Дана выборка значений признака Х. Требуется:
построить статическую совокупность;
построить гистограмму частот;
найти точечные оценки генеральной средней, генеральной
дисперсии и генерального среднего квадратического отклонения;
найти доверительный интервал для неизвестного математического
ожидания;
проверить нулевую гипотезу о нормальном законе распределения
количественного признака Х генеральной совокупности.
38, 51, 57, 64, 76, 92, 89, 19, 35, 60, 22, 41, 44, 48, 60, 44, 67, 80, 86,
57, 25, 83, 73, 70, 70, 70, 64, 60, 60, 64, 57, 54, 57, 54, 32, 86, 86, 80,
76, 60, 76, 70, 70, 67, 67, 64, 64, 60, 28, 67, 41, 41, 51, 48, 44, 80, 80,
76, 73, 51, 67, 60, 32, 41, 41, 54, 57, 60, 67, 73, 73, 76, 57, 67, 73, 73,
64, 60, 54, 57.
Объем выборки n=80
Наименьшее значение признака Х
MIN:
19
Наибольшее значение
MAX:
92
Определим оптимальное число интервалов разбиения по формуле
Число интервалов:
7,00 – ПОЧЕМУ ???
Шаг интервала h=(92-19)/7=
10,43
Варианты для выполнения работы
I. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.
Почти все встречающиеся в жизни величины (урожайность сельскохозяйственных растений, продуктивности скота, производительность труда и заработная плата рабочих, объем производства продукции и т.д.) принимают неодинаковые значения у различных членов совокупности. Поэтому возникает необходимость в изучении их изменяемости. Это изучение начинается с проведения соответствующих наблюдений, обследований.
В результате наблюдений получают сведения о численной величине изучаемого признака у каждого члена данной совокупности.
Пример. Имеются данные о размере прибыли 100 коммерческих банков. Прибыль, млн. рублей.
30,2 | 51,9 | 43,1 | 58,9 | 34,1 | 55,2 | 47,9 | 43,7 | 53,2 | 34,9 |
47,8 | 65,7 | 37,8 | 68,6 | 48,4 | 67,5 | 27,3 | 66,1 | 52,0 | 55,6 |
54,1 | 26,9 | 53,6 | 42,5 | 59,3 | 44,8 | 52,8 | 42,3 | 55,9 | 48,1 |
44,5 | 69,8 | 47,3 | 35,6 | 70,1 | 39,5 | 70,3 | 33,7 | 51,8 | 56,1 |
28,4 | 48,7 | 41,9 | 58,1 | 20,4 | 56,3 | 46,5 | 41,8 | 59,5 | 38,1 |
41,4 | 70,4 | 31,4 | 52,5 | 45,2 | 52,3 | 40,2 | 60,4 | 27,6 | 57,4 |
29,3 | 53,8 | 46,3 | 40,1 | 50,3 | 48,9 | 35,8 | 61,7 | 49,2 | 45,8 |
45,3 | 71,5 | 35,1 | 57,8 | 28,1 | 57,6 | 49,6 | 45,5 | 36,2 | 63,2 |
61,9 | 25,1 | 65,1 | 49,7 | 62,1 | 46,1 | 39,9 | 62,4 | 50,1 | 33,1 |
33,3 | 49,8 | 39,8 | 45,9 | 37,3 | 78,0 | 64,9 | 28,8 | 62,5 | 58,7 |
Из данной таблицы видно, что интересующий нас признак (прибыль банков) меняется от одного члена совокупности к другому, варьирует. Варьирование есть изменяемость признака у отдельных членов совокупности.
Вариационным рядом называется последовательность вариант, записанных в возрастающем порядке и соответствующих им частот.
Число, показывающее, сколько раз повторяется в данной совокупности каждое значение признака, называется частотой.
Составим ранжированный вариационный ряд (выпишем варианты в порядке возрастания):
20,4 | 25,1 | 26,9 | 27,3 | 27,6 | 28,1 | 28,4 | 28,8 | 29,3 | 30,2 |
31,4 | 33,1 | 33,3 | 33,7 | 34,1 | 34,9 | 35,1 | 35,6 | 35,8 | 36,2 |
37,3 | 37,8 | 38,1 | 39,5 | 39,8 | 39,9 | 40,1 | 40,2 | 41,4 | 41,8 |
41,9 | 42,3 | 42,5 | 43,1 | 43,7 | 44,5 | 44,8 | 45,2 | 45,3 | 45,5 |
45,8 | 45,9 | 46,1 | 46,3 | 46,5 | 47,3 | 47,8 | 47,9 | 48,1 | 48,4 |
48,7 | 48,9 | 49,2 | 49,6 | 49,7 | 49,8 | 50,1 | 50,3 | 51,8 | 51,9 |
52,0 | 52,3 | 52,5 | 52,8 | 53,2 | 53,6 | 53,8 | 54,1 | 55,2 | 55,6 |
55,9 | 56,1 | 56,3 | 57,4 | 57,6 | 57,8 | 58,1 | 58,7 | 58,9 | 59,3 |
59,5 | 60,4 | 61,7 | 61,9 | 62,1 | 62,4 | 62,5 | 63,2 | 64,9 | 65,1 |
65,7 | 66,1 | 67,5 | 68,6 | 69,8 | 70,1 | 70,3 | 70,4 | 71,5 | 78,0 |
В нашем случае каждое значение признака (варианта вариационного ряда) повторилось только один раз, т.е. значение частоты для всех вариант равно единице. Перейдем к интервальному вариационному ряду, так как интересующий нас признак принимает дробные, практически не повторяющиеся значения.
Для этого необходимо определить число интервалов (классов) и длину интервала (классного промежутка), после чего произвести разноску, т.е. подсчитать для каждого интервала число вариант, попавших в него.
Количество классов устанавливают в зависимости от степени точности, с которой ведется обработка, и количества объектов в выборке. Считается удобным при объеме выборки (n) в пределах от 30 до 60 вариант распределять их на 6-7 классов, при n от 60 до 100 вариант — на 7-8 классов, при n от 100 и более вариант — на 9-17 классов.
Нужное количество групп также может быть ориентировочно вычислено по формуле Стерджесса:
где — число групп (классов, интервалов) ряда распределения; n — объем выборки.
Можно также использовать выражение:
При они дают примерно одинаковые результаты.
В рассматриваемом примере о размере прибыли коммерческих банков, n=100. Применяя формулу Стерджесса, получим:
Однако Таким образом, число интервалов может быть равно 8, 9, 10 и т.д.
Нахождение нужного количества групп и их размеров часто бывает взаимообусловлено. Для того, чтобы как-то определиться с числом интервалов, найдем размах вариации — разность между наибольшей и наименьшей вариантой:
где — размах вариации,
— наибольшее значение варьирующего признака,
— наименьшее значение варьирующего признака.
Найдем размах вариации для рассматриваемой задачи:
Для того, чтобы найти длину интервала (величину классового промежутка) необходимо разделить размах вариации на число классов и полученную величину округлить таким образом, чтобы было удобно производить сначала разноску, а затем и различные вычисления. Рекомендую округлять до единиц, до которых округлены варианты в исходной таблице, в нашем случае до десятых.
Согласно формуле получаем
Теперь необходимо определиться с началом первого интервала. Для этого можно использовать формулу:
Замечание. За начало первого интервала можно принять некоторое значение, несколько меньшее или само значение . Далее в табличном виде я покажу оба варианта.
Прибавив к началу первого интервала (нижней границе) шаг, получим верхнюю границу первого интервала и одновременно нижнюю границу второго интервала. Выполняя последовательно указанные действия, будем находить границы последующих интервалов до тех пор, пока не будет получено или перекрыто .
Таким образом, верхняя граница одного интервала одновременно является нижней границей другого интервала. Чтобы не возникало сомнений, в какой интервал отнести варианту, попавшую на границу, условимся относить ее к верхнему интервалу.
Составим теперь рабочую таблицу для построения интервального вариационного ряда и произведем подсчет частот вариант, попавших в тот или иной интервал.
Как и обещал покажу две таблицы построения ряда:
1. Отсчет ведем от , т.е. нижняя граница первого интервала совпадает с .
Группы банков по размеру прибыли (границы интервалов) |
Количество банков, принадлежащих данной группе (частоты, ) |
Накопленные частоты, |
20,4 — 27,6 | 4 | 4 |
27,6 — 34,8 | 11 | 15 |
34,8 — 42 | 16 | 31 |
42 — 49,2 | 21 | 52 |
49,2 — 56,4 | 21 | 73 |
56,4 — 63,6 | 15 | 88 |
63,6 — 70,8 | 10 | 98 |
70,8 — 78 | 2 | 100 |
2. Начало первого интервала определяем с помощью формулы: .
Группы банков по размеру прибыли (границы интервалов) |
Количество банков, принадлежащих данной группе (частоты, ) |
Накопленные частоты, |
16,8 — 24 | 1 | 1 |
24 — 31,2 | 9 | 10 |
31,2 — 38,4 | 13 | 23 |
38,4 — 45,6 | 17 | 40 |
45,6 — 52,8 | 23 | 63 |
52,8 — 60 | 18 | 81 |
60 — 67,2 | 11 | 92 |
67,2 — 74,4 | 7 | 99 |
74,4 — 81,6 | 1 | 100 |
Как мы видим в 1-м случае у нас получилось восемь интервалов, что полностью совпадает с результатом, который нам дала формула Стерджесса. Во втором случае у нас получилось девять интервалов, так как при поиске начала первого интервала пользовались специальной формулой.
Для дальнейшего исследования я буду пользоваться результатами второй таблицы, так как там ярко выражен модальный интервал (одна мода) и медиана практически точно попадает на середину вариационного ряда.
Мы получили интервальный вариационный ряд — упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами попаданий в каждый из них значений величины.
II. Графическая интерпретация вариационных рядов.
№ п/п |
Границы интервалов, |
Середины интервалов, |
Частоты интервалов, |
Относительные частоты |
Плотность относит. частоты |
Плотность частоты |
1 | 16,8 — 24 | 20,4 | 1 | 0,01 | 0,001 | 0,139 |
2 | 24 — 31,2 | 27,6 | 9 | 0,09 | 0,013 | 1,250 |
3 | 31,2 — 38,4 | 34,8 | 13 | 0,13 | 0,018 | 1,806 |
4 | 38,4 — 45,6 | 42 | 17 | 0,17 | 0,024 | 2,361 |
5 | 45,6 — 52,8 | 49,2 | 23 | 0,23 | 0,032 | 3,194 |
6 | 52,8 — 60 | 56,4 | 18 | 0,18 | 0,025 | 2,500 |
7 | 60 — 67,2 | 63,6 | 11 | 0,11 | 0,015 | 1,528 |
8 | 67,2 — 74,4 | 70,8 | 7 | 0,07 | 0,010 | 0,972 |
9 | 74,4 — 81,6 | 78 | 1 | 0,01 | 0,001 | 0,139 |
Строим графики:
Далее найдем моду вариационного ряда:
где
— начало модального интервала;
— длина частичного интервала (шаг);
— частота предмодального интервала;
— частота модального интервала;
— частота послемодального интервала.
Определим модальный интервал — интервал, имеющий наибольшую частоту. Из таблицы видно, что модальным является интервал (45,6 — 52,8).
Медиана
Для интервального ряда медиана находится по формуле:
где
— начало медианного интервала;
— длина частичного интервала (шаг);
— объем совокупности;
— накопленная частота интервала, предшествующая медианному;
— частота медианного интервала.
Определим медианный интервал — интервал, в котором впервые накопленная частота превышает половину объема выборки.Так как объем выборки n=100, то n/2=50. По таблице найдем интервал, где впервые накопленные частоты превысят это значение. Таким является интервал (45,6 — 52,8).
Получаем,
III. Расчет сводных характеристик выборки.
Для определения составим расчетную таблицу. Для начала определимся с ложным нулем С. В качестве ложного нуля можно принять любую варианту. Максимальная простота вычислений достигается, если выбрать в качестве ложного нуля варианту, которая расположена примерно в середине вариационного ряда (часто такая варианта имеет наибольшую частоту).
Варианте, которая принята в качестве ложного нуля, соответствует условная варианта, равная нулю. В нашем случае С=49,2.
Равноотстоящими называют варианты, которые образуют арифметическую прогрессию с разностью h.
Условными называют варианты, определяемые равенством:
Произведем расчет условных вариант согласно формуле:
N п/п |
Середины интервалов, |
Частоты интервалов, |
Условные варианты, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
1 | 20,4 | 1 | -4 | -4 | 16 | -64 | 256 | 9 | 81 |
2 | 27,6 | 9 | -3 | -27 | 81 | -243 | 729 | 36 | 144 |
3 | 34,8 | 13 | -2 | -26 | 52 | -104 | 208 | 13 | 13 |
4 | 42 | 17 | -1 | -17 | 17 | -17 | 17 | 0 | 0 |
5 | 49,2 | 23 | 0 | 0 | 0 | 0 | 0 | 23 | 23 |
6 | 56,4 | 18 | 1 | 18 | 18 | 18 | 18 | 72 | 288 |
7 | 63,6 | 11 | 2 | 22 | 44 | 88 | 176 | 99 | 891 |
8 | 70,8 | 7 | 3 | 21 | 63 | 189 | 567 | 112 | 1792 |
9 | 78 | 1 | 4 | 4 | 16 | 64 | 256 | 25 | 625 |
Контроль:
Контроль:
Равенство выполнено, следовательно вычисления произведены верно.
Вычислим условные моменты 1-го, 2-го, 3-го и 4-го порядков:
Найдем выборочные среднюю, дисперсию и среднее квадратическое отклонение :
Также для оценки отклонения эмпирического распределения от нормального используют такие характеристики, как асимметрия и эксцесс.
Асимметрией теоретического распределения называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения:
Асимметрия положительна, если «длинная часть» кривой распределения расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. Практически определяют знак асимметрии по расположению кривой распределения относительно моды (точки максимума дифференциальной функции): если «длинная часть» кривой расположена правее моды, то асимметрия положительна, если слева — отрицательна.
Эксцесс эмпирического распределения определяется равенством:
где — центральный эмпирический момент четвертого порядка.
Для нормального распределения эксцесс равен нулю. Поэтому если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая. При этом предполагается, что нормальное и теоретическое распределения имеют одинаковые математические ожидания и дисперсии.
Вычисляем центральные эмпирические моменты третьего и четвертого порядков:
Найдем асимметрию и эксцесс:
IV. Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона.
Проверим генеральную совокупность значений размера прибыли банков по критерию Пирсона
Правило. Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу : генеральная совокупность распределена нормально, надо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия:
и по таблице критических точек распределения , по заданному уровню значимости и числу степеней свободы найти критическую точку , где s — количество интервалов.
Если — нет оснований отвергнуть нулевую гипотезу.
Если — нулевую гипотезу отвергают.
Найдем теоретические частоты , для этого составим следующую таблицу.
Середины интервалов, |
Частоты интервалов, |
Произведем расчет, |
Произведем расчет, |
Значения функции Гаусса, |
Произведем расчет, |
Теоретические частоты, |
20,4 | 1 | -28,152 | -2,23 | 0,0332 | 57 | 2 |
27,6 | 9 | -20,952 | -1,66 | 0,1006 | 57 | 6 |
34,8 | 13 | -13,752 | -1,09 | 0,2203 | 57 | 13 |
42 | 17 | -6,552 | -0,52 | 0,3485 | 57 | 20 |
49,2 | 23 | 0,648 | 0,05 | 0,3984 | 57 | 23 |
56,4 | 18 | 7,848 | 0,62 | 0,3292 | 57 | 19 |
63,6 | 11 | 15,048 | 1,19 | 0,1965 | 57 | 11 |
70,8 | 7 | 22,248 | 1,77 | 0,0833 | 57 | 5 |
78 | 1 | 29,448 | 2,34 | 0,0258 | 57 | 1 |
Вычислим , для чего составим расчетную таблицу.
1 | 1 | 2 | -1 | 1 | 0,5 | 1 | 0,5 |
2 | 9 | 6 | 3 | 9 | 1,5 | 81 | 13,5 |
3 | 13 | 13 | 0 | 0 | 0 | 169 | 13 |
4 | 17 | 20 | -3 | 9 | 0,45 | 289 | 14,45 |
5 | 23 | 23 | 0 | 0 | 0 | 529 | 23 |
6 | 18 | 19 | -1 | 1 | 0,05 | 324 | 17,05 |
7 | 11 | 11 | 0 | 0 | 0 | 121 | 11 |
8 | 7 | 5 | 2 | 4 | 0,8 | 49 | 9,8 |
9 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
100 | 100 |
Наблюдаемое значение критерия, |
103,30 |
Контроль:
Вычисления произведены правильно.
Найдем число степеней свободы, учитывая, что число групп выборки (число различных вариант) s=9;
По таблице критических точек распределения по уровню значимости и числу степеней свободы k=6 находим
Так как — нет оснований отвергнуть нулевую гипотезу. Другими словами, расхождение эмпирических и теоретических частот незначительное. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.
На рисунке построены нормальная (теоретическая) кривая по теоретическим частотам (зеленый график) и полигон наблюдаемых частот (коричневый график). Сравнение графиков наглядно показывает, что построенная теоретическая кривая удовлетворительно отражает данные наблюдений.
V. Интервальные оценки.
Интервальной называют оценку, которая определяется двумя числами — концами интервала, покрывающего оцениваемый параметр.
Доверительным называют интервал, который с заданной надежностью покрывает заданный параметр.
Интервальной оценкой (с надежностью ) математического ожидания (а) нормально распределенного количественного признака Х по выборочной средней при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал
где — точность оценки, n — объем выборки, t — значение аргумента функции Лапласа (см. приложение 2), при котором ;
при неизвестном среднем квадратическом отклонении (и объеме выборки n<30)
где S — исправленное выборочное среднее квадратическое отклонение, находят по таблице приложения по заданным n и .
В нашем примере среднее квадратическое отклонение известно, . А также , , . Поэтому для поиска доверительного интервала используем первую формулу:
Все величины, кроме t, известны. Найдем t из соотношения По таблице приложения находим t=1,96. Подставив t=1,96, , , в формулу, окончательно получим искомый доверительный интервал:
Интервальной оценкой (с надежностью ) среднего квадратического отклонения нормально распределенного количественного признака Х по «исправленному» выборочному среднему квадратическому отклонению S служит доверительный интервал
(при q<1), (*)
(при q>1),
где q — находят по таблице приложения по заданным n и .
По данным и n=100 по таблице приложения 4 найдем q=0,143. Так как q<1, то, подставив в соотношение (*), получим доверительный интервал:
Задачи на интервалы между объектами могут считаться более общим видом задач на распиливание и разрезание. Соответственно, арсенал приёмов, применяемых при решении таких задач в 4-5 классе, более широкий чем у задач на распилы.
Рисование схем часто упрощает решение таких задач, и позволяет не забыть про края интервала. Одно из основных правил тут такое же, как при задачах на распилы – интервалов в линии на 1 меньше чем объектов в ней. Ребёнку это легко объяснить на примере вилки или расчёски – количество зубьев в расчёске и вилке всегда на один больше, чем число интервалов (дырок) между ними.
Задача 1
На ветке сидели 4 темных голубя, прилетели белые голуби и каждый белый голубь сел на ветку между двумя темными. Сколько прилетело белых голубей и сколько их стало всего?
Решение
Изобразим темных голубей значками “+”, белых голубей значками “-“.
Вставим между темными голубями белых.
Получим вот такую схему
+ – + – + – +
Как видим, всего стало 7 голубей.
Можно было не рисовать, а использовать правило, что интервалов на 1 меньше, чем объектов.
Белые голуби садились в интервалы между тёмными, то есть число белых голубей равно числу интервалов между тёмными, то есть всего их 3 (4 – 1 = 3).
Следовательно, раз тёмных голубей 4, а белых 3, то всего 4 + 3 = 7 голубей.
Ответ: 7 голубей
Задача 2
В саду высадили 5 яблонь, между каждыми двумя яблонями посадили по груше, а между яблоней и грушей посадили по одному кусту сирени. Сколько всего посадили деревьев в саду?
Решение. 1 способ
Обозначим яблони как “+”, груши как “-“, а сирень как “-“.
Изначально у нас 5 яблонь:
+ + + + +
Потом между каждыми двумя яблонями посадили по груше. По сути это означает, что в интервалах между яблонями посадили по груше:
+ – + – + – + – +
Далее между яблонями и грушами посадили по кусту сирени:
+ _ – _ + _ – _ + _ – _ + _ – _ +
Всего получилось 17 деревьев.
Как видим, способ решения путём рисования схем простой, однако, если деревьев будут десятки или тем более сотни, этот способ окажется уже не применим на практике, поэтому надо решать чисто математически.
Хотите, чтобы ваш ребёнок обучался самостоятельно?
Вам поможет наш ВИДЕОКУРС
Решение. 2 способ
Будем применять всё то же правило, что интервалов на один меньше, чем объектов.
Груши сажали в интервалах между яблонями, следовательно их будет
5 – 1 = 4
Всего яблонь и груш: 5 + 4 = 9
Сирень сажали в интервалы между грушами и яблонями, следовательно их будет:
9 – 1 = 8
Всего яблонь, груш и сиреней:
5 + 4 + 8 = 17
Ответ: 17 деревьев.
Задача 3
Анфиса разбила клумбу, посадив по очереди 10 цветков по прямой линии через 10 см друг от друга. Какой длины получилась клумба у Анфисы?
Решение
Обозначим цветы точкой – “.”
Интервал между ними обозначим подчёркиванием – “_”.
Получится вот такая схема:
._._._._._._._._._.
Между 10 цветками 9 интервалов по 10 см, следовательно длина клумбы = 9∙10 = 90 см.
Можно было обойтись и без рисования схемы, а использовать правило, что интервалов на 1 меньше, чем объектов. То есть количество интервалов равно 10 – 1 = 9.
Ответ: 90 см.
Учитель физкультуры расставил в ряд на расстоянии в 3 см друг от друга 6 кеглей. Какое расстояние от первой кегли до последней?
Решение
Количество интервалов между кеглями на один меньше, чем число кеглей:
6 – 1 = 5.
Длина интервала 3 см, следовательно расстояние от первой кегли до последней высчитываетсяк как
5∙3 = 15 см
Ответ: 15 см.
Задача 5
Саша разложил на столе конфетки в ряд на расстоянии 1 см друг от друга. Сколько в ряду было конфеток, если расстояние от первой до последней 6 см.
Решение
Если количество интервалов на один меньше количества объектов, то, следовательно, количество объектов на один больше, чем количество интервалов.
Найдём количество интервалов. Для этого расстояние поделим на величину интервала:
6:1 = 6
Найдём количество конфет:
6 + 1 = 7
Ответ: 7 конфет.
ВИДЕОКУРС 2plus2.online по решению олимпиадных задач по математике для 4 класса и задач из вступительных экзаменов в 5-й класс физматшколы.
Задача 6
Дуся красила забор: первую рейку синим цветом, вторую белым, а третью голубым, и так далее, продолжая соблюдать последовательность. Какой длины участок забора она покрасила, если известно, что ширина одной рейки 30 см, синих из них 6 штук, а последнюю рейку Дуся покрасила белым цветом.
Решение
Длина покрашенного участка равна щирине рейки, помноженной на общее количество покрашенных реек.
Дуся красила забор тройками реек, всегда с одной и той же последовательностью цветов в тройке. Так как покраска закончилась на белой рейке, а белый – это второй цвет в тройке (синий – белый – голубой), то мы можем сказать, что в последней тройке не покрашена одна рейка.
Таким образом, т.к. известно, что синих реек 6, то мы можем сказать, что покрашено 6 троек, из которых последняя содержит только две рейки, а не три, то есть на одну меньше чем надо.
Отсюда мы можем подсчитать общее количество покрашенных реек:
6∙3 – 1 = 17
Следовательно, длина покрашенного забора равна 17∙30 = 510 см.
Ответ: 510 см