Решением системы является пара чисел как найти

Содержание:

Системы линейных уравнений с двумя переменными

  • В этом параграфе вы познакомитесь с уравнениями с двумя переменными и их системами. Изучите некоторые методы их решения.
  • Вы узнаете, что уравнение с двумя переменными может служить математической моделью реальной ситуации.
  • Овладеете новым эффективным методом решения текстовых задач.

Уравнения с двумя переменными

Рассмотрим несколько примеров реальных ситуаций.

Пример:

Расстояние между Киевом и Харьковом равно 450 км. Из Киева в Харьков со скоростью Системы линейных уравнений с двумя переменными с примерами решения

Построим математическую модель этой ситуации.

Путь, пройденный вторым автомобилем до встречи, равен Системы линейных уравнений с двумя переменными с примерами решения км. Поскольку первый автомобиль находился в пути на 1 ч дольше второго, то он до встречи проехал Системы линейных уравнений с двумя переменными с примерами решения км.

Имеем: Системы линейных уравнений с двумя переменными с примерами решения

Это равенство с двумя переменными является математической моделью вышеописанной реальной ситуации.

Рассмотрим еще несколько примеров ситуаций, математическими моделями которых служат равенства с двумя переменными.

Пример:

Площадь квадрата со стороной 10 см равна сумме площадей двух других квадратов.

Если длины сторон этих квадратов обозначить Системы линейных уравнений с двумя переменными с примерами решения см и Системы линейных уравнений с двумя переменными с примерами решения см, то получим равенство

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Дан прямоугольный треугольник.

Если градусные меры его острых углов обозначить Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения, то можно записать

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Дан прямоугольник, площадь которого равна 12 см2. Обозначим длины его сторон Системы линейных уравнений с двумя переменными с примерами решения см и Системы линейных уравнений с двумя переменными с примерами решения см. Тогда

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Купили 5 ручек и 7 тетрадей. За всю покупку заплатили 19 руб.

Если одна ручка стоит Системы линейных уравнений с двумя переменными с примерами решения руб., а одна тетрадь — Системы линейных уравнений с двумя переменными с примерами решения руб., то

Системы линейных уравнений с двумя переменными с примерами решения

Как видим, все полученные в примерах 1-5 равенства

Системы линейных уравнений с двумя переменными с примерами решения

содержат по две переменные Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения. Такие равенства называют уравнениями с двумя переменными.

Если, например, в уравнение Системы линейных уравнений с двумя переменными с примерами решения вместо Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения подставить числа 2 и 6, то получим верное равенство Системы линейных уравнений с двумя переменными с примерами решения В этом случае говорят, что пара значений переменных Системы линейных уравнений с двумя переменными с примерами решения удовлетворяет данному уравнению или что эта пара является решением этого уравнения.

Определение. Пару значений переменных, обращающую уравнение в верное равенство, называют решением уравнения с двумя переменными.

Так, для уравнения Системы линейных уравнений с двумя переменными с примерами решения каждая из пар чисел

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

является его решением, а, например, пара Системы линейных уравнений с двумя переменными с примерами решения его решением не является.

Обратим внимание на то, что данное определение похоже на определение корня уравнения с одной переменной. В связи с этим распространена ошибка: называть каждое число пары или саму пару, являющуюся решением, корнем уравнения с двумя переменными.

Тот факт, что пара Системы линейных уравнений с двумя переменными с примерами решения является решением уравнения, принято записывать так: Системы линейных уравнений с двумя переменными с примерами решения является решением уравнения. В скобках на первом месте пишут значение переменной Системы линейных уравнений с двумя переменными с примерами решения, а на втором — значение переменной Системы линейных уравнений с двумя переменными с примерами решения.

Используя такое обозначение, можно, например, записать, что каждая из пар чисел Системы линейных уравнений с двумя переменными с примерами решения является решением уравнения Системы линейных уравнений с двумя переменными с примерами решения

Три указанные пары далеко не исчерпывают все решения этого уравнения. Если вместо переменной Системы линейных уравнений с двумя переменными с примерами решения подставлять в уравнение Системы линейных уравнений с двумя переменными с примерами решения любые ее значения, то будем получать линейные уравнения с одной переменной, корнями которых будут соответственные значения переменной Системы линейных уравнений с двумя переменными с примерами решения. Понятно, что так можно получить бесконечно много пар чисел, являющихся решениями уравнения Системы линейных уравнений с двумя переменными с примерами решения

Уравнение с двумя переменными не обязательно имеет бесконечно много решений. Например, уравнение Системы линейных уравнений с двумя переменными с примерами решения Системы линейных уравнений с двумя переменными с примерами решения имеет только одно решение — пару чисел (0; 0), посколькуСистемы линейных уравнений с двумя переменными с примерами решения а уравнение Системы линейных уравнений с двумя переменными с примерами решения вообще решений не имеет.

Заметим, что мы решили каждое из уравнений Системы линейных уравнений с двумя переменными с примерами решения Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения но при этом уравнение Системы линейных уравнений с двумя переменными с примерами решения нами не решено.

Решить уравнение с двумя переменными — это значит найти все его решения или показать, что оно не имеет решений.

Свойства уравнений с двумя переменными запомнить легко: они аналогичны свойствам уравнений с одной переменной, которые вы изучали в б классе.

  • Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, имеющее те же решения, что и данное.
  • Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, имеющее те же решения, что и данное.
  • Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, имеющее те же решения, что и данное.

Рассмотрим уравнение Системы линейных уравнений с двумя переменными с примерами решения Преобразуем его, используя свойства уравнений. Имеем:

Системы линейных уравнений с двумя переменными с примерами решения

Поскольку Системы линейных уравнений с двумя переменными с примерами решения то левая часть уравнения обращается в нуль только при одновременном выполнении условий: Системы линейных уравнений с двумя переменными с примерами решения Отсюда пара чисел (1; -1) — единственное решение данного уравнения.

Изучая какой-то объект, мы стремимся не только описать его свойства, но и составить о нем наглядное представление. График функции — характерный тому пример. Поскольку решением уравнения с двумя переменными является пара чисел, например Системы линейных уравнений с двумя переменными с примерами решения то совершенно естественно изобразить это решение в виде точки Системы линейных уравнений с двумя переменными с примерами решения на координатной плоскости. Если изобразить все решения уравнения, то получим график уравнения.

Определение. Графиком уравнения с двумя переменными называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, координаты которых (пары чисел) являются решениями данного уравнения.

Системы линейных уравнений с двумя переменными с примерами решения

Например, графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения является единственная точка М( 1; -1) (рис. 43).

На рисунке 44 изображен график функции Системы линейных уравнений с двумя переменными с примерами решения Поскольку формула, задающая линейную функцию, является уравнением с двумя переменными, то также можно сказать, что на рисунке 44 изображен график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Подчеркнем, что если какая-то фигура является графиком уравнения, то выполняются два условия:

1) все решения уравнения являются координатами точек, принадлежащих графику;

2) координаты любой точки, принадлежащей графику, — это пара чисел, которая является решением данного уравнения.

Семейства графиков уравнений очень разнообразны. Изучая курс алгебры, вы будете знакомиться с их представителями. Например, в 8 классе вы узнаете, что графиком рассмотренного в начале пункта уравнения Системы линейных уравнений с двумя переменными с примерами решения является фигура, изображенная на рисунке 45. Она называется гиперболой. А в 9 классе вы сможете доказать, что графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения является окружность (рис. 46).

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Постройте график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Запишем данное уравнение в виде Системы линейных уравнений с двумя переменными с примерами решения

Следовательно, решениями данного уравнение являются все пары чисел вида Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — произвольное число, и все пары чисел вида Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — произвольное число.

Все точки, координаты которых имеют вид Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — произвольное число, образуют ось абсцисс.

Все точки, координаты которых имеют вид Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — произвольное число, образуют прямую, проходящую через точку (-3; О) параллельно оси ординат.

Следовательно, графиком данного уравнения является пара прямых, изображенных на рисунке 47.

Системы линейных уравнений с двумя переменными с примерами решения

Линейное уравнение с двумя переменными и его график

Определение. Линейным уравнением с двумя переменными называют уравнение вида Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — переменные, Системы линейных уравнений с двумя переменными с примерами решения — некоторые числа.

Уравнения Системы линейных уравнений с двумя переменными с примерами решения знакомые вам по предыдущему пункту, являются линейными. Вот еще примеры линейных уравнений: Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

Выясним, какая фигура является графиком линейного уравнения. Для этого рассмотрим три случая.

СЛУЧАЙ 1

Рассмотрим линейное уравнение Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения Это уравнение можно преобразовать так:

Системы линейных уравнений с двумя переменными с примерами решения

Поскольку Системы линейных уравнений с двумя переменными с примерами решения то запишем

Системы линейных уравнений с двумя переменными с примерами решения

Введем обозначения: Системы линейных уравнений с двумя переменными с примерами решения Теперь можно записать

Системы линейных уравнений с двумя переменными с примерами решения

Мы получили формулу, задающую линейную функцию. Следовательно, графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения является прямая.

Пример:

Постройте график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Мы уже знаем, что графиком этого уравнения является прямая. Поэтому достаточно определить координаты двух любых ее точек. Имеем: если Системы линейных уравнений с двумя переменными с примерами решения то Системы линейных уравнений с двумя переменными с примерами решения если Системы линейных уравнений с двумя переменными с примерами решения то Системы линейных уравнений с двумя переменными с примерами решения Теперь через точки Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решенияпроведем прямую (рис. 50).

Системы линейных уравнений с двумя переменными с примерами решения

Эта прямая и является искомым графиком.

СЛУЧАЙ 2

Пусть есть линейное уравнение Системы линейных уравнений с двумя переменными с примерами решения в котором Системы линейных уравнений с двумя переменными с примерами решения Получаем Системы линейных уравнений с двумя переменными с примерами решения Построение графика уравнения такого вида рассмотрим на примере.

Пример:

Постройте график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Легко найти несколько решений этого уравнения. Вот, например, четыре его решения: Системы линейных уравнений с двумя переменными с примерами решения Системы линейных уравнений с двумя переменными с примерами решения Ясно, что любая пара чисел вида (2; Системы линейных уравнений с двумя переменными с примерами решения), где Системы линейных уравнений с двумя переменными с примерами решения — произвольное число, является решением. Следовательно, искомый график содержит все точки, у которых абсцисса равна 2, а ордината — любое число. Все эти точки принадлежат прямой, перпендикулярной оси абсцисс и проходящей через точку (2; 0) (рис. 51).

Системы линейных уравнений с двумя переменными с примерами решения

При этом координаты любой точки этой прямой — пара чисел, являющаяся решением данного уравнения. А значит, указанная прямая и является искомым графиком.

Рассуждая аналогично, можно показать, что графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения является прямая, перпендикулярная оси абсцисс.

Теперь можно сделать такой вывод: в каждом из двух случаев: Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения — графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения является прямая.

Часто, например, вместо предложения «дано уравнение Системы линейных уравнений с двумя переменными с примерами решения» говорят «дана прямая Системы линейных уравнений с двумя переменными с примерами решения».

СЛУЧАЙ 3

Пусть Системы линейных уравнений с двумя переменными с примерами решения в линейном уравнении Системы линейных уравнений с двумя переменными с примерами решения Имеем Системы линейных уравнений с двумя переменными с примерами решения

Если Системы линейных уравнений с двумя переменными с примерами решения то это уравнение не имеет решений, а следовательно, на координатной плоскости не существует точек, которые могли бы служить графиком уравнения.

Если Системы линейных уравнений с двумя переменными с примерами решения то уравнение принимает вид:

Системы линейных уравнений с двумя переменными с примерами решения

Любая пара чисел является его решением. Значит, в этом случае график уравнения — вся координатная плоскость. Следующая таблица подытоживает материал, рассмотренный в этом пункте.

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Выразите из уравнения Системы линейных уравнений с двумя переменными с примерами решения переменную Системы линейных уравнений с двумя переменными с примерами решения через переменную Системы линейных уравнений с двумя переменными с примерами решения и найдите каких-нибудь два решения этого уравнения.

Решение:

Имеем:

Системы линейных уравнений с двумя переменными с примерами решения

Придавая переменной Системы линейных уравнений с двумя переменными с примерами решения произвольные значения и вычисляя по полученной формуле Системы линейных уравнений с двумя переменными с примерами решения соответственное значение Системы линейных уравнений с двумя переменными с примерами решения, можем найти сколько угодно решений данного уравнения Системы линейных уравнений с двумя переменными с примерами решения

Например,

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Постройте график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Запишем данное уравнение в виде Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения Отсюда получаем уравнение Системы линейных уравнений с двумя переменными с примерами решения Его решения — пары чисел вида Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — произвольное число. Графиком этого уравнения является прямая, проходящая через точку (-2; 0) и перпендикулярная оси абсцисс (рис. 52).

Системы линейных уравнений с двумя переменными с примерами решения

Пример:

Составьте линейное уравнение с двумя переменными, графиком которого является прямая, проходящая через начало координат и точку Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Так как график искомого уравнения проходит через точки Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения имеющие разные абсциссы, то он является невертикальной прямой. Тогда уравнение этой прямой можно записать в виде Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — некоторые числа.

Из того, что график проходит через начало координат, следует, что Системы линейных уравнений с двумя переменными с примерами решения Так как график проходит через точку Системы линейных уравнений с двумя переменными с примерами решения то Системы линейных уравнений с двумя переменными с примерами решения откуда Системы линейных уравнений с двумя переменными с примерами решения

Значит, искомое уравнение имеет вид Системы линейных уравнений с двумя переменными с примерами решения или Системы линейных уравнений с двумя переменными с примерами решения

Ответ: Системы линейных уравнений с двумя переменными с примерами решения

Как строили мост между геометрией и алгеброй

Идея координат зародилась очень давно. Ведь уже в древности люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.

Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения местоположения объектов на поверхности Земли.

Лишь в XIV в. французский ученый Никола Орем (около 1323—1392) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбит ваш тетрадный листок) и стал задавать положение точек широтой и долготой.

Однако огромные возможности применения этой идеи были раскрыты только в XVII в. в работах выдающихся французских математиков Пьера Ферма (1601 — 1665) и Рене Декарта (1596— 1650). В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.

Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

Несмотря на то, что П. Ферма опубликовал свое сочинение годом раньше, чем Р. Декарт, ту систему координат, которой мы сегодня пользуемся, называют декартовой. Это связано с тем, что Р. Декарт в своей работе «Рассуждения о методе» изобрел новую удобную буквенную символику, которой с небольшими изменениями мы пользуемся и сегодня. Вслед за ним мы обозначаем переменные последними буквами латинского алфавита Системы линейных уравнений с двумя переменными с примерами решения а коэффициенты — первыми: Системы линейных уравнений с двумя переменными с примерами решения Привычные нам обозначения степеней Системы линейных уравнений с двумя переменными с примерами решения и т. п. также ввел Р. Декарт.

Системы уравнений с двумя переменными. Графический метод решения системы двух линейных уравнений с двумя переменными

Легко проверить, что пара чисел Системы линейных уравнений с двумя переменными с примерами решения является решением как уравнения Системы линейных уравнений с двумя переменными с примерами решения так и уравнения Системы линейных уравнений с двумя переменными с примерами решения В таких случаях говорят, что пара чисел Системы линейных уравнений с двумя переменными с примерами решенияобщее решение указанных уравнений.

Системы линейных уравнений с двумя переменными с примерами решения

На рисунке 59 изображены графики уравнений Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения Они пересекаются в точке Системы линейных уравнений с двумя переменными с примерами решения Эта точка принадлежит каждому из графиков. Следовательно, пара чисел Системы линейных уравнений с двумя переменными с примерами решения является общим решением данных уравнений.

Если поставлена задача найти стороны прямоугольника, площадь которого равна 12 см2, а периметр 14 см, то понятно, что надо найти общее решение уравнений Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения см и Системы линейных уравнений с двумя переменными с примерами решения см — длины соседних сторон.

Если требуется найти все общие решения нескольких уравнений, то говорят, что нужно решить систему уравнений.

Систему уравнений записывают с помощью фигурной скобки.

Так, запись

Системы линейных уравнений с двумя переменными с примерами решения

является математической моделью задачи о поиске сторон прямоугольника, площадь которого равна 12 см2, а периметр 14 см.

Система Системы линейных уравнений с двумя переменными с примерами решения

— это математическая модель задачи о поиске координат общих точек двух прямых (рис. 59).

Оба уравнения этой системы являются линейными. Поэтому эту систему называют системой двух линейных уравнений с двумя переменными.

Определение. Решением системы уравнений с двумя переменными называют пару значений переменных, обращающую каждое уравнение в верное равенство.

Из примера, приведенного в начале пункта, следует, что пара чисел Системы линейных уравнений с двумя переменными с примерами решенияявляется решением системы

Системы линейных уравнений с двумя переменными с примерами решения

Однако это совершенно не означает, что данная система решена.

Определение. Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.

Пара чисел Системы линейных уравнений с двумя переменными с примерами решения не исчерпывает всех решений последней системы. Например, пара чисел Системы линейных уравнений с двумя переменными с примерами решения — тоже решение. Эту систему, как и систему, полученную в задаче о прямоугольнике, вы научитесь решать в 9 классе. А вот систему

Системы линейных уравнений с двумя переменными с примерами решения

мы можем решить уже сейчас. Очевидно, что первое уравнение этой системы решений не имеет, а значит, не существует и общего решения уравнений, входящих в систему. Отсюда следует вывод: система решений не имеет.

Также можно считать решенной систему

Системы линейных уравнений с двумя переменными с примерами решения

Действительно, графики уравнений системы пересекаются в точке Системы линейных уравнений с двумя переменными с примерами решения (рис. 59). Ее координаты являются решением каждого уравнения системы, а значит, и самой системы. Других общих точек графики уравнений не имеют, а следовательно, не имеет других решений и сама система. Вывод: пара чисел (1; 3) — единственное решение системы.

Описанный метод решения системы уравнений называют графическим. Его суть состоит в следующем:

Графический метод эффективен в тех случаях, когда требуется определить количество решений системы. Например, на рисунке 60 изображены графики некоторых функций Системы линейных уравнений с двумя переменными с примерами решения Эти графики имеют три общие точки. Это позволяет нам утверждать, что система Системы линейных уравнений с двумя переменными с примерами решения имеет три решения.

Если графиками уравнений, входящих в систему линейных уравнений, являются прямые, то количество решений этой системы зависит от взаимного расположения двух прямых на плоскости:

  • если прямые пересекаются, то система имеет единственное решение;
  • если прямые совпадают, то система имеет бесконечно много решений;
  • если прямые параллельны, то система решений не имеет. Случай, когда система имеет единственное решение, мы уже рассмотрели. Теперь обратимся к примерам, которые иллюстрируют две другие возможности.

Так, если в системе

Системы линейных уравнений с двумя переменными с примерами решения

обе части первого уравнения умножить на 2, то решения этого уравнения, а значит, и всей системы не изменятся.

Имеем:

Системы линейных уравнений с двумя переменными с примерами решения

Очевидно, что решения этой системы совпадают с решениями уравнения Системы линейных уравнений с двумя переменными с примерами решения Но это уравнение имеет бесконечно много решений, а следовательно, и рассматриваемая система имеет бесконечно много решений. Приведем пример системы, которая не имеет решений:

Системы линейных уравнений с двумя переменными с примерами решения

Действительно, умножим обе части первого уравнения системы на 3. Получим:

Системы линейных уравнений с двумя переменными с примерами решения

Понятно, что не существует такой пары значений Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения, при которых выражение Системы линейных уравнений с двумя переменными с примерами решения одновременно принимает значения и 6, и 7.

Подчеркнем, что именно графический метод нам подсказал, что не существует системы линейных уравнений, имеющей, например, ровно 2, или ровно 3, или ровно 100 и т. п. решений?

Решение систем линейных уравнений методом подстановки

Если математикам встречается новая задача, то, как правило, они пытаются ее решение свести к уже известной задаче.

Покажем, как решение системы линейных уравнений с двумя переменными можно свести к решению линейного уравнения с одной переменной. А последняя задача вам хорошо знакома.

Решим систему уравнений

Системы линейных уравнений с двумя переменными с примерами решения

Из первого уравнения выразим переменную Системы линейных уравнений с двумя переменными с примерами решения через переменную Системы линейных уравнений с двумя переменными с примерами решения. Имеем:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим во второе уравнение системы вместо переменной Системы линейных уравнений с двумя переменными с примерами решения выражение Системы линейных уравнений с двумя переменными с примерами решения Получим систему

Системы линейных уравнений с двумя переменными с примерами решения

Эта и исходная системы имеют одни и те же решения. Примем здесь этот факт без обоснований. Вы можете рассмотреть доказательство этого факта на занятиях математического кружка.

Второе уравнение последней системы является уравнением с одной переменной. Решим его:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим найденное значение переменной Системы линейных уравнений с двумя переменными с примерами решения в уравнение Системы линейных уравнений с двумя переменными с примерами решения Получим:

Системы линейных уравнений с двумя переменными с примерами решения

Пара чисел Системы линейных уравнений с двумя переменными с примерами решения — искомое решение.

Описанный здесь способ решения системы называют методом подстановки.

Итак, чтобы решить систему линейных уравнений методом подстановки, нужно:

  1. выразить из любого уравнения системы одну переменную через другую;
  2. подставить в другое уравнение системы вместо этой переменной выражение, полученное на первом шаге;
  3. решить уравнение с одной переменной, полученное на втором шаге;
  4. подставить найденное значение переменной в выражение, полученное на первом шаге;
  5. вычислить значение другой переменной;
  6. записать ответ.

Эту последовательность действий, состоящую из шести шагов, можно назвать алгоритмом решения системы двух линейных уравнений с двумя переменными методом подстановки.

Решение систем линейных уравнений методом сложения

Рассмотрим еще один способ, позволяющий свести решение системы двух линейных уравнений с двумя переменными к решению линейного уравнения с одной переменной.

Решим систему уравнений

Системы линейных уравнений с двумя переменными с примерами решения

Поскольку в этой системе коэффициенты при переменной Системы линейных уравнений с двумя переменными с примерами решения — противоположные числа, то уравнение с одной переменной можно получить, сложив почленно левые и правые части уравнений системы. Запишем:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим найденное значение переменной Системы линейных уравнений с двумя переменными с примерами решения в любое из уравнений системы, например, в первое. Получим:

Системы линейных уравнений с двумя переменными с примерами решения

Итак, решением системы является пара чисел Системы линейных уравнений с двумя переменными с примерами решения

Описанный способ решения системы называют методом сложения.

Этот метод, как и любой другой математический метод, нуждается в обосновании его законности. Примем без доказательства, что метод сложения дает верные результаты. Вы можете рассмотреть доказательство этого факта на занятии математического кружка.

Решим еще одну систему:

Системы линейных уравнений с двумя переменными с примерами решения

Если мы сложим почленно левые и правые части уравнений системы, то вновь получим уравнение с двумя переменными. Данная система еще «не готова» к применению метода сложения.

Умножим обе части первого уравнения на -3. Получим систему, решения которой совпадают с решениями исходной системы:

Системы линейных уравнений с двумя переменными с примерами решения

Для такой системы метод сложения уже является эффективным:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим найденное значение Системы линейных уравнений с двумя переменными с примерами решения в первое уравнение исходной системы. Имеем:

Системы линейных уравнений с двумя переменными с примерами решения

Пара чисел (4; -1) — искомое решение.

Рассмотрим систему, в которой сразу два уравнения нужно подготовить к применению метода сложения:

Системы линейных уравнений с двумя переменными с примерами решения

Чтобы исключить переменную Системы линейных уравнений с двумя переменными с примерами решения, умножим обе части первого уравнения на число 5, а второго — на число -8 и применим метод сложения:

Системы линейных уравнений с двумя переменными с примерами решения

Подставив найденное значение Системы линейных уравнений с двумя переменными с примерами решения в первое уравнение данной системы, получим:

Системы линейных уравнений с двумя переменными с примерами решения

Следовательно, пара чисел (-1; 2) — решение данной системы.

Алгоритм решения системы уравнений методом сложения можно записать так:

  1. подобрав «выгодные» множители, преобразовать одно или оба уравнения системы так, чтобы коэффициенты при одной из переменных стали противоположными числами;
  2. сложить почленно левые и правые части уравнений, полученных на первом шаге;
  3. решить уравнение с одной переменной, полученное на втором шаге;
  4. подставить найденное на третьем шаге значение переменной в любое из уравнений исходной системы;
  5. вычислить значение другой переменной;
  6. записать ответ.

Решение задач с помощью систем линейных уравнений

Рассмотрим задачи, в которых системы двух линейных уравнений с двумя переменными используют как математические модели реальных ситуаций.

Пример:

На пошив одного платья и 4 юбок пошло 9 м ткани, а на пошив 3 таких же платьев и 8 таких же юбок — 21 м ткани. Сколько ткани требуется для пошива одного платья и одной юбки отдельно?

Решение:

Пусть на одно платье идет Системы линейных уравнений с двумя переменными с примерами решения м ткани, а на одну юбку — Системы линейных уравнений с двумя переменными с примерами решения м. Тогда на одно платье и 4 юбки идет Системы линейных уравнений с двумя переменными с примерами решения м ткани, что по условию составляет 9 м. Следовательно, Системы линейных уравнений с двумя переменными с примерами решения

На 3 платья и 8 юбок требуется Системы линейных уравнений с двумя переменными с примерами решения м ткани, или 21 м. Значит, Системы линейных уравнений с двумя переменными с примерами решения

Имеем систему уравнений:

Системы линейных уравнений с двумя переменными с примерами решения

Решив эту систему, получаем: Системы линейных уравнений с двумя переменными с примерами решения Следовательно, на пошив одного платья пойдет 3 м ткани, а одной юбки — 1,5 м. Ответ: 3 м, 1,5 м.

Пример:

Из города А в город В, расстояние между которыми 264 км, выехал мотоциклист. Через 2 ч после этого навстречу ему из города В выехал велосипедист, который встретился с мотоциклистом через 1 ч после своего выезда. Найдите скорость каждого из них, если за 2 ч мотоциклист проезжает на 40 км больше, чем велосипедист за 5 ч.

Решение:

Пусть скорость мотоциклиста равна Системы линейных уравнений с двумя переменными с примерами решения км/ч, а велосипедиста — Системы линейных уравнений с двумя переменными с примерами решения км/ч. До встречи мотоциклист двигался 3 ч и проехал Системы линейных уравнений с двумя переменными с примерами решения км, а велосипедист — соответственно 1 ч и Системы линейных уравнений с двумя переменными с примерами решения км. Всего они проехали 264 км. Тогда Системы линейных уравнений с двумя переменными с примерами решения

Велосипедист за 5 ч проезжает Системы линейных уравнений с двумя переменными с примерами решения км, а мотоциклист за 2 ч — Системы линейных уравнений с двумя переменными с примерами решения км, что на 40 км больше, чем Системы линейных уравнений с двумя переменными с примерами решения км. Тогда Системы линейных уравнений с двумя переменными с примерами решения

Получили систему уравнений:

Системы линейных уравнений с двумя переменными с примерами решения

решением которой является пара чисел Системы линейных уравнений с двумя переменными с примерами решения

Следовательно, скорость мотоциклиста равна 80 км/ч, а велосипедиста — 24 км/ч.

Ответ: 80 км/ч, 24 км/ч.

Пример:

Стол и стул стоили вместе 680 руб. После того как стол подешевел на 20 %, а стул подорожал на 10 %, они стали стоить вместе 580 руб. Найдите первоначальную цену стола и первоначальную цену стула.

Решение:

Пусть первоначальная цена стола составляла Системы линейных уравнений с двумя переменными с примерами решения руб., а стула — Системы линейных уравнений с двумя переменными с примерами решения руб. Тогда по условию Системы линейных уравнений с двумя переменными с примерами решения

Новая цена стола составляет 80 % первоначальной и равна Системы линейных уравнений с двумя переменными с примерами решения руб. Новая цена стула составляет 110% первоначальной и равна Системы линейных уравнений с двумя переменными с примерами решения руб. Тогда Системы линейных уравнений с двумя переменными с примерами решения

Получили систему уравнений:

Системы линейных уравнений с двумя переменными с примерами решения

Решением этой системы является пара Системы линейных уравнений с двумя переменными с примерами решения

Следовательно, первоначальная цена стола была 560 руб., а стула — 120 руб.

Ответ: 560 руб., 120 руб.

Пример:

Сколько граммов 3 % -ного и сколько граммов 8 % -ного растворов соли надо взять, чтобы получить 500 г 4 %-ного раствора?

Решение:

Пусть первого раствора надо взять Системы линейных уравнений с двумя переменными с примерами решения г, а второго — Системы линейных уравнений с двумя переменными с примерами решения г. Тогда по условию Системы линейных уравнений с двумя переменными с примерами решения

В 3 % -ном растворе содержится 0,03Системы линейных уравнений с двумя переменными с примерами решения г соли, а в 8 % -ном — 0,08Системы линейных уравнений с двумя переменными с примерами решения г соли. В 500 г 4 %-ного раствора содержится 500-0,04 = 20 (г) соли. Следовательно, Системы линейных уравнений с двумя переменными с примерами решения

Составим систему уравнений:

Системы линейных уравнений с двумя переменными с примерами решения решив которую, получим Системы линейных уравнений с двумя переменными с примерами решения

Значит, надо взять 400 г 3 %-ного раствора и 100 г 8 %-ного раствора.

Ответ: 400 г, 100 г.

Пример:

У Петра были купюры по 5 руб. и по 20 руб. Он говорит, что купил велосипед за 255 руб., отдав за него 20 купюр, а Василий говорит, что такого быть не может. Кто прав?

Решение:

Пусть было Системы линейных уравнений с двумя переменными с примерами решения купюр по 5 руб. и Системы линейных уравнений с двумя переменными с примерами решения купюр по 20 руб. Тогда

Системы линейных уравнений с двумя переменными с примерами решения

Решением этой системы является пара Системы линейных уравнений с двумя переменными с примерами решения в которой Системы линейных уравнений с двумя переменными с примерами решения, что не соответствует смыслу задачи, так как количество купюр может быть только натуральным числом.

Ответ: прав Василий.

—7 класс

Системы линейных уравнений с двумя переменными

Существует немало задач, решая которые, получают уравнения, содержащие не одну, а несколько переменных.

В данном разделе мы выясним, что такое линейное уравнение с двумя переменными и его решение, что такое система двух линейных уравнений с двумя переменными и ее решение, каковы основные способы решения систем линейных уравнений с двумя переменными.

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения — система двух линейных уравнений с двумя переменными;

Системы линейных уравнений с двумя переменными с примерами решения — решение этой системы уравнений.

Уравнения с двумя переменными

Вы уже умеете решать линейные уравнения с одной переменной и уравнения, приводимые к линейным. Напомним, что линейное уравнение с одной переменной — это уравнение вида Системы линейных уравнений с двумя переменными с примерами решения — некоторые числа, а Системы линейных уравнений с двумя переменными с примерами решения — переменная.

Рассмотрим пример, который приводит к уравнению с двумя переменными.

Пусть известно, что сумма некоторых двух чисел равна 8. Если одно из чисел обозначить через Системы линейных уравнений с двумя переменными с примерами решения, а второе — через Системы линейных уравнений с двумя переменными с примерами решения, то получим уравнение

Системы линейных уравнений с двумя переменными с примерами решения

которое содержит две переменные: Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения. Такое уравнение называют уравнением с двумя переменными.

Уравнения

Системы линейных уравнений с двумя переменными с примерами решения

также являются уравнениями с двумя переменными. Первые два из этих уравнений являются уравнениями вида Системы линейных уравнений с двумя переменными с примерами решения — числа. Такие уравнения называют линейными уравнениями с двумя переменными.

Определение:

Линейным уравнением с двумя переменными называют уравнение вида Системы линейных уравнений с двумя переменными с примерами решения — переменные, Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения— некоторые числа (коэффициенты уравнения).

Решения уравнения с двумя переменными

Рассмотрим уравнение Системы линейных уравнений с двумя переменными с примерами решения При Системы линейных уравнений с двумя переменными с примерами решения это уравнение превращается в верное числовое равенство 2 + 6=8. Говорят, что пара значений переменных Системы линейных уравнений с двумя переменными с примерами решения является решением уравнения Системы линейных уравнений с двумя переменными с примерами решения

Определение:

Решением уравнения с двумя переменными называют пару значений переменных, при которых уравнение превращается в верное числовое равенство.

Решениями уравнения Системы линейных уравнений с двумя переменными с примерами решения являются и такие пары чисел:

Системы линейных уравнений с двумя переменными с примерами решения

Сокращенно эти решения записывают так: (4; 4); (4,5; 3,5); (10;-2). В этих записях на первом месте пишут значение переменной Системы линейных уравнений с двумя переменными с примерами решения, а на втором — значение переменной Системы линейных уравнений с двумя переменными с примерами решения. Это связано с тем, что переменную Системы линейных уравнений с двумя переменными с примерами решения условно считают первой переменной, а переменную Системы линейных уравнений с двумя переменными с примерами решения— второй.

Чтобы найти решение уравнения с двумя переменными, можно подставить в уравнение любое значение одной переменной и, решив полученное уравнение с одной переменной, найти соответствующее значение другой переменной. Для примера найдем несколько решений уравнения Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Мы нашли два решения (7; 1) и (-3; 11). Выбирая другие значения переменной Системы линейных уравнений с двумя переменными с примерами решения, получим другие решения уравнения. Уравнение Системы линейных уравнений с двумя переменными с примерами решения имеет бесконечно много решений.

Искать решения уравнений с двумя переменными можно иным способом, который обусловливается свойствами уравнений.

Свойства уравнений с двумя переменными

Свойства уравнений с двумя переменными такие же, как и уравнений с одной переменной, а именно:

  1. В любой части уравнения можно выполнить тождественные преобразования выражений (раскрыть скобки, привести подобные слагаемые).
  2. Любое слагаемое можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

Рассмотрим уравнение

Системы линейных уравнений с двумя переменными с примерами решения

Используя свойства уравнений, выразим из этого уравнения одну переменную через другую, например, Системы линейных уравнений с двумя переменными с примерами решения через Системы линейных уравнений с двумя переменными с примерами решения. Для этого перенесем слагаемое Системы линейных уравнений с двумя переменными с примерами решения в правую часть, изменив его знак на противоположный:

Системы линейных уравнений с двумя переменными с примерами решения

Разделим обе части полученного уравнения на 2:

Системы линейных уравнений с двумя переменными с примерами решения

Используя формулу Системы линейных уравнений с двумя переменными с примерами решения можно найти сколько угодно решений данного уравнения. Для этого достаточно взять любое значение Системы линейных уравнений с двумя переменными с примерами решения и вычислить соответствующее значение Системы линейных уравнений с двумя переменными с примерами решения. Пары некоторых соответствующих значений Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения представим в виде таблицы.

Системы линейных уравнений с двумя переменными с примерами решения

Пары чисел каждого столбика — решения уравнения Системы линейных уравнений с двумя переменными с примерами решения

Примеры решения упражнений:

Пример №161

Найти все значения коэффициента Системы линейных уравнений с двумя переменными с примерами решения при которых одним из решений уравнения Системы линейных уравнений с двумя переменными с примерами решения является пара чисел (-1; 2).

Решение:

Если пара чисел (-1; 2) является решением уравнения Системы линейных уравнений с двумя переменными с примерами решения, то должно выполняться равенство Системы линейных уравнений с двумя переменными с примерами решения Решим полученное уравнение с переменной Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Ответ. Системы линейных уравнений с двумя переменными с примерами решения

График линейного уравнения с двумя переменными

Рассмотрим уравнение

Системы линейных уравнений с двумя переменными с примерами решения

Решениями этого уравнения являются, например, пары чисел (0;-1) и (2; 2). Этим решениям на координатной плоскости соответствуют точки с координатами (0;-1) и (2; 2). Если на координатной плоскости отметим все точки, координаты которых являются решениями уравнения Системы линейных уравнений с двумя переменными с примерами решения то получим график этого уравнения.

График уравнения с двумя переменными образуют все точки координатной плоскости, координаты которых являются решениями данного уравнения.

Чтобы выяснить, что является графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения выразим из него переменную Системы линейных уравнений с двумя переменными с примерами решения через переменнуюСистемы линейных уравнений с двумя переменными с примерами решения:

Системы линейных уравнений с двумя переменными с примерами решения

Формулой Системы линейных уравнений с двумя переменными с примерами решения задается линейная функция, графиком которой является прямая. Если Системы линейных уравнений с двумя переменными с примерами решения то Системы линейных уравнений с двумя переменными с примерами решения если Системы линейных уравнений с двумя переменными с примерами решения то Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения Проведем через точки (0; -1) и (2; 2) прямую (рис. 38), получим график функции Системы линейных уравнений с двумя переменными с примерами решения. Эта прямая является и графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Вообще, графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения в котором хотя бы один из коэффициентов Системы линейных уравнений с двумя переменными с примерами решения или Системы линейных уравнений с двумя переменными с примерами решения не равен нулю, является прямая.

Чтобы построить график такого уравнения, можно: 1) выразить переменную Системы линейных уравнений с двумя переменными с примерами решения через переменную Системы линейных уравнений с двумя переменными с примерами решения (если это возможно) и построить график соответствующей линейной функции или 2) найти два решения уравнения, отметить на координатной плоскости точки, соответствующие этим решениям, и провести через них прямую.

На рисунках 39 и 40 изображены графики линейных уравнений, в которых один из коэффициентов при переменных равен 0: Системы линейных уравнений с двумя переменными с примерами решения

Графиком уравнения Системы линейных уравнений с двумя переменными с примерами решения является график функции Системы линейных уравнений с двумя переменными с примерами решения, то есть прямая, параллельная оси Системы линейных уравнений с двумя переменными с примерами решенияи проходящая через точку (0; 2).

Решениями уравнения Системы линейных уравнений с двумя переменными с примерами решения являются все пары чисел Системы линейных уравнений с двумя переменными с примерами решения в которых Системы линейных уравнений с двумя переменными с примерами решения а Системы линейных уравнений с двумя переменными с примерами решения — любое число. Точки координатной плоскости, соответствующие таким решениям, образуют прямую, параллельную оси Системы линейных уравнений с двумя переменными с примерами решения и проходящая через точку (3; 0).

Для тех, кто хочет знать больше

Уравнение Системы линейных уравнений с двумя переменными с примерами решения в котором Системы линейных уравнений с двумя переменными с примерами решения имеет вид Системы линейных уравнений с двумя переменными с примерами решения Если Системы линейных уравнений с двумя переменными с примерами решения то любая пара чисел является решением этого уравнения, а его графиком является вся координатная плоскость. Если Системы линейных уравнений с двумя переменными с примерами решения то уравнение не имеет решении и его график не содержит ни одной точки.

Примеры решения упражнений:

Пример №162

Построить график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Сначала найдем два решения уравнения.

Пусть Системы линейных уравнений с двумя переменными с примерами решения тогда: Системы линейных уравнений с двумя переменными с примерами решения — решение.

Пусть Системы линейных уравнений с двумя переменными с примерами решения тогда: Системы линейных уравнений с двумя переменными с примерами решения — решение.

Решения уравнения можно представлять в виде таблицы.

Системы линейных уравнений с двумя переменными с примерами решения

На координатной плоскости отмечаем точки (0; 2) и (2; -3) и проводим через них прямую. Эта прямая является искомым графиком.

Системы линейных уравнений с двумя переменными с примерами решения

Пример №163

Построить график уравнения Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Данное уравнение содержит одну переменную Системы линейных уравнений с двумя переменными с примерами решения. Если нужно построить график такого уравнения, то считают, что оно является линейным уравнением с двумя переменными Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения, в котором коэффициент при переменной Системы линейных уравнений с двумя переменными с примерами решения равен 0, то есть Системы линейных уравнений с двумя переменными с примерами решения Графиком уравнения является прямая Системы линейных уравнений с двумя переменными с примерами решения параллельная оси Системы линейных уравнений с двумя переменными с примерами решения и проходящая, например, через точку (0; -1,5).

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными и их решении

Рассмотрим задачу.

В 7-А и 7-Б классах вместе 56 учеников, причем в 7-А классе на 4 ученика больше, чем в 7-Б. Сколько учеников в каждом классе?

Для решения задачи обозначим количество учеников 7-А класса через Системы линейных уравнений с двумя переменными с примерами решения, а количество учеников 7-Б класса — через Системы линейных уравнений с двумя переменными с примерами решения. По условию задачи, в 7-А и 7-Б классах вместе 56 учеников, то есть Системы линейных уравнений с двумя переменными с примерами решения В 7-А классе на 4 ученика больше, чем в 7-Б, поэтому разность Системы линейных уравнений с двумя переменными с примерами решения равна 4: Системы линейных уравнений с двумя переменными с примерами решения Имеем два линейных уравнения с двумя переменными:

Системы линейных уравнений с двумя переменными с примерами решения

И в первом, и во втором уравнениях переменные обозначают одни и те же величины — количество учеников 7-А и 7-Б классов. Поэтому нужно найти такие значения переменных, которые обращают в верное числовое равенство и первое, и второе уравнения, то есть нужно найти общие решения этих уравнений.

Если нужно найти общие решения двух уравнений, то говорят, что эти уравнения образуют систему уравнений.

Систему уравнений записывают с помощью фигурной скобки. Систему линейных уравнений с двумя переменными, составленную по условию нашей задачи, записывают гак:

Системы линейных уравнений с двумя переменными с примерами решения

Общим решением обеих уравнений этой системы является пара значений переменных Системы линейных уравнений с двумя переменными с примерами решения поскольку равенства 30 + 26 = 56 и 30 – 26 = 4 являются верными. Эту пару чисел называют решением системы уравнений.

Определение

Решением системы двух уравнений с двумя переменными называют пару значений переменных, при которых каедое уравнение сисгемы превращается в верное числовое равенство.

Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.

Решение систем линейных уравнений графическим способом

Решим систему уравнений

Системы линейных уравнений с двумя переменными с примерами решения

Построим в одной системе координат графики обоих уравнений системы. На рисунке 44 прямая АВ — график уравнения Системы линейных уравнений с двумя переменными с примерами решения а прямая CD — график уравнения Системы линейных уравнений с двумя переменными с примерами решения Координаты любой точки прямой АВ являются решением первого уравнения системы, а координаты любой точки прямой CD являются решением второго уравнения. Любая общая точка этих прямых имеет координаты, которые являются решением как первого, так и второго уравнений, то есть являются решением системы. Поскольку прямые АВ и CD пересекаются в единственной точке М(-2; 1), то система уравнений имеет единственное решение Системы линейных уравнений с двумя переменными с примерами решения Это решение можно записывать и в виде пары (-2; 1).

Системы линейных уравнений с двумя переменными с примерами решения

Способ решения систем линейных уравнений, который мы только что использовали, называют графическим.

Чтобы решить систему линейных уравнений графическим способом, нужно построить графики уравнений системы в одной системе координат и найти координаты общих точек этих графиков.

Если в каждом из уравнений системы хотя бы один из коэффициентов при переменных не равен нулю, то графиками таких уравнений являются прямые. Поскольку прямые могут пересекаться, совпадать или быть параллельными, то такие системы уравнений могут иметь одно решение, бесконечно много решений или не иметь решений.

  • Заказать решение задач по высшей математике

Примеры решения упражнений:

Пример №164

Решить графически систему уравнений Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Построим графики обоих уравнений системы.

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Графики пересекаются в единственной точке — точке М(3; 2). Следовательно, система уравнений имеет единственное решение (3; 2).

Примечание. Чтобы не ошибиться, определяя по графикам координаты точки М, следует проверить, действительно ли найденные координаты являются решением системы. Проверим: если Системы линейных уравнений с двумя переменными с примерами решения то Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения — верные равенства. Пара (3; 2) является решением системы уравнений.

Пример №165

Сколько решений имеет система уравнений Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Построим графики уравнений системы.

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Графики совпадают. Система уравнений имеет бесконечно много решений.

Пример №166

Сколько решений имеет система уравнений Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Построим графики уравнений системы.

Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Графиками уравнений являются параллельные прямые (поскольку Системы линейных уравнений с двумя переменными с примерами решения ). Система уравнений решения не имеет.

Решение систем линейных уравнений способом подстановки

Рассмотрим верное равенство 7 + 2 = 9. Если в этом равенстве число 2 заменить числовым выражением 2(3 – 2), значение которого равно 2, то получим верное равенство 7 + 2(3 – 2) = 9. Наоборот, если в верном равенстве 7 + 2(3 – 2) = 9 выражение 2(3 – 2) заменить его значением 2, то получим верное равенство 7 + 2 = 9.

На этих свойствах числовых равенств базируется решение систем линейных уравнений способом подстановки. Рассмотрим пример.

Пусть нужно решить систему уравнений

Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

Из первого уравнения системы выразим переменную Системы линейных уравнений с двумя переменными с примерами решения через переменную Системы линейных уравнений с двумя переменными с примерами решения:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим во второе уравнение системы вместо Системы линейных уравнений с двумя переменными с примерами решения выражение Системы линейных уравнений с двумя переменными с примерами решения

Получим систему

Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

Системы (1) и (2) имеют одни и те же решения (доказательство в рубрике «Для тех, кто хочет знать больше»). Второе уравнение системы (2) имеет только одну переменную Системы линейных уравнений с двумя переменными с примерами решения. Решим его:

Системы линейных уравнений с двумя переменными с примерами решения

В первое уравнение системы (2) подставим вместо Системы линейных уравнений с двумя переменными с примерами решения число 2 и найдем соответствующее значение Системы линейных уравнений с двумя переменными с примерами решения:

Системы линейных уравнений с двумя переменными с примерами решения

Пара чисел (2; -1) — решение системы (2), а также и системы (1).

Способ, использованный при решении системы (1), называют способом подстановки.

Чтобы решить систему линейных уравнений способом подстановки, нужно:

  1. выразить из какого-нибудь уравнения системы одну переменную через другую;
  2. подставить в другое уравнение системы вместо этой переменной полученное выражение;
  3. решить полученное уравнение с одной переменной;

Для тех, кто хочет знать больше

Докажем, что системы (1) и (2) имеют одни и те же решения.

Пусть пара чисел Системы линейных уравнений с двумя переменными с примерами решения — любое решение системы (1). Тогда верными являются числовые равенства Системы линейных уравнений с двумя переменными с примерами решения а поэтому и равенство Системы линейных уравнений с двумя переменными с примерами решения Заменим в равенстве Системы линейных уравнений с двумя переменными с примерами решения число Системы линейных уравнений с двумя переменными с примерами решения выражением Системы линейных уравнений с двумя переменными с примерами решения получим верное равенство Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения Поскольку равенства Системы линейных уравнений с двумя переменными с примерами решения являются верными, то пара чисел Системы линейных уравнений с двумя переменными с примерами решения является решением системы (2). Мы показали, что любое решение системы (1) является решением системы (2).

Наоборот, пусть пара чисел Системы линейных уравнений с двумя переменными с примерами решения — любое решение системы (2). Тогда верными являются числовые равенства Системы линейных уравнений с двумя переменными с примерами решения Заменим в равенстве Системы линейных уравнений с двумя переменными с примерами решения выражение Системы линейных уравнений с двумя переменными с примерами решения числом Системы линейных уравнений с двумя переменными с примерами решения получим верное равенство Системы линейных уравнений с двумя переменными с примерами решения Из равенства Системы линейных уравнений с двумя переменными с примерами решения следует, что Системы линейных уравнений с двумя переменными с примерами решения Поскольку равенства Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения являются верными, то пара чисел Системы линейных уравнений с двумя переменными с примерами решения является решением системы (1). Мы показали, что любое решение системы (2) является решением системы (1).

Таким образом, системы (1) и (2) имеют одни и те же решения.

Системы уравнений с двумя переменными, имеющие одни и те же решения, называют равносильными. Следовательно, решая систему уравнений (1), мы заменили ее равносильной системой (2).

Примеры решения упражнений:

Пример №167

Решить систему уравнений Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Выразим из первого уравнения переменную Системы линейных уравнений с двумя переменными с примерами решения через переменную Системы линейных уравнений с двумя переменными с примерами решения:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим во второе уравнение системы вместо Системы линейных уравнений с двумя переменными с примерами решения выражение Системы линейных уравнений с двумя переменными с примерами решения решим полученное уравнение:

Системы линейных уравнений с двумя переменными с примерами решения

Найдем соответствующее значение переменной Системы линейных уравнений с двумя переменными с примерами решения:

Системы линейных уравнений с двумя переменными с примерами решения

Ответ. (-2; -3).

Пример №168

При каких значениях коэффициента Системы линейных уравнений с двумя переменными с примерами решения система уравнений Системы линейных уравнений с двумя переменными с примерами решения не имеет решения?

Решение:

Выразим из второго уравнения переменную Системы линейных уравнений с двумя переменными с примерами решения через переменную Системы линейных уравнений с двумя переменными с примерами решения: Системы линейных уравнений с двумя переменными с примерами решения

Подставив в первое уравнение системы вместо Системы линейных уравнений с двумя переменными с примерами решения выражение Системы линейных уравнений с двумя переменными с примерами решения получим уравнение:

Системы линейных уравнений с двумя переменными с примерами решения

Далее получаем:

Системы линейных уравнений с двумя переменными с примерами решения

Последнее уравнение не имеет корней только в случае, если коэффициент при Системы линейных уравнений с двумя переменными с примерами решения равен нулю: Системы линейных уравнений с двумя переменными с примерами решения При этом значении Системы линейных уравнений с двумя переменными с примерами решения система уравнений не имеет решения.

Ответ. Системы линейных уравнений с двумя переменными с примерами решения

Пример №169

Графиком функции является прямая, проходящая через точки Системы линейных уравнений с двумя переменными с примерами решения Задать эту функцию формулой.

Решение:

Прямая является графиком линейной функции. Пусть искомая линейная функция задается формулой Системы линейных уравнений с двумя переменными с примерами решения где Системы линейных уравнений с двумя переменными с примерами решения — пока что неизвестные числа. Поскольку график функции проходит через точки Системы линейных уравнений с двумя переменными с примерами решения то должны выполняться два равенства

Системы линейных уравнений с двумя переменными с примерами решения

Решив систему уравнений Системы линейных уравнений с двумя переменными с примерами решения найдем: Системы линейных уравнений с двумя переменными с примерами решения Следовательно, функция задается формулой Системы линейных уравнений с двумя переменными с примерами решения

Решение систем линейных уравнений способом сложения

Рассмотрим два верных равенства:

Системы линейных уравнений с двумя переменными с примерами решения

Сложим почленно эти равенства: левую часть с левой и правую с правой:

Системы линейных уравнений с двумя переменными с примерами решения

Снова получили верное равенство. Это свойство верных числовых равенств лежит в основе способа решения систем уравнений, который называют способом сложения.

Рассмотрим пример:

Пусть нужно решить систему уравнений

Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

Сложим почленно левые и правые части уравнений:

Системы линейных уравнений с двумя переменными с примерами решения

Заменим одно из уравнений системы (1), например, первое, уравнением Системы линейных уравнений с двумя переменными с примерами решения Получим систему

Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

Системы (1) и (2) имеют одни и те же решения (доказательство в рубрике «Для тех, кто хочет знать больше»). Решим систему (2). Из первого уравнения находим: Системы линейных уравнений с двумя переменными с примерами решения. Подставив это значение во второе уравнение, получим:

Системы линейных уравнений с двумя переменными с примерами решения

Пара чисел (5; 3) — решение системы (2), а также и системы (1). Решая систему (1), мы воспользовались тем, что в уравнениях коэффициенты при переменной Системы линейных уравнений с двумя переменными с примерами решения являются противоположными числами и после почленного сложения уравнений получили уравнение с одной переменной Системы линейных уравнений с двумя переменными с примерами решения.

Решим еще одну систему уравнений

Системы линейных уравнений с двумя переменными с примерами решенияСистемы линейных уравнений с двумя переменными с примерами решения

В этой системе уравнений коэффициенты при переменной Системы линейных уравнений с двумя переменными с примерами решения и коэффициенты при переменной Системы линейных уравнений с двумя переменными с примерами решения не являются противоположными числами. Однако, умножив обе части первого уравнения на 2, а второго — на -3, получим систему

Системы линейных уравнений с двумя переменными с примерами решения

в которой коэффициенты при Системы линейных уравнений с двумя переменными с примерами решения — противоположные числа. Сложив почленно уравнения последней системы, получим:

Системы линейных уравнений с двумя переменными с примерами решения

Подставив значение Системы линейных уравнений с двумя переменными с примерами решения в первое уравнение системы (3), находим:

Системы линейных уравнений с двумя переменными с примерами решения

Следовательно, решением системы (3) является пара чисел (-4; 6).

Чтобы решить систему линейных уравнении способом сложения, нужно:

  1. умножить обе части уравнений системы на такие числа, чтобы коэффициенты при одной из переменных в обеих уравнениях системы стали противоположными числами;
  2. сложить почленно левые и правые части уравнений;
  3. решить полученное уравнение с одной переменной;
  4. найти соответствующее значение другой переменной.

Для тех, кто хочет знать больше

Докажем, что системы (1) и (2) имеют одни и те же решения.

Пусть пара чисел Системы линейных уравнений с двумя переменными с примерами решения — любое решение системы (1), тогда верными являются числовые равенства Системы линейных уравнений с двумя переменными с примерами решения Сложив эти равенства, получим верное равенство Системы линейных уравнений с двумя переменными с примерами решения Поскольку равенства Системы линейных уравнений с двумя переменными с примерами решения верны, то пара чисел Системы линейных уравнений с двумя переменными с примерами решения является решением системы (2). Мы показали, что любое решение системы (1) является решением системы (2).

Наоборот, пусть пара чисел Системы линейных уравнений с двумя переменными с примерами решения — любое решение системы (2), тогда верными являются числовые равенства Системы линейных уравнений с двумя переменными с примерами решения Вычтем из первого равенства второе. Получим верное равенство Системы линейных уравнений с двумя переменными с примерами решения Поскольку равенства Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения верны, то пара чисел Системы линейных уравнений с двумя переменными с примерами решения является решением системы (1). Мы показали, что любое решение системы (2) является решением системы (1).

Таким образом, системы (1) и (2) имеют одни и те же решения.

Примеры решения упражнений:

Пример №170

Решить способом сложения систему уравнений

Системы линейных уравнений с двумя переменными с примерами решения

Решение:

Умножим обе части первого уравнения системы на -2. Получим систему

Системы линейных уравнений с двумя переменными с примерами решения

Почленно сложив уравнения последней системы, получим:

Системы линейных уравнений с двумя переменными с примерами решения

Подставим в первое уравнение системы вместо Системы линейных уравнений с двумя переменными с примерами решения число 3 и решим полученное уравнение:

Системы линейных уравнений с двумя переменными с примерами решения

Ответ. (-2;3)

Решение задач с помощью систем уравнений

Вы уже решали задачи с помощью уравнений с одной переменной. Решим задачу, составив систему уравнений.

Задача:

Скорость моторной лодки по течению реки 24 км/ч, а против течения — 19 км/ч. Каковы скорость лодки в стоячей воде и скорость течения реки?

Решение:

Пусть скорость лодки в стоячей воде Системы линейных уравнений с двумя переменными с примерами решения км/ч, а скорость течения реки — Системы линейных уравнений с двумя переменными с примерами решения км/ч. Скорость лодки по течению реки (24 км/ч) равна сумме ее скорости в стоячей воде и скорости течения реки, поэтому получаем уравнение

Системы линейных уравнений с двумя переменными с примерами решения

Скорость лодки против течения реки (19 км/ч) равна разности скорости лодки в стоячей воде и скорости течения реки, поэтому

Системы линейных уравнений с двумя переменными с примерами решения

Чтобы ответить на вопрос задачи, нужно найти такие значения Системы линейных уравнений с двумя переменными с примерами решения и Системы линейных уравнений с двумя переменными с примерами решения, которые удовлетворяли бы и первое, и второе уравнения, то есть которые удовлетворяли бы системе этих уравнений:

Системы линейных уравнений с двумя переменными с примерами решения

Решив систему, получим: Системы линейных уравнений с двумя переменными с примерами решения

Ответ. Скорость лодки в стоячей воде 21,5 км/ч; скорость течения реки 2,5 км/ч.

Эту задачу можно было бы решить, составив уравнение с одной переменной. Однако для составления такого уравнения пришлось бы провести более сложные рассуждения.

Чтобы решить задачу с помощью систем уравнений, поступают так:

  1. обозначают некоторые две неизвестные величины буквами;
  2. используя условие задачи, составляют два уравнения с выбранными неизвестными;
  3. записывают систему этих уравнений и решают ее;
  4. отвечают на поставленные в задаче вопросы.

Примеры решения упражнений:

Пример №171

Если открыть кран теплой воды на 7 мин, а потом кран холодной — на 3 мин, то в ванную нальется 54 л воды. Если же открыть кран теплой воды на 8 мин, а потом кран холодной — на 6 мин, то в ванную нальется 72 л воды. Сколько литров воды наливается в ванную через каждый кран за минуту?

Решение:

Пусть за 1 мин через первый кран (теплой воды) наливается Системы линейных уравнений с двумя переменными с примерами решения л воды, а через второй кран (холодной воды) —Системы линейных уравнений с двумя переменными с примерами решения л. Тогда за 7 мин через первый кран нальется Системы линейных уравнений с двумя переменными с примерами решения л воды, а через второй кран за 3 мин — Системы линейных уравнений с двумя переменными с примерами решения л. В результате, по условию задачи, в ванной будет 54 л воды. Получаем уравнение:

Системы линейных уравнений с двумя переменными с примерами решения

Во втором случае за 8 мин через первый кран нальетсяСистемы линейных уравнений с двумя переменными с примерами решениял воды, а через второй кран за 6 мин — Системы линейных уравнений с двумя переменными с примерами решениял. что, по условию задачи, равно 72 л воды. Имеем второе уравнение:

Системы линейных уравнений с двумя переменными с примерами решения

Получили систему уравнений Системы линейных уравнений с двумя переменными с примерами решения

Решим эту систему способом сложения:

Системы линейных уравнений с двумя переменными с примерами решения

Из первого уравнения системы находим Системы линейных уравнений с двумя переменными с примерами решения:

Системы линейных уравнений с двумя переменными с примерами решения

Ответ. 6 л; 4 л.

Интересно знать

В книге «Геометрия», вышедшей в 1637 году, известный французский математик Рене Декарт (1596-1650) предложил новый метод математических исследований — метод координат. Суть этого метода в том, что каждой геометрической фигуре на координатной плоскости ставят в соответствие уравнение или неравенство, которые удовлетворяют координаты каждой точки фигуры и только они. Так, каждой прямой ставят в соответствие уравнение этой прямой вида Системы линейных уравнений с двумя переменными с примерами решения Если, например, нужно доказать, что некоторые две прямые являются параллельными, то достаточно записать уравнения обеих прямых и доказать, что система этих уравнений не имеет решения. Как видим, геометрическая задача благодаря методу координат сводится к алгебраической задаче. Такое нововведение Декарта дало начало новой геометрии, которую сейчас называют аналитической геометрией.

Системы линейных уравнений с двумя переменными с примерами решения

Рене Декарт родился в департаменте Турень (Франция) в семье дворян. После получения образования служил офицером в армии Мориса Оранского, принимал участие в Тридцатилетней войне. Завершив военную службу, Декарт поехал в Голландию, где написал большую часть своих научных трудов и завоевал славу великого ученого.

Декарт сделал ряд открытии, которые стали поворотными пунктами во всей математике. Он ввел понятия переменной величины и функции, прямоугольной системы координат, которую мы на его честь называем еще прямоугольной декартовой системой координат.

С уравнениями с несколькими переменными связана одна из самых известных математических теорем, о которой длительное время ведутся разговоры и в среде, далекой от математики. Речь идет о Великой теореме Ферма. Эта теорема утверждает, что уравнение с тремя переменными вида Системы линейных уравнений с двумя переменными с примерами решения не имеет решении в целых числах, если показатель степени Системы линейных уравнений с двумя переменными с примерами решения

Системы линейных уравнений с двумя переменными с примерами решения

Как выяснилось, в этом простом, на первый взгляд, математическом утверждении скрыта чрезвычайная сложность. Причина же огромного ажиотажа, разгоревшегося вокруг теоремы Пьера Ферма, такова.

В 1636 году в книге Диофанта Александрийского (III в.) «Арифметика», которую Ферма часто перечитывал, делая пометки на ее широких полях, и которую сохранил для потомков его сын, была сделана запись, что он, Ферма, имеет доказательство теоремы, но оно слишком большое, чтобы его можно было разместить на полях.

С этого времени начался поиск доказательства, поскольку в других материалах Ферма его так и не обнаружили.

Кто только не пробовал доказать теорему. Практически каждый математик считал своим долгом заняться Великой теоремой, но усилия были тщетными. За доказательство брались и самые известные математики XVII-XX веков. Эйлер доказал теорему для степеней Системы линейных уравнений с двумя переменными с примерами решения Лежандр — для Системы линейных уравнений с двумя переменными с примерами решения Дирихле — для Системы линейных уравнений с двумя переменными с примерами решения В общем же виде теорема оставалась недоказанной.

В начале XX в. (1907) зажиточный немецкий любитель математики Вольфекель завещал сто тысяч марок тому, кто предложит полное доказательство теоремы Ферма. Через некоторое время появились доказательства для показателя степени Системы линейных уравнений с двумя переменными с примерами решения потом для Системы линейных уравнений с двумя переменными с примерами решения Многим математикам казалось, что они нашли доказательство, но потом в этих «доказательствах» находили ошибки.

Были и попытки опровергнуть Великую теорему путем поиска хотя бы одного решения уравнения Системы линейных уравнений с двумя переменными с примерами решения при Системы линейных уравнений с двумя переменными с примерами решения Но даже перебор целых чисел с использованием компьютеров не давал результата — при каких бы значениях Системы линейных уравнений с двумя переменными с примерами решения теорему не проверяли, она всегда оказывалась верной.

Только в 1995 году английскому профессору математики из Принстонского университета (США) Эндрю Уайлсу удалось доказать Великую теорему. Доказательство было напечатано в одном из ведущих математических журналов и заняло весь номер — более ста листов.

Таким образом, только в конце XX в. весь мир признал, что на 360 году своей жизни Великая теорема Ферма, которая на самом деле все это время была гипотезой, стала-таки доказанной теоремой.

К своему триумфу Уайлс шел более тридцати лет. О теореме Ферма случайно узнал в десятилетнем возрасте, и с тех пор заветная мечта доказать ее не оставляла Эндрю ни на минуту. К счастью, у него хватило здравого смысла, чтобы не пойти путем тысяч упрямых энтузиастов, которые настойчиво старались решить проблему элементарными средствами. Только через двадцать лет, имея уже докторскую степень и занимая должность профессора математики в Принстоне, Уайлс решил отложить все дела и заняться осуществлением своей мечты. Ему удалось доказать Великую теорему Ферма и тем самым решить самую популярную математическую головоломку последних веков.

Отечественные математики

Системы линейных уравнений с двумя переменными с примерами решения

Феофан Прокопович — один из известнейших мыслителей конца XVII – начала XVIII в., профессор и ректор Киево-Могилянской академии, общественный и церковный деятель. Философ и математик, поэт и публицист, он оставил после себя большое количество работ. Писал на латыни, на украинском, русском, польском языках, делал переводы книг и комментировал их.

Феофан Прокопович был одним из наиболее образованных людей своего времени. Его библиотека насчитывала около 30 тысяч книг, написанных на разных языках.

Родился Феофан Прокопович в Киеве 7 июня 1681 года в семье купца. Он рано потерял родителей, и его опекуном стал дядя по матери, ректор Киево-Могилянской академии Феофан Прокопович. Дядя отдал своего семилетнего племянника в начальную школу при Киево-Братском монастыре, а через три года — в Киево-Могилянскую академию. Во время учебы юноша был одним из лучших учеников, не раз побеждал в научных диспутах.

Стремясь углубить свои знания, семнадцатилетний Феофан Прокопович отправился в лрадиционное для того времени научное путешествие. Два года находился во Львове, читал студентам лекции по поэтике и риторике. После этого поехал в Рим, где поступил в коллегию св. Афанасия.

В 1702 году Феофан Прокопович возвращается в Украину. С 1704 года он преподает философию в Киево-Могилянской академии. Его любимым предметом была математика. Поэтому в курс философии он включил два математических курса — арифметику и геометрию, написав оригинальные учебники по этим предметам.

В 1707 году Феофана Прокоповича избирают заместителем ректора, с 1711 по 1715 год он был ректором Киево-Могилянской академии. В 1715 году по приказу царя Феофан Прокопович отправился в Петербург, где принимал участие в создании Петербургского университета и Российской академии наук.

Самым весомым математическим трудом Феофана Прокоповича является курс лекций по математике, теоретические сведения в котором на то время были самыми полными в царской России.

Системы линейных уравнений с двумя переменными с примерами решения

Почетное место в истории математики занимает наш соотечественник Михаил Остроградский. Он был членом Туринской, Петербургской, Римской, Американской и Французской Академий Наук. Слава его была настолько велика, что родители, желая поощрить своих детей к обучению, убеждали их словами: «Учись, и будешь, как Остроградский».

Михаил Остроградский родился в 1801 году в Полтавской губернии в семье помещика. Уже в детские годы он проявлял удивительную любознательность, и наблюдательность, но учился в Полтавской гимназии, куда его отдали в девять лет, посредственно по всем предметам. Михаил мечтал о карьере военного и очень обрадовался, когда отец решил забрать его из гимназии и устроить в один из гвардейских полков. В последний момент по совету одного из родственников, который заметил большие способности мальчика, было решено продолжить учебу. В шестнадцать лет Остроградский стал студентом Харьковского университета.

В 1818 году Остроградский сдал экзамены за курс университета, а в 1820 году — экзамены на звание кандидата наук. Но университетские власти, считая Остроградского «неблагонадежным», отказались присудить ему ученую степень и даже лишили диплома об окончании университета.

И все же Остроградский стал известным ученым, академиком. Неудача только разожгла в нем желание упорно работать. Он едет в Париж и там посещает лекции Коши, Лапласа, Пуассона и других выдающихся математиков. Общение с французскими учеными, изучение их работ приводит Остроградского к собственным открытиям. Его работы публикуются в журнале Парижской Академии наук. Слухи о больших успехах Остроградского дошли и на родину.

В 1828 году Остроградский вернулся в царскую Россию. В Петербурге он преподавал математику в Главном педагогическом институте, Морском кадетском корпусе и в Михайловском артиллерийском училище.

Михаил Остроградский написал много математических работ, среди которых есть работы по алгебре и теории чисел, он является автором нескольких учебников, а теоремы и формулы Остроградского изучают студенты математических специальностей всех университетов мира.

Системы линейных уравнений с двумя переменными с примерами решения

Дмитрий Граве родился в 1863 году в городе Кириллове около Вологды (Россия), окончил физико-математический факультет Петербургского университета (1885).

Будучи студентом, Дмитрий Граве занимался научной работой, был инициатором издания журнала «Записки физико-математического кружка Петербургского университета», где были напечатаны его первые работы.

После защиты магистерской роботы в 1889 году Граве становится приват-доцентом Петербургского университета.

В 1897 году Дмитрий Граве защитил докторскую диссертацию и переехал в Украину. Сначала он работал профессором Харьковского университета и Харьковского технологического института.

В 1902 году профессор Граве возглавил кафедру чистой математики Киевского университета, где и продолжалась почти вся eго научно-педагогическая деятельность.

В 1905-1915 годах Дмитрий Граве разработал несколько учебных курсов, относящиеся в основном к алгебре и теории чисел, наиболее весомыми из которых являются «Элементарный курс теории чисел» и «Элементы высшей алгебры». Он развил на математическом отделении Киевского университета семинарскую форму занятий со студентами.

В конце 1933 года был организован Институт математики Академии наук УССР, первым директором которого стал Граве.

Большой заслугой Дмитрия Граве является создание первой всемирно признанной алгебраической школы.

Системы линейных уравнений с двумя переменными с примерами решения

Работы Михаила Кравчука, которых он написал более 180, относятся к разным разделам математики, в частности к алгебре и теории чисел. Введенные им специальные многочлены сейчас известны математикам как многочлены Кравчука. Он является автором важных работ по истории математики, многих учебников для высшей и средней школ. Много сил, энергии, таланта отдал Михаил Кравчук образованию, сделал важный вклад в развитие украинской математической терминологии.

Михаил Кравчук родился 30 сентября 1892 года в селе Човницы (теперь Волынская область) в семье землемера.

В 1910 году золотой медалист Луцкой гимназии становится студентом физико-математического факультета Киевского университета им. св. Владимира.

В 1915-1917 годах Кравчук выезжает в Москву на специальные студии, где сдает магистерские экзамены. В 1918 году его избирают приват-доцентом Киевского университета.

В 1924 году Михаил Кравчук защищает докторскую диссертацию. На протяжении 1927-1938 гг. работает в высших учебных заведениях Киева. Со времени образования в Киеве Института математики (1933 г.) и до начата 1938 года возглавляет в нем отдел математической статистики.

Михаил Кравчук был организатором первой математической олимпиады школьников (1935 г.).

В сентябре 1938 года Кравчук был арестован сталинским режимом, его обвинили в украинском буржуазном национализме. Приговор — тюремное заключение сроком на 20 лет. Далее — Магадан, где в марте 1942 года Михаил Кравчук и умер.

  • Рациональные выражения
  • Квадратные корни
  • Квадратные уравнения
  • Неравенства
  • Одночлены
  • Многочлены
  • Формулы сокращенного умножения
  • Разложение многочленов на множители

§ 2. Системы линейных уравнений

Решение многих задач сводится к решению систем линейных уравнений.

Системой двух линейных уравнений с двумя неизвестными `x` и `y` называется система уравнений вида

$$ left{begin{array}{l}{a}_{1}x+{b}_{1}y={c}_{1},\ {a}_{2}x+{b}_{2}y={c}_{2},end{array}right.$$

где `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` – некоторые числа.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение в верное числовое равенство.

Например, пара чисел `(2;3)` является решением системы уравнений

$$ left{begin{array}{l}2x+3y=13,\ x+5y=17,end{array}right.$$

а пара чисел `(1;1)` не является решением системы, т. к. эта пара не является решением каждого из уравнений системы.

Обозначим множество решений первого уравнения буквой `A`, а множество решений второго уравнения – `B`. Множество решений системы этих уравнений составляет пересечение множеств `A` и `B` (рис. 9). При этом возможны случаи, когда пересечение двух множеств является пустым (рис. 10) или совпадает с каждым из множеств `A` и `B` (рис. 11).

Графиком линейного уравнения `ax+by=c`, где `a^2+b^2>0`, является прямая. Следовательно, решение системы линейных уравнений с двумя неизвестными для указанного случая сводится к нахождению на координатной плоскости общих точек двух прямых линий. А две прямые на плоскости могут:

1) пересекаться, т. е. иметь единственную общую точку;

2) быть параллельными, т. е. не иметь общих точек;

3) совпадать, т. е. иметь бесконечно много общих точек.

Значит, система двух линейных уравнений с двумя неизвестными может либо иметь единственное решение, либо вообще не иметь решения, либо иметь бесконечное множество решений.

Сколько решений имеет система уравнений 

$$ left{begin{array}{l}2y+3x=8,\ y-x=-1?end{array}right.$$

Запишем первое уравнение системы в виде `y=-3/2x+4`, а второе уравнение системы в виде `y=x-1`. Мы получили две линейные функции, графиками которых являются прямые с разными угловыми коэффициентами у первой `k_1=-3/2`, а у второй `k_2=1`. Вам известно, что такие прямые пересекаются в одной точке. Чтобы найти координаты точки пересечения прямых, приравняем значения для `y`. Получаем 

 `-3/2x+4=x-1`, `-3/2x-x=-4-1`, `-5/2x=-5`, `x=2`, 

тогда `y=2-1=1`.

Таким образом, система имеет единственное решение  `(2;1)`.

Решите систему уравнений

$$ left{begin{array}{l}2x+y=5,\ 4x+2y=10.end{array}right.$$

Из первого уравнения следует, что `y=5-2x`, а из второго уравнения получим `y=5-2x`. Графики этих уравнений совпадают. Уравнению удовлетворяет любая пара чисел `(x,5-2x)`, где  `x` любое число, а `y=5-2x`. Система уравнений имеет бесконечно много решений.

Решите систему уравнений

$$ left{begin{array}{l}x+y=7,\ 2x+2y=10.end{array}right.$$

Запишем первое уравнение системы в виде `y=-x+7` и второе уравнение системы в виде `y=-x+5`. Графиками этих уравнений являются две параллельные прямые, которые не пересекаются, т. к.  `-x+7=-x+5`,  `x*0=-2`, а это уравнение не имеет решений.

При решении систем применяют метод подстановки, метод сложения и метод введения новых переменных.

1. В одном из уравнений выразить одно неизвестное через другое.

2. Подставить вместо этого неизвестного полученное выражение в другое уравнение системы.

3. Решить полученное во втором пункте уравнение с одним неизвестным.

4. Воспользовавшись найденным значением одного неизвестного, вычислить значение второго неизвестного.

5. Записать ответ.

Покажем на конкретном примере, как применяется метод подстановки.

Решите систему уравнений

$$ left{begin{array}{l}2x+y=4,\ 5x+3y=11.end{array}right.$$

Из первого уравнения выражаем `y=4-2x`, и это значение для `y` подставляем во второе уравнение системы, получаем: 

`5x+3(4-2x)=11`,  `5x+12-6x=11`,  `-x=-1`,  `x=1`. 

Подставляем это значение `x` в выражение для `y`, получаем: `y=4-2=2`. Пара чисел `(1;2)` является единственным решением системы уравнений.

1. Умножить или разделить одно (или оба) уравнения системы на некоторое число, не равное 0, так, чтобы коэффициенты при одном из неизвестных в обоих уравнениях стали противоположными числами (или совпали).

2. Сложить (вычесть) уравнения.

3. Решить полученное во втором пункте уравнение с одним неизвестным.

4. Воспользовавшись найденными значениями одного неизвестного, вычислить значение второго неизвестного.

5. Записать ответ.

Теперь приведём пример, где применяется метод сложения.

Решите систему уравнений

$$ left{begin{array}{l}3x-2y=5,\ 2x+2y=10.end{array}right.$$

В этих уравнениях коэффициенты при переменной `y` отличаются знаком. Сложив уравнения системы, получаем 

`3x-2y+2x+2y=5+10`,  `5x=15`,  `x=3`.

Подставляем найденное значение `x`, например, в первое уравнение системы, получаем:

`3*3-2y=5`, `-2y=-4`,  `y=2`.

Система имеет единственное решение  `(3;2)`.

Решите систему уравнений

$$ left{begin{array}{l}4x+3y=11,\ 3x+7y=13.end{array}right.$$

Сделаем коэффициенты при $$ x$$ обоих уравнений противоположными числами, для этого умножим обе части первого уравнения на `3` и обе части второго уравнения на  `(-4)`, получим систему

$$ left{begin{array}{l}12x+9y=33,\ -12x-28y=-52.end{array}right.$$

Сложим   уравнения   системы:     

`12x+9y-12x-28y=33-52`, `-19y=-19`,  `y=1`.

Подставляем это значение для `y` в первое уравнение системы, получаем:  

`12x+9=33`,  `12x=24`,  `x=2`.

Пара чисел `(2;1)` является единственным решением системы.

Метод введения новых переменных позволяет упростить вид системы.

Покажем на конкретном примере, как применяется метод введения новых переменных.

Решите систему уравнений

$$ left{begin{array}{l}{displaystyle frac{1}{2x-y}}+{displaystyle frac{9}{3x+y}}=2,\ {displaystyle frac{7}{2x-y}}-{displaystyle frac{18}{3x+y}}=5.end{array}right.$$

Введём новые переменные:  `u=1/(2x-y)`,  `v=1/(3x+y)`.

Для переменных  `u` и `v` получим систему уравнений

$$ left{begin{array}{l}u+9v=2,\ 7u-18v=5.end{array}right.$$

Умножим обе части первого уравнения на `2`, получим систему

$$ left{begin{array}{l}2u+18v=4,\ 7u-18v=5.end{array}right.$$

Сложим уравнения системы, получим  `9u=9`, `u=1`. Из первого уравнения при  `u=1` следует, что  `v=1/9`.

Из условия  `1/(2x-y)=1` следует, что `2x-y=1`, а из условия `1/(3x+y)=1/9` следует, что `3x+y=9`. Решаем систему уравнений

$$ left{begin{array}{l}2x-y=1,\ 3x+y=9.end{array}right.$$

Сложим уравнения системы:  `5x=10`,  `x=2`,  из первого уравнения получаем `4-y=1`, `y=3`.

`(2;3)`.

Мы рассмотрели системы двух уравнений с двумя неизвестными, теперь рассмотрим систему из трёх уравнений с тремя неизвестными.

С помощью способа сложения сводим систему трёх уравнений с тремя неизвестными к системе двух уравнений с двумя неизвестными. Покажем это на примере.

Решите систему уравнений

$$ left{begin{array}{l}10x-5y-3z=-9,\ 6x+4y-5z=-1,\ 3x-4y-6z=-23.end{array}right.$$

Уравняем коэффициенты при `x` в первом и втором уравнениях, для этого умножим обе части первого уравнения на `3`, а второго уравнения  –  на `5`, получаем:

$$ left{begin{array}{l}30x-15y-9z=-27,\ 30x+20y-25z=-5.end{array}right.$$

Вычитаем из второго уравнения полученной системы первое уравнение, получаем:

`35y-16z=22`.

Из второго уравнения исходной системы вычитаем третье уравнение, умноженное   на   `2`,   получаем:  

`4y+8y-5z+12z=-1+46`,  `12y+7z=45`.

Теперь решаем новую систему уравнений:

$$ left{begin{array}{l}35y-16z=22,\ 12y+7z=45.end{array}right.$$

К первому уравнению новой системы, умноженному на `7`, прибавляем второе уравнение, умноженное на `16`, получаем:

`35*7y+12*16y=22*7+45*16`, 

`245y+192y=154+720`,  `437y=874`, `y=2`.     

Подставляем `y=2`  в уравнение `12y+7z=45`, получаем: 

`24+7z=45`, `7z=21`, `z=3`.

Теперь подставляем  `y=2`, `z=3`  в первое уравнение исходной системы, получаем:      

`10x-5*2-3*3=-9`,  `10x-10-9=-9`,  `10x=10`, `x=1`. 

`(1;2;3)`.

При решении задач могут получаться системы уравнений с большим количеством неизвестных, их решение осуществляется аналогичным образом.

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Пример:

а) (begin{cases}x-2y=5\3x+2y=7end{cases})

г) (begin{cases}3(5-x)-4y=0\y-2x+4=0 end{cases})

б)(begin{cases}3b=13-2a\5a=5-2b end{cases})

д)(begin{cases}frac{p}{3} + frac{m-6}{2} = 1-9m \11p+3(m-p-1)=-2(m+1) end{cases})

в)(begin{cases}3x-8=2y\x+y=6end{cases})

е)(begin{cases}0,02y=1,25-3,21x \1,5x-frac{3}{4}=4-0,1yend{cases})

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin{cases}3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end{cases})

А вот (x=1); (y=-2) – не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin{cases}1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end{cases})

Отметим, что такие пары часто записывают короче: вместо “(x=3); (y=-1)” пишут так: ((3;-1)).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

  1. Способ подстановки.
    1. Возьмите любое из уравнений системы и выразите из него любую переменную.

      (begin{cases}x-2y=5\3x+2y=7 end{cases})(Leftrightarrow) (begin{cases}x=5+2y\3x+2y=7end{cases})(Leftrightarrow)

    2. Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

      (Leftrightarrow) (begin{cases}x=5+2y\3(5+2y)+2y=7end{cases})(Leftrightarrow)

    3. Равносильными преобразованиями уравнений найдите  по очереди каждое неизвестное.

      (Leftrightarrow) (begin{cases}x=5+2y\15+6y+2y=7end{cases})(Leftrightarrow)(begin{cases}x=5+2y\8y=-8end{cases})(Leftrightarrow)(begin{cases}x=5+2y\y=-1end{cases})(Leftrightarrow)(begin{cases}x=5-2\y=-1end{cases})(Leftrightarrow)(begin{cases}x=3\y=-1end{cases})

    4. Ответ запишите парой чисел ((x_0;y_0))

      Ответ: ((3;-1))

    Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

    Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение. Попробуем, например, выразить икс из второго уравнения системы:

    (begin{cases}x-2y=5\3x+2y=7 end{cases})(Leftrightarrow) (begin{cases}x=5+2y\3x=7-2yend{cases})(Leftrightarrow)(begin{cases}x=5+2y\x=frac{7-2y}{3}end{cases})

    И сейчас нам нужно будет эту  дробь
    подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

  2. Способ алгебраического сложения.
    1. Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begin{cases}a_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end{cases}).

      (begin{cases}3y=13-2x\5x=5-2yend{cases})(Leftrightarrow)(begin{cases}2x+3y=13\5x+2y=5end{cases})(Leftrightarrow)

    2. Теперь нужно сделать так, чтоб коэффициенты  при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе – на (3).

      (begin{cases}2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end{cases})(Leftrightarrow)(begin{cases}4x+6y=26\15x+6y=15end{cases})(Leftrightarrow)

    3. Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

      Сложение линейных уравнений

    4. Найдите неизвестное из полученного уравнения.

      (-11x=11)     (|∶(-11))
      (x=-1)                

    5. Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

      (3y=13-2x)
      (3y=13-2·(-1))
      (3y=15)
      (y=5)

    6. Ответ запишите парой чисел ((x_0;y_0)).

      Ответ: ((-1;5))

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin{cases}12x-7y=2\5y=4x-6end{cases})

    Решение:

    (begin{cases}12x-7y=2\5y=4x-6end{cases})

                                  

    Приводим систему к виду (begin{cases}a_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end{cases}) преобразовывая второе уравнение.

    (begin{cases}12x-7y=2\-4x+5y=-6end{cases})

     

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    (begin{cases}12x-7y=2\-12x+15y=-18end{cases})

     

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    (0·x+8y=-16)

         

    Делим уравнение на (8), чтобы найти (y).

    (y=-2)

         

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    (12x-7·(-2)=2)
    (12x+14=2)
    (12x=-12)
    (x=-1)

    Икс тоже найден. Пишем ответ.

    Ответ: ((-1;-2))

  3. Графический способ.
    1. Приведите каждое уравнение к виду линейной функции
       (y=kx+b).

      (begin{cases}3x-8=2y\x+y=6end{cases})(Leftrightarrow)(begin{cases}2y=3x-8 |:2\y=6-xend{cases})(Leftrightarrow)(begin{cases}y=frac{3}{2}x-4\y=-x+6end{cases})

    2. Постройте  графики  этих  функций.  Как?  Можете  прочитать  здесь.

      решение системы линейных уравнений графическим способом

    3. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
      Ответ: ((4;2))

Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
Пример: решая систему (begin{cases}3x-8=2y\x+y=6end{cases}), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

(begin{cases}3cdot 4-8=2cdot 2\4+2=6end{cases})(Leftrightarrow)(begin{cases} 12-8=4\6=6end{cases})(Leftrightarrow)(begin{cases} 4=4\6=6end{cases})

Оба уравнения сошлись, решение системы найдено верно.

Пример. Решите систему уравнений: (begin{cases}3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end{cases})

Решение:

(begin{cases}3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end{cases})

                              

Раскроем скобки в уравнениях.

(begin{cases}15x+9y-6=2x+11\4x-15=11-8x+2yend{cases})

 

Перенесем все выражения с буквами в одну сторону, а числа в другую.

(begin{cases}15x-2x+9y=11+6\4x+8x-2y=11+15end{cases})

 

Приведем подобные слагаемые.

(begin{cases}13x+9y=17\12x-2y=26end{cases})

     

Во втором уравнении каждое слагаемое – четное, поэтому упрощаем уравнение, деля его на (2).

(begin{cases}13x+9y=17\6x-y=13end{cases})

     

Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

(begin{cases}13x+9y=17\y=6x-13end{cases})

Подставим (6x-13) вместо (y) в первое уравнение.

(begin{cases}13x+9(6x-13)=17\y=6x-13end{cases})

Первое уравнение превратилась в обычное линейное.  Решаем его.

Сначала раскроем скобки.

(begin{cases}13x+54x-117=17\y=6x-13end{cases})

Перенесем (117) вправо и приведем подобные слагаемые.

(begin{cases}67x=134\y=6x-13end{cases})

Поделим обе части первого уравнения на (67).

(begin{cases}x=2\y=6x-13end{cases})

Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

(begin{cases}x=2\y=12-13end{cases})(Leftrightarrow)(begin{cases}x=2\y=-1end{cases})

Запишем ответ.

Ответ: ((2;-1))

Скачать статью

Система двух линейных уравнений и её решение

Несколько уравнений образуют систему , если они имеют общее решение.

Общее решение при подстановке в каждое из уравнений системы преобразует его в тождество.

Решить систему уравнений означает найти все её общие решения.

Система двух линейных уравнений имеет вид:

$$ {left{ begin{array}{c} a_1 x+b_1 y = c_1\ a_2 x+b_2 y = c_2 end{array} right.} $$

Общее решение системы двух линейных уравнений – это упорядоченная пара $(x_*,y_* )$, которая при подстановке в каждое из двух уравнений превращает его в тождество.

Например: Система уравнений $ {left{ begin{array}{c} x+y = 3\ 2x-3y = 1 end{array} right.} $ имеет общее решение (2;1), т.е.

$2+1 ≡ 3,2 cdot 2-3 cdot 1 ≡ 1$ – оба уравнения превращаются в тождества.

Примеры

Пример 1. Какие из пар чисел (1;-1),(2;3),(-3;2) являются решениями системы уравнений:

а) $ {left{ begin{array}{c} x-y = 2\ 2x+3y = -1 end{array} right.} $

$ (1;-1): {left{ begin{array}{c}1-(-1) ≡ 2\ 2cdot1+3cdot(-1) ≡ -1end{array} right.} Rightarrow решение (1;-1)$

б) $ {left{ begin{array}{c} x-y = 5\ 2x+3y = 0 end{array} right.} $

$ (1;-1): {left{ begin{array}{c}1-(-1) neq -5\ 2cdot1+3cdot(-1) neq 0end{array} right.} $

$ (2;3): {left{ begin{array}{c}2-3 neq -5\ 2cdot2+3cdot3 neq 0end{array} right.} $

$ (-3;2): {left{ begin{array}{c}-3-2 ≡ -5\ 2cdot(-3)+3cdot2≡0end{array} right.} Rightarrow решение (-3;2)$

Пример 2.Составьте систему линейных уравнений, решением которой является пара чисел

а) $(7;1) : {left{ begin{array}{c} 2x+y = 15\x-5y = 2end{array} right.} $

б) $(-4;6) : {left{ begin{array}{c} 2x+y = -2\x-5y = -34end{array} right.} $

Пример 3.Найдите точку пересечения графиков x+y=5 и 2x-3y=5.

Покажите, что координаты это точки являются решением соответствующей системы уравнений.

x+y = 5 и 2x-3y = 5

Точка пересечения (4;1)

Пример 3

$ {left{ begin{array}{c}x+y = 5 \ 2x-3y = 5 end{array} right.} $

$ (4;1): {left{ begin{array}{c}4+1 ≡ 5\ 2cdot4-3cdot1 ≡ 5end{array} right.}$

Координаты точки пересечения являются решением системы уравнений.

Конспект урока

Алгебра

7 класс

Урок № 48

Решение систем двух линейных уравнений с двумя неизвестными

Перечень вопросов, рассматриваемых в теме:

  • Систематизация решений систем уравнений.
  • Использование отношений коэффициентов при решении систем уравнений.
  • Практическое применение теоремы.

Тезаурус:

Теорема.

Пусть дана система уравнений:

где все коэффициенты отличны от нуля.

Тогда система:

а) имеет единственное решение, если ;

б) не имеет решений, если ;

в) имеет бесконечно много решений, если , и при этом все решения можно записать в виде , где ─ любое число.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Решение систем двух линейных уравнений с двумя неизвестными.

Пусть дана система двух линейных уравнений с двумя неизвестными.

Перенеся все члены правых частей этих уравнений в левые части, и приведя подобные члены, получим равносильную данной систему вида:

где ─ некоторые числа.

Мы уже знаем, как решать такую систему, когда все коэффициенты при неизвестных отличны от нуля. Мы знаем так же, что если коэффициенты при неизвестных непропорциональны, то решение системы существует и единственно; если же коэффициенты при неизвестных системы пропорциональны, то либо решений бесконечно много, либо нет ни одного решения.

Нам остаётся рассмотреть те случаи, когда некоторые коэффициенты при неизвестных равны нулю. Рассмотрим это на характерных примерах.

Пример 1. Решим систему уравнений:

Второе уравнение этой системы имеет отличные от нуля коэффициенты при неизвестных, а первое уравнение имеет коэффициент при , отличный от нуля, и коэффициент при , равный нулю.

Эту систему проще решить методом подстановки. Найдем из первого уравнения:

И подставим его во второе. Получим:

Откуда

Таким образом, пара чисел есть единственное решение системы.

Пример 2. Решим систему уравнений:

Система есть частный случай системы , где

Единственным решением этой системы является пара чисел

Пример 3. Решим систему уравнений:

Из каждого уравнения системы получим

Так как систему мы рассматриваем как частный случай системы , где то система может быть записана так:

Здесь может быть любым числом, а .

Таким образом, решения системы записываются в виде пар чисел , где ─ любое число.

Пример 4. Решим систему уравнений

Эта система противоречива (не имеет решений), потому что не может одновременно равняться и 1, и .

Пример 5. Решим систему уравнений:

Если , то эта система противоречива, потому что никакая пара чисел не удовлетворяет второму уравнению системы

Если , то второе уравнение обращается в верное равенство при любых Остаётся только первое уравнение. Оно уже рассматривалось. Следовательно, все решения первого уравнения являются решениями системы.

О количестве решений системы двух уравнений первой степени с двумя неизвестными.

Теорема

Пусть дана система уравнений:

где все коэффициенты отличны от нуля.

Тогда система :

а) имеет единственное решение, если ;

б) не имеет решений, если ;

в) имеет бесконечно много решений, если , и при этом все решения можно записать в виде , где ─ любое число.

Доказательство.

Из первого уравнения системы получим, что:

. Подставив полученное выражение вместо во второе уравнение системы и учитывая, что получим уравнение:

Здесь возможны три случая.

  1. Если:

то уравнение имеет единственный корень, поэтому и система имеет единственное решение.

Так как и то условие можно записать в виде

  1. Если:

то уравнение не имеет корней и система не имеет решений.

Так как то условия можно записать в виде

  1. Если:

то уравнение имеет бесконечно много корней, поэтому и система имеет бесконечно много решений.

Так как то условия можно записать в виде

Итак:

если то система имеет единственное решение;

если то система не имеет решений;

если то система имеет бесконечно много решений, и эти решения задаются парами , где любое число.

Теорема доказана.

Пример 1. Определим число решений системы уравнений:

а) б) в)

Решение.

а) Так как выполняется условие , то система имеет единственное решение.

б) Так как выполняется условие , то система имеет бесконечно много решений.

в) Так как выполняется условие то система не имеет решений.

Ответ: а) единственное решение; б) бесконечно много решений; в) нет решений.

Пример 2. При каком значении система

не имеет решений?

Решение.

Система не имеет решений, если выполняется условие

. Условие выполняется лишь при При этом условие также выполняется. Следовательно, система не имеет решений при

Ответ: при

Пример 3. Существует ли значение , при котором система не имеет решений?

Решение.

Система не имеет решений, если выполняется условие . Условие выполняется лишь при При этом условие не выполняется. Следовательно, таких не существует.

Ответ: не существует.

Разбор решения заданий тренировочного модуля.

№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.

Впишите пропущенные элементы при решении системы.

Задание:

Перенесем из первого уравнения в правую часть 4, получим

Найдем отношение коэффициентов при х и у в системе:

‑ так как отношения __ равны, значит, система имеет одно решение. Решим систему способом подстановки:

Ответ: ( ___; ___ ).

Решение.

Перенесем из первого уравнения в левую часть 4, получим:

Найдем отношение коэффициентов при х и у в системе:

‑ так как отношения не равны, значит, система имеет одно решение. Решим систему способом подстановки:

Ответ: (4; 16).

№2. Тип задания: восстановление последовательности элементов горизонтальное / вертикальное.

Задание:

Решите систему двух уравнений:

Варианты ответов:

Ответ: (1; 0).

Значит, система имеет единственное решение.

Так как отношение коэффициентов равно –

Значит, система имеет единственное решение.

Решение:

Так как отношение коэффициентов равно –

Значит, система имеет единственное решение.

Перенесем в первом уравнении из левой части в правую 4:

Ответ: (1; 0).

Добавить комментарий