Sin a как найти в четырехугольнике

Теорема синусов

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Формула теоремы синусов:

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Из этой формулы мы получаем два соотношения:

На b сокращаем, синусы переносим в знаменатели:

  • bc sinα = ca sinβ

  • Из этих двух соотношений получаем:

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° – α.

    Вспомним свойство вписанного в окружность четырёхугольника:

    Также известно, что sin(180° – α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° – α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° – 60°) = sin60° = 3/√2;
    • sin150° = sin(180° – 30°) = sin30° = 1/2;
    • sin135° = sin(180° – 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° – α)

    Так как sin(180° – α) = sinα, то sinγ = sin(180° – α) = sinα

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° – 45° – 15° = 120°

  • Сторону AC найдем по теореме синусов:
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Формулы вычисления площади произвольного четырёхугольника

    В школьных математических заданиях часто требуется определить площадь четырёхугольника. Все довольно просто, если задан частный случай фигуры — квадрат, ромб, прямоугольник, трапеция, параллелограмм, ромбоид. В случае же произвольного четырёхугольника все несколько сложнее, но также вполне доступно для среднего школьника. Ниже мы изучим различные методы расчётов площади произвольных четырёхугольников, запишем формулы и рассмотрим различные вспомогательные примеры.

    Определения и соглашения

    В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

    1. Четырёхугольник – это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
    2. Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
    3. Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
    4. Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
    5. Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
    6. Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
    7. Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
    8. Угол между сторонами a и b будем обозначать следующей записью (a,b).

    Нахождение площади четырёхугольника различными способами и методами

    Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).

    Рассмотрим пример. Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.

    Теперь пусть даны стороны и противолежащие углы четырёхугольника.

    Пусть a, b, c, d известные стороны многоугольника; p – его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad(( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d ⋅ c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).

    На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.

    Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2( (a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.

    Подставим полученные данные в нашу формулу, получим: S = rad((40 – 18)*(40 – 23)*(40 – 22)*(40 – 17) – 18*23*22*17*0,97) = rad(22*17*18*23 – 18*23*22*17*1/4) = rad((22*17*18*23*(1 – 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.

    Разберёмся как находить площадь с помощью вписанной и описанной окружностей. При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.

    Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:

    Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:

    S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.

    Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:

    S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.

    Первым делом определим полупериметр, p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:

    S = rad((65 – 26)*(65 – 35)*(65 – 39)*(65 – 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.

    Заключение

    Внимательно изучив все вышеизложенное, можно сделать вывод — определение площади произвольного четырёхугольника с разными сторонами сложнее, чем у них же специальных видов – квадрата, прямоугольника, ромба, трапеции, параллелограмма. Однако внимательно изучив все приведённые методы, можно с лёгкостью решать задачи необходимые для школьников. Сведём все наши формулы в одну таблицу:

    1. S = 1/2*d1*d2*sin(d1,d2);
    2. S = rad(( p − a )*( p − b )*( p − c )*( p − d ) − a*b*c*d*c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d);
    3. S = ((a + b+ c + d)/2)*r

    S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине периметра​.

    Таким образом, реально сложной является только формула номер 2, но и она вполне доступна, при условии хорошего понимания данных в статье определений и соглашений.

    Видео

    Разобраться в этой теме вам поможет видео.

    Четырехугольники

    теория по математике 📈 планиметрия

    Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

    Выпуклый четырехугольник

    Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

    Определение

    Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.

    Виды и свойства выпуклых четырехугольников

    Сумма углов выпуклого четырехугольника равна 360 градусов.

    Прямоугольник

    Прямоугольник – это четырехугольник, у которого все углы прямые.

    На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь

    1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
    2. Диагонали прямоугольника равны (АС=ВD).
    3. Диагонали пересекаются и точкой пересечения делятся пополам.
    4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
    5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

    S=ab, где a и b соседние стороны прямоугольника.

    Квадрат

    Квадрат – это прямоугольник, у которого все стороны равны.

    Свойства квадрата

    1. Диагонали квадрата равны (BD=AC).
    2. Диагонали квадрата пересекаются под углом 90 градусов.
    3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
    4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
    5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

    Параллелограмм

    Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

    Ромб – это параллелограмм, у которого все стороны равны.

    Трапеция

    Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

    Виды трапеций

    Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

    углы А и С равны по 90 градусов

    Средняя линия трапеции

    Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

    Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

    Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

    По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

    Ответ: см. решение

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

    Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

    Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

    Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

    Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

    Ответ: см. решение

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

    Для нахождения площади трапеции в справочном материале есть формула

    S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

    Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

    Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

    Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

    с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

    Для выполнения данного задания надо подставить все известные данные в формулу:

    12,8= d 1 × 16 × 2 5 . . 2 . .

    В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

    Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

    Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

    pазбирался: Даниил Романович | обсудить разбор | оценить

    На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

    При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

    Задание №1

    Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

    Объекты яблони теплица сарай жилой дом
    Цифры

    Решение

    Для решения 1 задачи работаем с текстом и планом одновременно:

    при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

    Итак, получили следующее:

    1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

    Заполняем нашу таблицу:

    Объекты яблони теплица сарай жилой дом
    Цифры 3 5 1 7

    Записываем ответ: 3517

    Задание №2

    Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

    Решение

    Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

    Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

    Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

    Задание №3

    Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

    Решение

    Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

    Задание №4

    Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

    Решение

    Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

    Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

    Задание №5

    Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

    Номер магазина Расход краски Масса краски в одной банке Стоимость одной банки краски Стоимость доставки заказа
    1 0,25 кг/кв.м 6 кг 3000 руб. 500 руб.
    2 0,4 кг/кв.м 5 кг 1900 руб. 800 руб.

    Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

    Решение

    Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

    1 магазин: 232х0,25=58 кг

    2 магазин: 232х0,4=92,8 кг

    Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

    1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

    2 магазин: 92,8:5=18,56; значит надо 19 банок.

    Вычислим стоимость краски в каждом магазине плюс доставка:

    1 магазин: 10х3000+500=30500 руб.

    2 магазин: 19х1900+800=36900 руб.

    Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

    Ответ: см. решение

    pазбирался: Даниил Романович | обсудить разбор | оценить

    [spoiler title=”источники:”]

    http://liveposts.ru/articles/education-articles/matematika/formuly-vychisleniya-ploshhadi-proizvolnogo-chetyryohugolnika

    [/spoiler]

    Содержание материала

    1. Синус, косинус, тангенс и котангенс. Определения
    2. Видео
    3. Теорема косинусов
    4. Формула Герона
    5. Решение треугольников
    6. Пример (решение треугольника по двум сторонам и углу между ними).
    7. Пример (решение треугольника по стороне и двум прилежащим к ней углам).
    8. Пример (решение треугольника по трем сторонам).
    9. Пример
    10. Пример
    11. Примеры решения задач с использованием теоремы синусов и теоремы косинусов
    12. Пример
    13. Пример
    14. Пример
    15. Теорема Стюарта
    16. Пример

    Синус, косинус, тангенс и котангенс. Определения

    Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

    Определения тригонометрических функций

    Синус угла (sin α) — отношение противолежащего этому углу катета к гипотенузе.

    Косинус угла (cosα) — отношение прилежащего катета к гипотенузе.

    Тангенс угла (tg α) — отношение противолежащего катета к прилежащему.

    Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.

    Данные определения даны для острого угла прямоугольного треугольника!

    Приведем иллюстрацию. 

    В треугольнике ABC с прямым углом С синус угла А р

    В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

    Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

    Важно помнить!

    Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.

    Видео

    Теорема косинусов

    Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны АВС  треугольника АВС (рис. 165) через длины сторон ). Теорему косинусов можно назвать самой «работающей» в геометрии. Она имеет многочисленные следствия, которые часто используются при решении задач.

    Теорема косинусов. Квадрат любой стороны треугольн

    Теорема косинусов. Квадрат любой стороны треугольника равен сум­ме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е. 

    Доказательство:

    Доказательство:

    Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166). Проведем высоту ВН к стороне АС. Из  находим  откуда 
Из  по теореме Пифагора

    По основному тригонометрическому тождеству 
  Тог

    По основному тригонометрическому тождеству 
Тогда Справедливость теоремы для случаев, когда  или  ту

    Справедливость теоремы для случаев, когда 
 Замечание. Если , то по теореме Пифагора  Так к или 
 тупой или прямой, докажите самостоятельно. Теорема доказана. Для сторон 
 Замечание. Если , то по теореме Пифагора  Так к теорема косинусов запишется так:

    
Замечание. Если • зная две стороны и угол между ними, найти третью, то по теореме Пифагора • зная две стороны и угол между ними, найти третью Так как • зная две стороны и угол между ними, найти третью то 
 Таким образом, теорема Пифагора — частный случай теоремы косинусов. С помощью теоремы косинусов можно решить следующие задачи:

    • зная две стороны и угол между ними, найти третью сторону треугольника;

    • зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).

    Рассмотрим следствия из теоремы косинусов, которые

    Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.

    Следствие:

    Теорема косинусов позволяет, зная три стороны треугольника, най­ти его углы (косинусы углов). Из равенства  следует формула

    Для углов получим:

    Для углов получим:

    Пример:

    Пример:

    В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).

    По теореме косинусов

    По теореме косинусов

    Используя записанную выше формулу, можно сра­зу по

    Используя записанную выше формулу, можно сра­зу получить: 

    Следствие:

    Следствие:

    С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.  

    Так, из формулы  если  то  и угол  острый; если  то  и угол  тупой с учетом того, что  если  то  и угол  острый; если  то  и угол  тупой следует:

    1. если если  то  и угол  тупой; то если  то  и угол  тупой; и угол если  то  и угол  тупой; острый;
    2. если если  то  и угол  прямой. то если  то  и угол  прямой. и угол если  то  и угол  прямой. тупой;
    3. если  то  и угол  прямой.

    При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.  

    Пример:

    Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как Сформулируем правило определения вида треугольника то Сформулируем правило определения вида треугольника угол Сформулируем правило определения вида треугольника тупой и данный треугольник тупоугольный.

    Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:

    1. остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон: тупоугольным, если квадрат его большей стороны бол
    2. тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:прямоугольным, если квадрат его большей стороны ра
    3. прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон:

    Следствие:

    Сумма квадратов диагоналей параллелограмма равна сумме квадра­тов всех его сторон: 

    Доказательство:

    Доказательство:

    Пусть в параллелограмме ABCD                                    (2)— острый, откуда                                    (2) — тупой (рис. 169). По теореме косинусов из 

                                     (1) Из                                    (2) Поскольку cos                                    (2) то

    Сложив почленно равенство (1) и равенство (2), пол                                   (2)

    Сложив почленно равенство (1) и равенство (2), получим Данная формула дает возможность: что и требовалось доказать.

    Данная формула дает возможность:

    • • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
    • • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.

    Следствие:

    Медиану   треугольника со сторонами а, b и с можно найти по фор­муле  

     Доказательство:

    Доказательство:

    Рассмотрим Проведем отрезки BD и DC. Так как у четырехугольниAM  — медиана треугольника (рис. 170). Продлим медиану AM за точку М на ее длину: Проведем отрезки BD и DC. Так как у четырехугольни

    Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма Аналогично: Аналогично:  Отсюда следует, что 
Утверждение доказано.

    Аналогично: Формула медианы позволяет:

    Формула медианы позволяет:

    • зная три стороны треугольника, найти любую из его медиан;
    • зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
    • зная три медианы, найти любую из сторон треугольника.

    Пример:

    а) Дан треугольник АВС, а = 5, 5 = 3,  Найти сторону с. б) Дан треугольник АВС, а = 7, с = 8, а = 60°. Найти сторону Ь.

    Решение:

    а) По теореме косинусов  Отсюда  б) Пусть  По теореме косинусов  то есть  

    Пример: Отсюда Пример: б) Пусть Пример: По теореме косинусов Пример: то есть Пример:Пример: Отсюда Пример: или 
 так как для наборов длин отрезков 7, 3, 8 и 7, 5, 8 выполняется неравенство треугольника. Ответ: а) 7; б) 3 или 5.

    Пример:

    Две стороны треугольника равны 6 и 10, его площадь — 
Найти третью сторону треугольника при условии, что противолежащий ей угол — тупой.

    Решение:

    Решение:

    Пусть в АВ стороны АВ = 6, ВС = 10 и 
 (рис. 171). Поскольку Ответ: 14. то Ответ: 14. откуда 
Так как Ответ: 14. и по условию Ответ: 14. — тупой, то АС . Для нахождения стороны АС применим теорему косинусов:Ответ: 14.

    Ответ: 14.

    Пример:

    Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.

    Решение:

    Решение:

    Обозначим стороны треугольника  Пусть 
 — медиана (рис. 172). По формуле медианы  откуда  По обратной теореме Пифагора данный треугольник со сторонами 6, 8 и 10 — прямоугольный, его площадь равна половине произведения катетов:
Ответ: 24.

    Формула Герона

    Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: Теорема (формула Герона). а также по двум сторонам и углу между ними: Теорема (формула Герона). Теперь мы выведем формулу нахождения площади треугольника по трем сторонам.

    Теорема (формула Герона).

    Площадь треугольника со сторонами  можно найти по формуле  где — полупериметр треугольника.

    Доказательство:

    Доказательство:

    Тогда  (рис. 183). Из основ­ного тригонометрического тождества Тогда  следует, что Тогда  Для Тогда  синус положительный. Поэтому Тогда Из теоремы косинусов Тогда  откуда Тогда 

    Тогда 

    Так как

    Так какТеорема доказана.

    Теорема доказана.

    Решение треугольников

    Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.

    Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.

    Рассмотрим алгоритмы решения трех задач.  

    Пример (решение треугольника по двум сторонам и углу между ними)

    Дано: (рис. 184).

    Дано: Найти : 
   (рис. 184).

    Найти : 
 

    Решение:

    Рис. 184 1) По теореме косинусов 2) По следствию из теоремы косинусов

    2) По следствию из теоремы косинусов 3) Угол  находим при помощи калькулятора или табли

    3) Угол 4) Угол 
 Замечание. Нахождение угла  по теореме  находим при помощи калькулятора или таблиц.

    4) Угол 
Замечание. Нахождение угла  по теореме синусов требует выяснения того, острый или тупой угол 
 

    Пример (решение треугольника по стороне и двум прилежащим к ней углам)

    Дано: (рис. 185).

    Дано: Найти: (рис. 185).

    Найти: Решение:

    Решение:

    1) Угол 2) По теореме синусов (sin  и sin  находим при пом

    2) По теореме синусов 3) Сторону с можно найти с помощью теоремы косинус(sin 3) Сторону с можно найти с помощью теоремы косинус и sin 3) Сторону с можно найти с помощью теоремы косинус находим при помощи калькулятора или таблиц).

    3) Сторону с можно найти с помощью теоремы косинусов или теоре­мы синусов: или (cos и sin находим при помощи калькулятора или таблиц).

    Пример (решение треугольника по трем сторонам)

    Дано:  (рис. 186).

    Найти: и радиус R описанной окружности.

    Найти: Rи радиус R описанной окружности.

    Решение:

    1) По следствию из теоремы косинусов

    2) Зная  угол  находим при помощи калькулятора или

    2) Зная 3) Аналогично находим угол  угол 3) Аналогично находим угол  находим при помощи калькулятора или таблиц.

    3) Аналогично находим угол  4) Угол

     4) Угол  5) Радиус R описанной окружности треугольника мож

     5) Радиус R описанной окружности треугольника можно найти по фор­муле Замечание*. Вторым способом нахождения R будет нах где 
 

    Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов  затем нахождение по косинусу угла его синуса  и, наконец, использование теоремы синусов  Rдля нахождения R.

    Пример

    Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.

    Решение:

    Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим:  Тогда  Тогда 

     Радиус R описанной окруж­ности найдем из формулы  Тогда  Радиус R описанной окруж­ности найдем из формулы

    R Радиус R описанной окруж­ности найдем из формулы  Имеем: 
Ответ: 
Способ 2. Так как поскольку  то треугольник — прямоугольный по обратной теореме Пифагора. Его площадь равна половине произведения катетов:  а радиус описанной окружности равен половине гипотенузы: 
 

    Пример

    Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.

    Решение:

    Решение:

    Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и  Проведем АВСК  (рис. 187). Так как АВСК — параллелограмм, то СК = АВ = 10, АК = ВС = 5, откуда KD = AD — АК = 9. Найдем высоту СН треугольника KCD, которая равна высоте трапеции. Площадь треугольника KCD найдем по формуле Герона, обозначив его стороны а = 10, b = 17, с = 9. Получим:

     Так как СН = 8. Площадь трапеции

    Ответ: 76.
    Так как СН СН = 8. Площадь трапеции Ответ: 76.
   

    Ответ: 76.  

    Примеры решения задач с использованием теоремы синусов и теоремы косинусов

    Пример:

    Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).

    Решение:

    Решение:

    Пусть Ответ: 
 Замечание. Вторым способом решения будет
 Найдем длину отрезка AM. Сумма углов четырехугольника АВМС равна 360°. Поэтому 
Так как в четырехугольнике АВМС AM , то около него можно описать окружность по признаку вписанного четырехугольника (рис. 189, б). Поскольку прямой вписанный угол опирается на диаметр, то отрезок AM — диаметр этой окружности, т. е. R где R — радиус. Из Ответ: 
 Замечание. Вторым способом решения будет по теореме косинусов Ответ: 
 Замечание. Вторым способом решения будетОтвет: 
 Замечание. Вторым способом решения будет Из Ответ: 
 Замечание. Вторым способом решения будет по теореме синусов Ответ: 
 Замечание. Вторым способом решения будет откуда Ответ: 
 Замечание. Вторым способом решения будетОтвет: 
 Замечание. Вторым способом решения будет

    Ответ: 
Замечание. Вторым способом решения будет продление отрезка ВМ до пересечения с лучом АС и использование свойств полученных прямоугольных треуголь­ников. Рассмотрите этот способ самостоятельно.

    Пример

    В прямоугольном треугольнике АВС известно:  высота СН = 2 (рис. 190). Найти гипотенузу АВ.

    Решение:

    Решение:

    Построим  симметричный АВ  относительно прямой АВ (см. рис. 190). Поскольку  то вокруг четырехугольника АВ  можно описать окруж­ность, где АВ — диаметр этой окружности (прямой вписанный угол опирается на диаметр). Треугольник  вписан в эту окруж­ность,  По теореме синусов  откуда 
Ответ: 8.

    Пример

    Дан прямоугольный треугольник АВС с катетами ВС = а и АС =  На гипотенузе АВ как на стороне построен квадрат ADFB (рис. 191). Найти расстояние от центра О этого квадрата до вершины С прямого угла, т. е. отрезок СО.

    Решение:

    Решение:

    Способ 1. Так как ADFB  (диагона­ли квадрата ADFB взаимно перпендикулярны), то АОВС  поэтому четырехугольник АОВС является вписанным в окружность, ее диа­метр Пусть СО = х. По теореме косинусов из  находим  Тогда Пусть СО = х. По теореме косинусов из  находим

    Пусть СО = х. По теореме косинусов из из  находим  находим из  находим

    из По свойству вписанного четырехугольника  Поскольку находим По свойству вписанного четырехугольника  Поскольку

    По свойству вписанного четырехугольника  Способ 2. Используем теорему Птолемея, которая гл Поскольку  Способ 2. Используем теорему Птолемея, которая гл то  Способ 2. Используем теорему Птолемея, которая глоткуда находим  Способ 2. Используем теорему Птолемея, которая глТогда  Способ 2. Используем теорему Птолемея, которая гл.

     Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):

    Способ 3. Достроим  до квадрата CMNK, как показано

    Способ 3. Достроим CMNK до квадрата CMNK, как показано на рисунке 192. Можно показать, что центр квадрата CMNK совпадет с центром квадрата ADFB, т. е. с точкой О (точки В и D симметричны относительно центров обоих квадратов). Тогда 
Ответ: 
 

    Пример

    Точка О — центр окружности, вписанной в треуголь­ник АВС,  Найти стороны треугольника (см. задачу 232*).

    Решение:

    Решение:

    Пусть 
 и 
 — радиус вписанной окружности (рис. 193). Тогда Отсюда  Применим формулу Герона:

    Отсюда  Применим формулу Герона:

    С другой стороны,  Из уравнения  находим  = 2. Отк

    С другой стороны,  Из уравнения  находим  = 2. Откуда  (см),  (см), 
 (см). Ответ: 15 см; 20 см; 7 см.

    Теорема Стюарта

    Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.  

    Теорема Стюарта. «Если а, b и с — стороны треугольника и отре­зок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула

    Доказательство:

    Доказательство:

    По теореме косинусов из                                      (1)и                                      (1) (см. рис. 194) следует:

                  (2)                                     (1)

    Умножим обе части равенства (1) на у, равенства (2              (2)

    Умножим обе части равенства (1) на у, равенства (2) — на 
Сложим почленно полученные равенства:
 
  Из пос

    Сложим почленно полученные равенства: 
Из последнего равенства выразим 
Следствие:Теорема доказана.

    Следствие:

    Биссектрису треугольника можно найти по формуле (рис. 195)

    Доказательство:

    Доказательство:

    По свойству биссектрисы треугольника  По теореме Стюарта  Разделив сторону  По теореме Стюарта с в отношении  По теореме Стюарта  получим: 

     По теореме Стюарта

    Пример

    Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).

    Доказательство:

    Доказательство:

    Пусть дан треугольник АВС,  ВС = а и АС = b — биссектрисы, проведенные к сторонам ВС = а и АС = b соответственно, и По формуле биссектрисы треугольника  (рис. 196). Нужно доказать, что По формуле биссектрисы треугольника  Выразим По формуле биссектрисы треугольника  и через По формуле биссектрисы треугольника  и приравняем полученные выражения. Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому По формуле биссектрисы треугольника  откуда По формуле биссектрисы треугольника По формуле биссектрисы треугольника  откуда По формуле биссектрисы треугольника 

    По формуле биссектрисы треугольника 

    Из условия  следует:  Перенеся слагаемые в одну ст

    Из условия  следует:  Перенеся слагаемые в одну сторону равенства и разложив на множители (проделайте это самостоятельно), получим:  Отсюда  (второй множитель при положительных  больше нуля). Утверждение доказано.

    Теги

    Учебник

    Геометрия, 9 класс

    Формулы площадей через синус угла

    Основные свойства площадей фигур:

    1. Равные фигуры имеют равные площади.     Две фигуры состоящие   из одинаковых кусков – равновеликие.
    2. Аддитивность:   Площадь фигуры, разрезанной на несколько частей, равна сумме площадей этих частей    ;
    3. Площадь прямоугольника равна произведению ширины на длину … произведение сторон.

    Задача 1:        В параллелограмме известны стороны    $7$,   $10$     и синус угла между ними   $frac{1}{2}$.   Найти площадь параллелограмма.

    • Решение:       Опустим высоты $BH$ и $CK$   на основание $AD$ . Они помогут “увидеть” площадь.
    • Что есть синус $angle BAH$ в прямоугольном треугольнике $bigtriangleup ABH$?    Отношение катета $BH$ к гипотенузе $AB$.     
    • Формула синуса     позволит выразить высоту $BH$ через сторону $AB$ и синус $frac{1}{2}$. Высота   $CK$ такая же.
    • Параллелограмм $ABCD$ состоит из кусков:    $bigtriangleup ABH$ и $4$-угольник $HBCD$.   Площадь – сумма площадей кусков.
    • Прямоугольник $HBCK$ состоит из кусков $HBCD$ и $bigtriangleup DCK$. Площадь также “сумма кусков”.
    • Треугольники $bigtriangleup ABH$ и   $bigtriangleup DCK$ одинаковые. Значит, параллелограмм и прямоугольник равновеликие.
    • Площадь Параллелограмма $ABCD$ так же, как прямоугольника $HBCD$ равна высота на основание.
    • $S_{ABCD}=S_{ABH}+S_{HBCD}=S_{HBCD}+S_{DCK}=S_{HBCK}=BHcdot HK=ABcdotsin angle BADcdot AD=7cdotfrac{1}{2}cdot10$

                          

    Теорема “о площади параллелограмма и треугольника через синус угла”:

    1. Площадь параллелограмма     равна   произведению   сторон   на синус угла параллелограмма:
    2. Формулы                  $S=acdot bcdotsin angle BAD$                    $S_{ABCD}=ABcdot BCcdotsin D$
    3. Площадь треугольника     равна     половине произведения   сторон треугольника   на   синус угла между ними.
    4. Формулы                   $S=frac{1}{2}cdot acdot bcdotsin angle C$                    $S_{bigtriangleup ABC}=frac{1}{2}cdot ABcdot BCcdotsin angle CBA$

    Площадь треугольника также легко получить через площадь параллелограмма, равновеликого с двумя треугольниками, приставленными друг к другу по диагонали. Тогда площадь одного треугольника будет равна половине площади параллелограмма с тем же основанием и с той же высотой.

    Задача 2:        Диагонали четырехугольника делятся точкой пересечения на отрезки $3$,   $5$ и $6$,   $7$ . Синус угла между диагоналями $0,2$.     Найти площади треугольников и всего четырехугольника.

    • Дано:   $BO=3$     $OD=5$    $CO=6$    $AO=7$ … угол между   $sinangle AOB=0,2$.     Найти:    $S_{ABCD}=?$.
    • Решение:       Диагонали делят четырехугольник на 4 треугольника.    Площадь = сумме 4-х площадей.
    • Аддитивность:         $S_{ABCD}=S_{bigtriangleup AOB}+S_{bigtriangleup BOC}+S_{bigtriangleup COD}+S_{bigtriangleup AOD}$.        
    • Площадь одного из них по формуле:    $S_{bigtriangleup AOB}=frac{1}{2}cdot AOcdot OBcdot sin angle AOB=frac{1}{2}cdot 7 cdot 3cdot 0,2=2,1$
    • Каковы синусы остальных углов? Свойство: Синусы смежных углов равны:   $sinangle BOC=sinangle COD=sinangle AOD=0,2$
    • Тогда, площади других треугольников   $frac{1}{2}cdot 3 cdot 6cdot 0,2=1,8$         $frac{1}{2}cdot 6 cdot 5cdot 0,2=3$              $frac{1}{2}cdot 5 cdot 7cdot 0,2=3,5$   
    • Площадь четырехугольника равна сумме этих площадей    Ответ:     $S_{ABCD}=2,1+1,8+3+3,5=10,4$

    Теоретически, по-другому:      Распишем получение площади   $S_{ABCD}$   в буквах, без числовых значений:

    • $frac{1}{2}cdot OAcdot OBcdot sin angle AOB+frac{1}{2}cdot OBcdot OCcdot sin angle AOB+frac{1}{2}cdot OCcdot ODcdot sin angle AOB+frac{1}{2}cdot ODcdot OAcdot sin angle AOB$
    • Вынос за скобки множителей   $S_{ABCD}=frac{1}{2}cdot sin angle AOBcdot left(OAcdot OB+OBcdot OC+OCcdot OD+ODcdot OAright)$
    • $S_{ABCD}=frac{1}{2}cdot sin angle AOBcdot left(OBcdotleft(OA+OCright)+ODcdotleft(OA+OCright)right)=frac{1}{2}cdot sin angle AOBcdot AC cdot (OB+OD)$
    • Получаем   $S_{ABCD}=frac{1}{2}cdot AC cdot BDcdot sin angle AOB$    $Rightarrow$   $S_{ABCD}=frac{1}{2}cdot (7+6) cdot (3+5)cdot 0,2=13cdot 0,8=10,4$

                 

    Задача 3:        В треугольнике известны стороны     $AB=10$ ,      $BC=12$ и угол $angle ABC=30$ . Точка $M$ делит сторону $AB$ в отношении 3 : 5, а точка   $K$ делит сторону $BC$ в отношении 2 : 3. Найти площади и отношение площадей треугольников   $ABK$ и   $MBC$.

    • Дано:   $AB=10$,     $BC=12$,     $frac{AM}{MB}=frac{3}{5}$,       $frac{BK}{KC}=frac{2}{3}$,     $angle ABC=30$.           Найти:          $frac{S_{bigtriangleup ABK}}{S_{bigtriangleup MBC}}=?$
    • Точка делит отрезок в известном соотношении. Находим части как систему уравнений   $frac{x}{y}=?$      $x+y=?$
    • $frac{AM}{MB}=frac{3}{5}$,     аддитивность        $AM+MB=AB=10$       $Rightarrow$    $frac{AM}{AB}=frac{3}{3+5}$ $Rightarrow$    $AM=frac{15}{4}$,   $MB=frac{25}{4}$
    • $frac{BK}{KC}=frac{2}{3}$,     $BK+KC=12$    из свойств пропорций    $BK=frac{24}{5}$,     $KC=frac{36}{5}$
    • Найдем площадь через синус     $S_{bigtriangleup ABK}=frac{1}{2}cdot AB cdot BK cdot sin angle ABC = frac{1}{2}cdot 10 cdot frac{24}{5} cdot sin 30= 24 cdot 0,5=12$
    • В треугольнике $MBC$ тот же угол,    $S_{bigtriangleup MBC}=frac{1}{2}cdot MB cdot BC cdot sin angle ABC = frac{1}{2}cdot frac{25}{4} cdot 12 cdot 0,5=frac{75}{4}$         
    • отношение площадей треугольников     $frac{S_{bigtriangleup ABK}}{S_{bigtriangleup MBC}}=frac{12}{frac{75}{4}}=frac{16}{25}$                Ответ:         $frac{16}{25}$

    Замечание, продолжение:   Можно ли найти отношение площадей при неизвестных значениях сторон и угла?

    • Зная лишь как делят точки $M$ и   $K$ стороны треугольника, на какие пропорции ?!
    • Дано только   $frac{AM}{MB}=frac{3}{5}$,       $frac{BK}{KC}=frac{2}{3}$.    Выразим отрезки через стороны    $AB$ и     $BC$.
    • Выразим площади    $S_{bigtriangleup ABK}$ ,   $S_{bigtriangleup MBC}$ также через стороны $AB$ и     $BC$ и угол $angle ABC$.
    • Составим отношение площадей, выразим через стороны и угол. Что получится? Что можно сделать, ?

    Теорема “о площади четырехугольника через диагонали и синус угла”:

    1. Площадь четырехугольника     равна   половине произведения   диагоналей   на синус угла между ними:
    2. Формулы                  $S=frac{1}{2}cdot d_1 cdot d_2 cdotsin angle alpha$                    $S_{ABCD}=frac{1}{2}cdot AC cdot BDcdot sin angle AOB$
    3. Площадь   ромба     равна     половине произведения   диагоналей.         … диагонали перпендикулярны!
    4. Формулы             $S=frac{1}{2}cdot d_1 cdot d_2=frac{1}{2}cdot AC cdot BD$            $angle AOB=90$          $sin angle AOB=1$

    Формулы площади треугольника:   

    $S=frac{acdot h_a}{2}=frac{acdot bcdotsin C}{2}$                             $S=frac{bcdot h_b}{2}=frac{bcdot ccdotsin A}{2}$                             $S=frac{ccdot h_c}{2}=frac{ccdot acdotsin B}{2}$.

    $sin A=frac{h_b}{c}=frac{h_c}{b}$                            $sin B=frac{h_a}{c}=frac{h_c}{a}$                         $sin C=frac{h_b}{a}=frac{h_a}{b}$.      

    $S_{ABC}=frac{1}{2}cdot ACcdot BCcdotsin C$              $S_{ABC}=frac{1}{2}cdot ABcdot BCcdotsin B$                 $S_{ABC}=frac{1}{2}cdot ACcdot ABcdotsin A$ .

                

    Задача 4:     В прямоугольнике диагонали $10$ и угол между ними $30$. Найти площадь.

    • Дано:    $ABCD$    – прямоугольник ,    $AC=10$   ,    $angle AOB=30$   Найти:            $S_{ABCD}$ .
    • Решение:       В прямоугольнике диагонали равны и пересекаются по середине    $AO=OB=5$     
    • $bigtriangleup AOB$     и     $bigtriangleup COD$     равные    $Rightarrow$     $S_1=S_3$        ;
    • $bigtriangleup BOC$     и     $bigtriangleup AOD$     равные    $Rightarrow$     $S_2=S_4$      .
    • Смежные, $angle BOC=180-angle AOB=150$. Найдем отношение     $frac{S_1}{S_2}=frac{frac{1}{2}AOcdot OBcdotsin30}{frac{1}{2}BOcdot OCcdotsin150}$
    • $sin30=sinleft(180-30right)=sin150$.       тогда      $frac{S_1}{S_2}=frac{frac{1}{2}cdot5cdot5cdotsin150}{frac{1}{2}cdot5cdot5cdotsin150}=1$     Значит,      $S_1=S_2$
    • Аналогично:       $frac{S_3}{S_4}=frac{frac{1}{2}DOcdot OCcdotsin30}{frac{1}{2}AOcdot ODcdotsin150} =1$       $Rightarrow$      $S_3=S_4$,     площади равные.
    • Диагонали рассекают прямоугольник на   четыре равновеликих: треугольника         $S_1=S_2=S_3=S_4$ .
    • … тогда, по свойству аддитивности площадей          $S_1=S_2=S_3=S_4=frac{1}{4}S_{ABCD}$ .
    • $S_{AOB}=S_1=frac{1}{2}AOcdot OBcdot sin 30=frac{1}{2}cdot 5cdot 5cdot frac{1}{2}=frac{25}{4}$        $Rightarrow$        $S_{ABCD}=4cdotfrac{25}{4}$
    • Найдя площадь АОВ, нашли площадь прямоугольника умножением на 4.   Ответ:        $S_{ABCD}=25$

             

    Задача 5:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

    • Дано:    ромб $ABCD$ , $BD=13$,    высота $EB=12$   ,   Найти:            $S_{ABCD}$ .
    • Решение:        прямоугольный $bigtriangleup BED$,    подобен тем, на которые ромб делится диагоналями:        
    • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Одинаковый “состав” углов. Все прямоугольные,
    • Прямоугольный    $bigtriangleup BED$,   по Пифагору выразим катет       $DE=sqrt{BD^2-BE^2}=5$
    • Диагонали в ромбе делятся пополам:       $BO=OD=frac{BD}{2}=6,5$             $AO=frac{AC}{2}$              $AC=2cdot AO$
    • Для нахождения площади ромба нам нужно найти вторую диагональ.
    • $bigtriangleup BED sim bigtriangleup AOD$         $Rightarrow$         $frac{AO}{BE}=frac{OD}{ED}$        $Rightarrow$           $AO=frac{ODcdot BE}{ED}=frac{6,5cdot 12}{5}=15,6$         $AC=2cdot AO=31,2$
    • Ответ: Площадь ромба через диагонали:     $S_{ABCD}=frac{1}{2}cdot ACcdot BD=0,5cdot 31,2cdot13=202,8$

         

    Задача 6.       Площадь равнобедренного треугольника равна $100$   , а угол при вершине   $30^o$    1) Найти его боковые стороны .     2)   Найти тригонометрию $15^o$   

    • Решение:       1)   Известны площадь и угол,   значит используем   формулу   площади через синус   $30^o$ .     
    • Пусть боковая   сторона $a$   ,    $S=frac{1}{2}acdot acdotsin30$        ,     тогда    $100=frac{1}{2}a^2cdotsin30$     $Leftrightarrow$     $100=frac{1}{2}a^2cdotfrac{1}{2}$     $Rightarrow$      
    • $a=sqrt{400}=20$                     Ответ:       $a=20$
    • 2)    По теореме косинусов найдем основание     $c=sqrt{a^2+a^2-2cdot acdot acdotfrac{sqrt{3}}{2}}=asqrt{2-sqrt{3}}$
    • Из вершины равнобедренного угла проведем биссектрису к   основанию.   По свойству равнобедренности
    • она будет и высотой    $h$   (треугольник поделится на 2 прямоугольных с углами 15 градусов) и медианой,
    • а значит основание   поделится пополам ,    как и угол 30 у вершины   поделится   по   15 градусов.
    • По прямоугольнему треугольнику   (половинка):      $sin15=frac{0,5cdot c}{a}=frac{0,5cdot acdotsqrt{2-sqrt{3}}}{a}=frac{sqrt{2-sqrt{3}}}{2}$
    • Площадь через основание    $S=frac{1}{2}cdot ccdot h$,     найдем высоту      $h=frac{2cdot S}{c}=frac{2cdot0,5cdot a^2cdotsin30}{acdotsqrt{2-sqrt{3}}}=frac{a}{2cdotsqrt{2-sqrt{3}}}$
    • В прямоугольном треугольнике стороны $h$,   $frac{c}{2}$,   $a$.   Тогда     $cos15=frac{h}{a}=frac{frac{a}{2cdotsqrt{2-sqrt{3}}}}{a}=frac{1}{2cdotsqrt{2-sqrt{3}}}$

    Интерактивные Упражнения

    Теорема синусов. Доказательство

    Тебе уже известно, что около каждого треугольника можно описать окружность. Мы это и сделаем. А потом проведём диаметр ( displaystyle BO).

    Пусть этот диаметр пересекает окружность в точке ( displaystyle K). Давай рассмотрим ( displaystyle Delta BKC).

    Что же это за треугольник?

    Ну, конечно же, прямоугольный, ведь в ( displaystyle Delta BKC) угол ( displaystyle C) опирается на диаметр ( displaystyle BKquadRightarrow quadangle C=90{}^circ ) (вспоминаем тему «Вписанный и центральный угол окружности»).

    Но и кроме того, ( displaystyle angle K) в ( displaystyle Delta BKC) равен ( displaystyle angle A) в ( displaystyle Delta ABC), потому что эти углы опираются на одну дугу ( displaystyle BC) (опять вспоминаем ту же тему).

    А теперь просто запишем выражение для синуса ( displaystyle angle K) в прямоугольном ( displaystyle Delta BKC) ( displaystyle sin angle K=frac{a}{BK}).

    Но ведь ( displaystyle BK) – диаметр ( displaystyle quadRightarrowquad BK=2R), и ( displaystyle sin angle K=frac{a}{2R}).

    Вспомним, что ( displaystyle angle K=angle A) и получим ( displaystyle sin angle A=frac{a}{2R}quadRightarrowquad frac{a}{sin angle A}=2R).

    Вот и всё! Провели одну линию, рассмотрели один прямоугольный треугольник – и доказательство готово.

    Но как же быть с углами ( displaystyle B) и ( displaystyle C)? – спросишь ты.

    Да, точно также. Давай рассмотрим ( displaystyle angle B).

    Теперь проведём диаметр ( displaystyle AO) и соединим точки ( displaystyle K) и ( displaystyle C).

    Как-то тут немного по-другому получается, ты заметил? ( displaystyle Delta AKC), конечно, прямоугольный, так как ( displaystyle angle C) опирается на диаметр ( displaystyle AK).

    Но теперь ( displaystyle angle K+angle B=180{}^circ ), потому что четырехугольник ( displaystyle ABCK) – вписанный. (Надеюсь, ты ещё помнишь, что для угла ( displaystyle A) у нас было ( displaystyle angle A=angle K).) В чём же дело?

    Ну, просто ( displaystyle angle B) – тупой, поэтому и получилось такое различие. Но, к счастью, для теоремы синусов это различие не играет роли. Сейчас мы в этом убедимся.

    Итак, запишем выражение для синуса ( displaystyle angle K) в прямоугольном ( displaystyle Delta AKC).

    ( displaystyle sin angle K=frac{b}{AK}); то есть ( displaystyle sin angle K=frac{b}{2R})

    Но ( displaystyle angle B=180{}^circ -angle KRightarrow sin angle B=sin angle K) (читаем или вспоминаем формулы приведения в тригонометрии.)

    Значит, ( displaystyle sin angle B=frac{b}{2R}quadRightarrowquad frac{b}{sin angle B}=2R).

    Ну вот, мы рассмотрели и острый, и тупой угол. Если ты все ещё беспокоишься об угле ( displaystyle C), то проделай все те же действия самостоятельно и убедись, что все получается.

    Обрати внимание, что мы доказали «четверное равенство».

    ( displaystyle frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R)

    в такой последовательности:

    ( displaystyle left{ begin{array}{l}frac{a}{sin angle A}=2R\frac{b}{sin angle B}=2Rhspace{13mm}Rightarrowquad frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R\frac{c}{sin angle C}=2Rend{array} right.)

    А теперь внимание! Обсудим пользу этой теоремы

    Понимаешь, теорема синусов – единственный разумный способ для нахождения радиуса описанной окружности.

    Почему я так говорю? А ты вспомни сам: ну где ещё в формулах участвует ( displaystyle R)?! Возможно, правда, ты знаком с формулой ( displaystyle S=frac{abc}{4R}), то есть ( displaystyle R=frac{abc}{4S}quad), но!

    Давай – ка сравним:

    Из теоремы синусов: ( displaystyle R=frac{a}{2sin angle A})

    Из формулы площади: ( displaystyle R=frac{abc}{4S}).

    Чувствуешь разницу? В первой формуле нужно знать только одну сторону и один угол, а во второй формуле – все стороны, да ещё и площадь! Ну и какую формулу легче применить?

    А кроме того, открою тебе маленький секрет: формула ( displaystyle S=frac{abc}{4R}) как раз и доказывается именно с применением теоремы синусов.

    Чтобы убедиться в этом, читай темы «Площадь круга», «Площадь треугольника и четырехугольника».

    Итак, теорема синусов бывает полезна и для нахождения синуса какого – то угла, если известны две стороны и один угол.

    Но в основном теорема синусов – главный инструмент для нахождения радиуса описанной окружности.

    Запомни это очень хорошо!

    Задания

    Версия для печати и копирования в MS Word

    Тип 12 № 311543

    i

    Площадь любого выпуклого четырехугольника можно вычислять по формуле S= дробь: числитель: 1, знаменатель: 2 конец дроби d_1d_2 синус альфа , где d_1, d_2  — длины его диагоналей, а  альфа   угол между ними. Вычислите  синус альфа , если S=21, d_1=7, d_2=15.

    Спрятать решение

    Решение.

    Выразим  синус альфа :

     синус альфа = дробь: числитель: 2S, знаменатель: d_1d_2 конец дроби .

    Подставляя, получаем:

     синус альфа = дробь: числитель: 42, знаменатель: 105 конец дроби =0,4.

    Ответ: 0,4.

    Источник: ГИА-2012. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 1(2 вар)

    Раздел кодификатора ФИПИ: 1.3 Тек­сто­вые за­да­чи.

    Спрятать решение

    ·

    Помощь

    Добавить комментарий