Площадь квадрата 49 кВ дм. Узнайте его периметр.
Решение:
- 1) 49 : 7 = 7 (сторона квадрата)
- 2) 7 ∙ 4 = 28 (периметр квадрата)
- Ответ: периметр квадрата равен 28 дм.
Задача 14
Ширина окна прямоугольной формы 4 дм, а длина в 2 раза больше. Вычислите площадь окна.
Решение:
- 1) 4 ∙ 2 = 8 (длина окна)
- 2) 4 ∙ 8 = 32
- Ответ: площадь окна равна 32 м².
Задача 15
Длина участка земли 54 м. ширина – 48 м. 5/9 площади засажено картофелем. Остальная часть участка – капустой. Какая площадь засажена капустой?
Решение:
- 1) 54 ∙ 48 = 2592 (площадь участка земли)
- 2) 2592 : 9 = 288 (1/9 площади)
- 3) 288 ∙ 5 = 1440 (5/9 площади)
- 4) 2592 – 1440 = 1152
- Ответ: капустой засадили 1152 м².
Простые задачи
- Простые задачи на движение
Составные задачи
- Задачи на встречное движение
- Задачи на движение в одном направлении
- Задачи на противоположное движение
- Задачи на нахождение неизвестного по двум разностям
- Задачи на нахождение числа по доле и доли по числу
- Задачи на нахождение площади
- Задачи на сложение и вычитание многозначных чисел
- Задачи на умножение и деление многозначных чисел
- Задачи на приведение к единице и пропорциональное деление
- Задачи на определение цены, количества, стоимости