Серединный интервал в статистике как найти

Как найти середину интервала

При статистической обработке результатов исследований самого разного рода полученные значения часто группируются в последовательность интервалов. Для расчета обобщающих характеристик таких последовательностей иногда приходится вычислять середину интервала – «центральную варианту». Методы ее расчета достаточно просты, но имеют некоторые особенности, вытекающие как из используемой для измерения шкалы, так и из характера группировки (открытые или закрытые интервалы).

Как найти середину интервала

Инструкция

Если интервал является участком непрерывной числовой последовательности, то для нахождения ее середины используйте обычные математические методы вычисления среднеарифметического значения. Минимальное значение интервала (его начало) сложите с максимальным (окончанием) и разделите результат пополам – это один из способов вычисления среднеарифметического значения. Например, это правило применимо, когда речь идет о возрастных интервалах. Скажем, серединой возрастного интервала в диапазоне от 21 года до 33 лет будет отметка в 27 лет, так как (21+33)/2=27.

Иногда бывает удобнее использовать другой метод вычисления среднеарифметического значения между верхней и нижней границами интервала. В этом варианте сначала определите ширину диапазона – отнимите от максимального значения минимальное. Затем поделите полученную величину пополам и прибавьте результат к минимальному значению диапазона. Например, если нижняя граница соответствует значению 47,15, а верхняя – 79,13, то ширина диапазона составит 79,13-47,15=31,98. Тогда серединой интервала будет 63,14, так как 47,15+(31,98/2) = 47,15+15,99 = 63,14.

Если интервал не является участком обычной числовой последовательности, то вычисляйте его середину в соответствии с цикличностью и размерностью используемой измерительной шкалы. Например, если речь идет об историческом периоде, то серединой интервала будет являться определенная календарная дата. Так для интервала с 1 января 2012 года по 31 января 2012 серединой будет дата 16 января 2012.

Кроме обычных (закрытых) интервалов статистические методы исследований могут оперировать и «открытыми». У таких диапазонов одна из границ не определена. Например, открытый интервал может быть задан формулировкой «от 50 лет и старше». Середина в этом случае определяется методом аналогий – если все остальные диапазоны рассматриваемой последовательности имеют одинаковую ширину, то предполагается, что и этот открытый интервал имеет такую же размерность. В противном случае вам надо определить динамику изменения ширины интервалов, предшествующих открытому, и вывести его условную ширину, исходя из полученной тенденции изменения.

Источники:

  • что такое открытый интервал

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Расчет средней величины в интервальном вариационном ряду

Расчет средней величины в интервальных вариационных рядах немного отличается от расчета в рядах дискретных. Как рассчитать среднюю арифметическую и среднюю гармоническую в дискретных рядах можно посмотреть вот ЗДЕСЬ. Такое различие вполне объяснимо – это связано с особенностью интервальных рядов, в которых изучаемый признак приведен в интервале от и до.

Итак, посмотрим особенности расчета на примере.

Пример 1. Имеются данные о дневном заработке рабочих предприятия.

Дневной заработок рабочего, руб. Число рабочих, чел.
500-1000 15
1000-1500 30
1500-2000 80
2000-2500 60
2500-3000 25
Итого 210

Нам необходимо рассчитать среднедневную заработную плату рабочего.

Начало решения задачи будет аналогичным правилам расчета средней величины, которые можно посмотреть в этой статье.

Начинаем мы с определения варианты и частоты, поскольку ищем мы средний заработок за день, то варианта это первая колонка, а частота вторая. Данные у нас заданы явным количеством, поэтому расчет проведем по формуле средней арифметической взвешенной (так как данные приведены в табличном виде). Но на этом сходства заканчиваются и появляются новые действия.

Дневной заработок рабочего, руб. х Число рабочих, чел. f
500-1000 15
1000-1500 30
1500-2000 80
2000-2500 60
2500-3000 25
Итого 210

Дело в том, что интервальный рад представляет осредняемую величину в виде интервала. 500-1000, 2000-2500 и так далее. Чтобы решить эту проблему необходимо провести промежуточные действия, и только потом подсчитать среднюю величину по основной формуле.

Что же требуется в данном случае сделать. Все достаточно просто, чтобы провести расчет нам нужно, чтобы варианта была представлена одним числом, а не интервалом. Для получения такого значения находят так называемое ЦЕНТРАЛЬНОЕ ЗНАЧЕНИЕ ИНТЕРВАЛА (или середину интервала). Определяется оно путем сложение верхней и нижней границ интервала и делением на два.

Проведем необходимые расчеты и подставим данные в таблицу.

Raschet srednej velichiny v intervalnom variatsionnom ryadu

И так далее по всем интервалам рассчитываем центральное значение. В итоге получаем следующие результаты.

Дневной заработок рабочего, руб. х Число рабочих, чел. f х’
500-1000 15 750
1000-1500 30 1250
1500-2000 80 1750
2000-2500 60 2250
2500-3000 25 2750
Итого 210

После того как мы рассчитали центральные значения далее проведем расчеты в таблицы и подставим итоговые данные в формулу, аналогично тому как мы уже рассматривали ранее.

Дневной заработок рабочего, руб. х Число рабочих, чел. f х’ x’f
500-1000 15 750 11250
1000-1500 30 1250 37500
1500-2000 80 1750 140000
2000-2500 60 2250 135000
2500-3000 25 2750 68750
Итого ∑f = 210 ∑ x’f = 392500

Raschet srednej velichiny v intervalnom variatsionnom ryadu2

В итоге получаем, что среднедневная заработная плата одного рабочего составляет 1869 рублей.

Nafanya

Это пример решения, если интервальный ряд представлен со всеми закрытыми интервалами. Но достаточно часто бывает, когда два интервала открытые, первый и последний. В таких ситуациях прямой расчет центрального значения невозможен, но есть два варианта как это сделать.

Пример 2. Имеются данные о продолжительности производственного стажа персонала предприятия. Рассчитать среднюю продолжительность стада одного сотрудника.

Длительность производственного стажа, лет Число сотрудников, человек
до 3 19
3-6 21
6-9 15
9-12 10
12 и более 5
Итого 70

В данном случае принцип решения останется точно таким же. Единственно, что поменялось в этой задаче, так это первый и последний интервалы. До 3 лет и 12 лет и более это и есть те самые открытые интервалы. Именно тут возникнет вопрос, а как же найти центральное значение интервала для таких интервалов.

Поступить в этой ситуации можно двумя способами:

Raschet srednej velichiny v intervalnom variatsionnom ryadu3

Средняя продолжительность стажа 5,83 года.

Raschet srednej velichiny v intervalnom variatsionnyh ryadah4

Средняя продолжительность стажа 6,13 года.

Домашнее задание

Теперь Вы умеете рассчитывать среднюю в интервальном вариационном ряду!

Источник

Решение задач по статистике и выводы к ним

Задача по статистике №1. Найти параметры интервального ряда распределения по данным таблицы, а именно: моду, медиану, среднюю арифметическую величину, среднюю взвешенную величину, коэффициент вариации, среднее квадратическое отклонение.

Группы компаний по основным производственным фондам, млн. руб. (х)

Середина интервала (Xi) = (начало интервала+конец интервала)/2

Мы сразу добавили столбец «середина интервала». Для первой группы компаний рассчитали следующим образом: (10+25)/2=17,5 млн. руб. Для 2-5 групп расчеты произведены аналогично.

Теперь рассчитаем среднюю арифметическую величину.

image002средняя арифметическая = image004= (17,5+29+37,5+45,5+55,5)/5=37 млн. руб.

Далее рассчитаем среднюю взвешенную величину.

image002средняя взвешенная = image006= (17,5*2+29*8+37,5*14+45,5*9+55,5*3)/36=38 млн. руб.

Значение средневзвешенной величины можно считать более корректным, чем значение средней арифметической величины, поэтому далее в расчетах будем использовать среднюю взвешенную.

Теперь добавим в таблицу столбцы, данные которых нам понадобятся для расчета дисперсии.

Середина интервала (Xi) = (начало интервала+конец интервала)/2

Источник

Совет 1: Как обнаружить середину интервала

При статистической обработке итогов изысканий самого различного рода полученные значения зачастую группируются в последовательность промежутков. Для расчета обобщающих колляций таких последовательностей изредка доводится вычислять середину интервала – «центральную варианту». Способы ее расчета довольно примитивны, но имеют некоторые особенности, вытекающие как из применяемой для измерения шкалы, так и из нрава группировки (открытые либо закрытые промежутки).

Как обнаружить середину промежутка

Инструкция

1. Если промежуток является участком постоянной числовой последовательности, то для нахождения ее середины используйте обыкновенные математические способы вычисления среднеарифметического значения. Минимальное значение интервала (его предисловие) сложите с максимальным (окончанием) и поделите итог напополам – это один из методов вычисления среднеарифметического значения. Скажем, это правило применимо, когда речь идет о возрастных интервала х. Скажем, серединой возрастного интервала в диапазоне от 21 года до 33 лет будет отметка в 27 лет, потому что (21+33)/2=27.

2. Изредка бывает комфортнее применять иной способ вычисления среднеарифметического значения между верхней и нижней границами интервала . В этом варианте вначале определите ширину диапазона – отнимите от максимального значения минимальное. После этого поделите полученную величину напополам и прибавьте итог к минимальному значению диапазона. Скажем, если нижняя граница соответствует значению 47,15, а верхняя – 79,13, то ширина диапазона составит 79,13-47,15=31,98. Тогда серединой интервала будет 63,14, потому что 47,15+(31,98/2) = 47,15+15,99 = 63,14.

3. Если промежуток не является участком обыкновенной числовой последовательности, то вычисляйте его середину в соответствии с повторяемостью и размерностью применяемой измерительной шкалы. Скажем, если речь идет об историческом периоде, то серединой интервала будет являться определенная календарная дата. Так для интервала с 1 января 2012 года по 31 января 2012 серединой будет дата 16 января 2012.

4. Помимо обыкновенных (закрытых) промежутков статистические способы изысканий могут оперировать и «открытыми». У таких диапазонов одна из границ не определена. Скажем, открытый промежуток может быть задан формулировкой «от 50 лет и старше». Середина в этом случае определяется способом аналогий – если все остальные диапазоны рассматриваемой последовательности имеют идентичную ширину, то предполагается, что и данный открытый промежуток имеет такую же размерность. В отвратном случае вам нужно определить динамику метаморфозы ширины промежутков, предшествующих открытому, и вывести его условную ширину, исходя из полученной склонности метаморфозы.

Совет 2: Как обнаружить середину

Изредка в повседневной деятельности может появиться надобность обнаружить середину отрезка прямой линии. Скажем, если предстоит сделать выкройку, эскиз изделия либо легко распилить на две равные части деревянный брусок. На поддержка приходит геометрия и немножко житейской смекалки.

Как обнаружить середину

Вам понадобится

  • Циркуль, линейка; булавка, карандаш, нить

Инструкция

1. Воспользуйтесь обыкновенными инструментами, предуготовленными для измерения длины. Это самый легкой метод разыскать середину отрезка. Измерьте линейкой либо рулеткой длину отрезка, поделите полученное значение напополам и отмерьте от одного из концов отрезка полученный итог. Вы получите точку, соответствующую середине отрезка.

2. Существует больше точный метод нахождения середины отрезка, вестимый из курса школьной геометрии. Для этого возьмите циркуль и линейку, причем линейку может заменить всякий предмет подходящей длины с ровной стороной.

3. Установите расстояние между ножками циркуля так, дабы оно было равным длине отрезка либо же огромным, чем половина отрезка. После этого поставьте иглу циркуля в один из концов отрезка и проведите полуокружность так, дабы она пересекала отрезок. Переставьте иглу в иной конец отрезка и, не меняя размах ножек циркуля, проведите вторую полуокружность верно таким же образом.

4. Вы получили две точки пересечения полуокружностей по обе стороны от отрезка, середину которого мы хотим обнаружить. Объедините эти две точки при помощи линейки либо ровного бруска. Соединительная линия пройдет в точности посередине отрезка.

5. Если под рукой не оказалось циркуля либо длина отрезка значительно превышает возможный размах его ножек, дозволено воспользоваться простым приспособлением из подручных средств. Изготовить его дозволено из обыкновенной булавки, нитки и карандаша. Привяжите концы нитки к булавке и карандашу, при этом длина нитки должна немножко превышать длину отрезка. Таким импровизированным заменителем циркуля остается проделать шаги, описанные выше.

Видео по теме

Полезный совет
Довольно верно обнаружить середину доски либо бруска вы можете, использовав обыкновенную нитку либо шнур. Для этого отрежьте нить так, дабы она соответствовала длине доски либо бруска. Остается сложить нить верно напополам и разрезать на две равные части. Приложите один конец полученной мерки к концу измеряемого предмета, а 2-й конец будет соответствовать его середине.

При
большом
объеме выборки
работа с
вариационными рядами представляет
определенные неудобства, и тогда
наблюдаемые данные группируют.

Группировка
должна наиболее
полно выявлять существенные свойства
распределения. Существуют формулы для
определения оптимального количества
интервалов, но в психологии
считается, что следует брать от
5 до 15 интервалов
.

Первый способ
построения интервального ряда.

Если
у исследователя нет предварительной
информации о характере распределения
признака, то лучше задавать равные
интервалы
,
при этом длина
интервала


определяется по формуле
,
где– количество выбранных интервалов (числоокругляется до целого значения).

Начало
первого интервала равно
,
а конец(это будет одновременно и началом второго
интервала). Условимся все интервалы
считать соткрытым
правым концом
:
.
Построение интервалов заканчивается,
если в интервал попало наибольшее
значение признака.

Далее
подсчитывают число
значений признака, попавших в каждый
интервал (с учетом открытого правого
конца). Получается таблица, называемаяинтервальным
вариационным рядом
.

Интервалы

Сумма

Частоты,

Относительные
частоты,

1

Второй
способ построения интервального ряда
.

Весь
диапазон значений признака от
доразбивается на равныеинтервалы,
называемые также классами.
Затем все варианты совокупности
распределяются
по этим интервалам
.
Порядок действий:

  • Определяется
    число классов по формуле Стэрджеса
    .

  • Затем
    определяется размах выборки
    .

  • Находим
    ширину интервала
    по формуле.

  • Находим
    нижнюю границу первого интервала:
    .

  • Начальные
    и конечные значения всех последующих
    интервалов можно вычислить путем
    последовательного прибавления величины
    интервала к значениям конца предыдущего
    интервала:
    ,и так далее.

Пример
построения интервального вариационного
ряда
.

Пусть измерен
некоторый показатель для 30 испытуемых:

23,
29, 35, 7, 11, 18, 23, 30, 36, 18, 11, 8, 13, 20, 25,

27,
14, 30, 20, 20, 24, 19, 21, 26, 22, 16, 26, 25, 33, 27.

Это
статистический
ряд
.

Расставим
экспериментальные данные в возрастающем
порядке, то есть построим вариационный
ряд
:

7,
8,
11,
11,
13,
14,
16,
18,
18,
19, 20,
20,
20,
21,
22,

23,
23,
24,
25,
25,
26,
26,
27,
27,
29,
30,
30,
33,
35,
36.

Число
классов (интервалов) для
:

.

Минимальное
и максимальное значения:
,.

Вариационный
размах:
.

Величина
интервала:
.

Находим границы
интервалов:

;

;
;

;
;

;
.

Построим
интервальный
вариационный ряд
.

Номера
интервалов

Интервалы

Серединные
значения интервалов

Частоты

1

4
– 10

7

2

2

10
– 16

13

4

3

16
– 22

19

8

4

22
– 28

25

10

5

28
– 34

31

4

6

34
– 40

37

2

5. Гистограмма

Вариационные
ряды изображают графически с помощью
полигона и гистограммы.

с1с2с3с4 с5с6с7с8с9

Гистограммой
называется графическое изображение
интервального
вариационного
ряда
. На оси
абсцисс откладываются отрезки,
изображающие интервалы значений
варьирующего признака, а затем на этих
отрезках, как на основаниях, строятся
прямоугольники, площади
которых пропорциональны частотам
(или
относительным частотам).

Полигон
частот
для
дискретного вариационного ряда – это
ломаная, отрезки которой соединяют
точки с координатами
.

Полигон
частот признака

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Вам понадобится:

  • Циркуль
  • линейка
  • карандаш

#1

Жизнь каждого офисного работника не может обходиться без вычислений и статистики. Каждый офисный работник должен знать про нахождение середины интервала, середины вектора, координат середины вектора, середины окружности и построение середины данного отрезка.

#2

В вопросе какнайти середину интервала, нужно использовать обычные математические методы вычисления. Надо сложить начало интервала с окончанием интервала и полученный ответ разделить пополам. Этот метод используют при вычислении возрастных интервалов. Дальше я расскажу о том, как найти координаты середины вектора.

#3

В вопросе какнайти середину интервала, нужно использовать обычные математические методы вычисления. Надо сложить начало интервала с окончанием интервала и полученный ответ разделить пополам. Этот метод используют при вычислении возрастных интервалов. Дальше я расскажу о том, как найти координаты середины вектора.

#4

Берём отрезок, устанавливаем один конец циркуля в любой из концов отрезка и проводим окружность, при этом радиус должен быть равен длине отрезка. Выполняем тоже самое с другим концом. Обе окружности пересекутся в двух точках. Берём линейку и поводим прямую через точки пересечения окружностей. Где эта прямая пересечётся с отрезком, там и находится середина отрезка. Теперь речь пойдёт о том, как найти середину окружности.

#5

Для нахождения середины окружности, мы используем следующий метод: в окружности проводим две не параллельные хорды, а потом продлеваем их настолько, чтобы они пересеклись. Концы хорд соединяем друг с другом. Далее нужно найти диаметр, но сделать это надо два раза, чтобы получить точку пересечения диаметров, которая поможет найти искомый вами центр. В конце поведаем, как найти середину вектора.

#6

Сначала нужно обозначить точки начала и конца вектора. Для нахождения середины вектора, нужно из конечной координаты вектора вычесть начальные координаты вектора. Длину вектора можно вычислить как корень квадрата из общей суммы квадратов координат. Эту информацию нужно знать не только офисным работникам, но и обычным людям, ведь эти знания могут пригодиться в жизни.

Добавить комментарий