Sin угла как найти градусную меру угла

Таблица синусов, найти угол синуса

Тригонометрические функции: синус угла

Зачем надо знать значение синуса? Представим ситуацию: известен один из углов (А=60⁰), вписанный в прямоугольный треугольник, и длина гипотенузы. Больше нет никакой информации. Надо узнать вычислить дальний к углу (А) катет. Как поступить?

Ситуация очень простая: смотрим таблицы Брадиса, находим значение sin(60⁰)=0,866, подставляем данные в формулу тригонометрической функции и решаем линейное уравнение. Из школьного курса известно, что sin угла – это отношение дальнего к углу, в данном случае А=60⁰, катета к гипотенузе.

Произвести все расчеты проще, если воспользоваться онлайн калькулятором на сайте. Таким образом можно вычислить длину любой из сторон прямоугольного треугольника. Знаем угол – значит, знаем sin этого угла. И наоборот, знаем sin – найти угол не составит проблемы.

Таблица синусов 0°- 360°

Sin(1°) 0.0175
Sin(2°) 0.0349
Sin(3°) 0.0523
Sin(4°) 0.0698
Sin(5°) 0.0872
Sin(6°) 0.1045
Sin(7°) 0.1219
Sin(8°) 0.1392
Sin(9°) 0.1564
Sin(10°) 0.1736
Sin(11°) 0.1908
Sin(12°) 0.2079
Sin(13°) 0.225
Sin(14°) 0.2419
Sin(15°) 0.2588
Sin(16°) 0.2756
Sin(17°) 0.2924
Sin(18°) 0.309
Sin(19°) 0.3256
Sin(20°) 0.342
Sin(21°) 0.3584
Sin(22°) 0.3746
Sin(23°) 0.3907
Sin(24°) 0.4067
Sin(25°) 0.4226
Sin(26°) 0.4384
Sin(27°) 0.454
Sin(28°) 0.4695
Sin(29°) 0.4848
Sin(30°) 0.5
Sin(31°) 0.515
Sin(32°) 0.5299
Sin(33°) 0.5446
Sin(34°) 0.5592
Sin(35°) 0.5736
Sin(36°) 0.5878
Sin(37°) 0.6018
Sin(38°) 0.6157
Sin(39°) 0.6293
Sin(40°) 0.6428
Sin(41°) 0.6561
Sin(42°) 0.6691
Sin(43°) 0.682
Sin(44°) 0.6947
Sin(45°) 0.7071
Sin(46°) 0.7193
Sin(47°) 0.7314
Sin(48°) 0.7431
Sin(49°) 0.7547
Sin(50°) 0.766
Sin(51°) 0.7771
Sin(52°) 0.788
Sin(53°) 0.7986
Sin(54°) 0.809
Sin(55°) 0.8192
Sin(56°) 0.829
Sin(57°) 0.8387
Sin(58°) 0.848
Sin(59°) 0.8572
Sin(60°) 0.866
Sin(61°) 0.8746
Sin(62°) 0.8829
Sin(63°) 0.891
Sin(64°) 0.8988
Sin(65°) 0.9063
Sin(66°) 0.9135
Sin(67°) 0.9205
Sin(68°) 0.9272
Sin(69°) 0.9336
Sin(70°) 0.9397
Sin(71°) 0.9455
Sin(72°) 0.9511
Sin(73°) 0.9563
Sin(74°) 0.9613
Sin(75°) 0.9659
Sin(76°) 0.9703
Sin(77°) 0.9744
Sin(78°) 0.9781
Sin(79°) 0.9816
Sin(80°) 0.9848
Sin(81°) 0.9877
Sin(82°) 0.9903
Sin(83°) 0.9925
Sin(84°) 0.9945
Sin(85°) 0.9962
Sin(86°) 0.9976
Sin(87°) 0.9986
Sin(88°) 0.9994
Sin(89°) 0.9998
Sin(90°) 1
Sin(91°) 0.9998
Sin(92°) 0.9994
Sin(93°) 0.9986
Sin(94°) 0.9976
Sin(95°) 0.9962
Sin(96°) 0.9945
Sin(97°) 0.9925
Sin(98°) 0.9903
Sin(99°) 0.9877
Sin(100°) 0.9848
Sin(101°) 0.9816
Sin(102°) 0.9781
Sin(103°) 0.9744
Sin(104°) 0.9703
Sin(105°) 0.9659
Sin(106°) 0.9613
Sin(107°) 0.9563
Sin(108°) 0.9511
Sin(109°) 0.9455
Sin(110°) 0.9397
Sin(111°) 0.9336
Sin(112°) 0.9272
Sin(113°) 0.9205
Sin(114°) 0.9135
Sin(115°) 0.9063
Sin(116°) 0.8988
Sin(117°) 0.891
Sin(118°) 0.8829
Sin(119°) 0.8746
Sin(120°) 0.866
Sin(121°) 0.8572
Sin(122°) 0.848
Sin(123°) 0.8387
Sin(124°) 0.829
Sin(125°) 0.8192
Sin(126°) 0.809
Sin(127°) 0.7986
Sin(128°) 0.788
Sin(129°) 0.7771
Sin(130°) 0.766
Sin(131°) 0.7547
Sin(132°) 0.7431
Sin(133°) 0.7314
Sin(134°) 0.7193
Sin(135°) 0.7071
Sin(136°) 0.6947
Sin(137°) 0.682
Sin(138°) 0.6691
Sin(139°) 0.6561
Sin(140°) 0.6428
Sin(141°) 0.6293
Sin(142°) 0.6157
Sin(143°) 0.6018
Sin(144°) 0.5878
Sin(145°) 0.5736
Sin(146°) 0.5592
Sin(147°) 0.5446
Sin(148°) 0.5299
Sin(149°) 0.515
Sin(150°) 0.5
Sin(151°) 0.4848
Sin(152°) 0.4695
Sin(153°) 0.454
Sin(154°) 0.4384
Sin(155°) 0.4226
Sin(156°) 0.4067
Sin(157°) 0.3907
Sin(158°) 0.3746
Sin(159°) 0.3584
Sin(160°) 0.342
Sin(161°) 0.3256
Sin(162°) 0.309
Sin(163°) 0.2924
Sin(164°) 0.2756
Sin(165°) 0.2588
Sin(166°) 0.2419
Sin(167°) 0.225
Sin(168°) 0.2079
Sin(169°) 0.1908
Sin(170°) 0.1736
Sin(171°) 0.1564
Sin(172°) 0.1392
Sin(173°) 0.1219
Sin(174°) 0.1045
Sin(175°) 0.0872
Sin(176°) 0.0698
Sin(177°) 0.0523
Sin(178°) 0.0349
Sin(179°) 0.0175
Sin(180°) 0
Sin(181°) -0.0175
Sin(182°) -0.0349
Sin(183°) -0.0523
Sin(184°) -0.0698
Sin(185°) -0.0872
Sin(186°) -0.1045
Sin(187°) -0.1219
Sin(188°) -0.1392
Sin(189°) -0.1564
Sin(190°) -0.1736
Sin(191°) -0.1908
Sin(192°) -0.2079
Sin(193°) -0.225
Sin(194°) -0.2419
Sin(195°) -0.2588
Sin(196°) -0.2756
Sin(197°) -0.2924
Sin(198°) -0.309
Sin(199°) -0.3256
Sin(200°) -0.342
Sin(201°) -0.3584
Sin(202°) -0.3746
Sin(203°) -0.3907
Sin(204°) -0.4067
Sin(205°) -0.4226
Sin(206°) -0.4384
Sin(207°) -0.454
Sin(208°) -0.4695
Sin(209°) -0.4848
Sin(210°) -0.5
Sin(211°) -0.515
Sin(212°) -0.5299
Sin(213°) -0.5446
Sin(214°) -0.5592
Sin(215°) -0.5736
Sin(216°) -0.5878
Sin(217°) -0.6018
Sin(218°) -0.6157
Sin(219°) -0.6293
Sin(220°) -0.6428
Sin(221°) -0.6561
Sin(222°) -0.6691
Sin(223°) -0.682
Sin(224°) -0.6947
Sin(225°) -0.7071
Sin(226°) -0.7193
Sin(227°) -0.7314
Sin(228°) -0.7431
Sin(229°) -0.7547
Sin(230°) -0.766
Sin(231°) -0.7771
Sin(232°) -0.788
Sin(233°) -0.7986
Sin(234°) -0.809
Sin(235°) -0.8192
Sin(236°) -0.829
Sin(237°) -0.8387
Sin(238°) -0.848
Sin(239°) -0.8572
Sin(240°) -0.866
Sin(241°) -0.8746
Sin(242°) -0.8829
Sin(243°) -0.891
Sin(244°) -0.8988
Sin(245°) -0.9063
Sin(246°) -0.9135
Sin(247°) -0.9205
Sin(248°) -0.9272
Sin(249°) -0.9336
Sin(250°) -0.9397
Sin(251°) -0.9455
Sin(252°) -0.9511
Sin(253°) -0.9563
Sin(254°) -0.9613
Sin(255°) -0.9659
Sin(256°) -0.9703
Sin(257°) -0.9744
Sin(258°) -0.9781
Sin(259°) -0.9816
Sin(260°) -0.9848
Sin(261°) -0.9877
Sin(262°) -0.9903
Sin(263°) -0.9925
Sin(264°) -0.9945
Sin(265°) -0.9962
Sin(266°) -0.9976
Sin(267°) -0.9986
Sin(268°) -0.9994
Sin(269°) -0.9998
Sin(270°) -1
Sin(271°) -0.9998
Sin(272°) -0.9994
Sin(273°) -0.9986
Sin(274°) -0.9976
Sin(275°) -0.9962
Sin(276°) -0.9945
Sin(277°) -0.9925
Sin(278°) -0.9903
Sin(279°) -0.9877
Sin(280°) -0.9848
Sin(281°) -0.9816
Sin(282°) -0.9781
Sin(283°) -0.9744
Sin(284°) -0.9703
Sin(285°) -0.9659
Sin(286°) -0.9613
Sin(287°) -0.9563
Sin(288°) -0.9511
Sin(289°) -0.9455
Sin(290°) -0.9397
Sin(291°) -0.9336
Sin(292°) -0.9272
Sin(293°) -0.9205
Sin(294°) -0.9135
Sin(295°) -0.9063
Sin(296°) -0.8988
Sin(297°) -0.891
Sin(298°) -0.8829
Sin(299°) -0.8746
Sin(300°) -0.866
Sin(301°) -0.8572
Sin(302°) -0.848
Sin(303°) -0.8387
Sin(304°) -0.829
Sin(305°) -0.8192
Sin(306°) -0.809
Sin(307°) -0.7986
Sin(308°) -0.788
Sin(309°) -0.7771
Sin(310°) -0.766
Sin(311°) -0.7547
Sin(312°) -0.7431
Sin(313°) -0.7314
Sin(314°) -0.7193
Sin(315°) -0.7071
Sin(316°) -0.6947
Sin(317°) -0.682
Sin(318°) -0.6691
Sin(319°) -0.6561
Sin(320°) -0.6428
Sin(321°) -0.6293
Sin(322°) -0.6157
Sin(323°) -0.6018
Sin(324°) -0.5878
Sin(325°) -0.5736
Sin(326°) -0.5592
Sin(327°) -0.5446
Sin(328°) -0.5299
Sin(329°) -0.515
Sin(330°) -0.5
Sin(331°) -0.4848
Sin(332°) -0.4695
Sin(333°) -0.454
Sin(334°) -0.4384
Sin(335°) -0.4226
Sin(336°) -0.4067
Sin(337°) -0.3907
Sin(338°) -0.3746
Sin(339°) -0.3584
Sin(340°) -0.342
Sin(341°) -0.3256
Sin(342°) -0.309
Sin(343°) -0.2924
Sin(344°) -0.2756
Sin(345°) -0.2588
Sin(346°) -0.2419
Sin(347°) -0.225
Sin(348°) -0.2079
Sin(349°) -0.1908
Sin(350°) -0.1736
Sin(351°) -0.1564
Sin(352°) -0.1392
Sin(353°) -0.1219
Sin(354°) -0.1045
Sin(355°) -0.0872
Sin(356°) -0.0698
Sin(357°) -0.0523
Sin(358°) -0.0349
Sin(359°) -0.0175
Sin(360°) -0

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Как найти угол,зная синус либо косинус этого угла?



Знаток

(334),
закрыт



14 лет назад

Наталья

Гений

(53571)


14 лет назад

Для нахождения угла по его синусу, косинусу и т. д. используются так называемые аркфункции: арксинус, арккосинус и т. д. Их обозначают arcsin a, arccos a и т. д.
На Вашем калькуляторе над кнопками с синусом и косинусом есть надписи: sin в степени -1 и cos в степени -1.Это создатели калькулятора так кратко обозначили аркфункции. Чтобы ими воспользоваться, надо набрать число ( например, 0,4965), нажать клавишу SHIFT или 2nd, а затем клавишу, над которой написано cos в степени -1 и равно. У Вас получится угол, косинус которого равен 0,4965.

Понятно?

Sleeper

Знаток

(267)


5 лет назад

Здравствуйте! Я тоже столкнулся с аналогичной проблемой ( учусь программированию языку MQL4), и вот Европа вся сидит на радианах, а нам углы подавай. Вот, я зашел в справочник и там ка-раз все функции в радианах, я сделал свои функции перевода углов в радианы и радианы в углы (они очень просты и не какой сложности), и вот только что написал как по катету и гипотенузе находить косинус, и теперь мне надо найти по косинусу угол, то есть, зная катет и гипотенузу я буду знать угол и наоборот. И хочу использовать в своих расчетах функцию арккосинус которая вернет мне радиану и которую я своей (ранее созданной функцией), переведу в угол. Вот, по ходу и все. Логика понятна?! До свидание. Извините: и совсем не знаю зачем она Вам?! И выпалил, как из пушки – весь свой негатив на Европу. Да будет так – они нам не товарищи. А так я только что был на каком-то сайте и там забиваешь значения и он тебе выводит ответ. Сайты где-то в самом начале поисковиков.

Дмитрий Маштаков

Ученик

(182)


2 года назад

Тут вопрос точности – зная только косинус угла, вы не сможете уверенно вычислить угол, если этот угол маленький. Также и знание синуса вряд ли поможет, если угол близок к 90 градусам. Но если вы знаете одновременно и синус и косинус угла, то
Вот подпрограмма, которая сделает это –

Public Function Usc() As Integer ‘
Dim A As Single, U As Integer
If Abs(Caa) > Abs(Saa) Then
A = Atn(Saa / Caa) * 57.29578
If Caa < 0 Then If Saa > 0 Then A = 180 + A Else A = A – 180
Else: A = Atn(Caa / Saa) * 57.29578
If Saa < 0 Then A = -90 – A Else A = 90 – A
End If: U = A
Usc = U
End Function
‘========
здесь Caa и Saa – косинус и синус, а U это искомое значение угла.

Gras Deus

Профи

(658)


7 месяцев назад

Челу на 2 сообщения выше: хошь прикол? Sin(x)² + Cos(x)² = 1 а знаешь, что это значит? Правильно, это очень простое уравнение, решение которого можно вбить даже в просто компьютер

Синус угла. Таблица синусов.

Синус угла через градусы, минуты и секунды

Синус угла через десятичную запись угла

Как найти угол зная синус этого угла

У синуса есть обратная тригонометрическая функция – arcsin(y)=x

sin(arcsin(y))=y

Пример sin(30°) = 1/2; arcsin(1/2) = 30°

Рассчитать арксинус

Определение синуса

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Синус острого угла

sin(α) = BC/AB

sin(-α) = -sin(α)

Периодичность синуса

Функция y = sin(x) периодична, с периодом 2π

sin(α ± 2π) = sin(α)

Пример sin(5π) = sin(4π + π) = sin(π)

Таблица синусов в радианах

sin(0°) = 0sin(π/12) = sin(15°) = 0.2588190451sin(π/6) = sin(30°) = 0.5sin(π/4) = sin(45°) = 0.7071067812sin(π/3) = sin(60°) = 0.8660254038sin(5π/12) = sin(75°) = 0.9659258263sin(π/2) = sin(90°) = 1sin(7π/12) = sin(105°) = 0.9659258263sin(2π/3) = sin(120°) = 0.8660254038sin(3π/4) = sin(135°) = 0.7071067812sin(5π/6) = sin(150°) = 0.5sin(11π/12) = sin(165°) = 0.2588190451sin(π) = sin(180°) = 0sin(13π/12) = sin(195°) = -0.2588190451sin(7π/6) = sin(210°) = -0.5sin(5π/4) = sin(225°) = -0.7071067812sin(4π/3) = sin(240°) = -0.8660254038sin(17π/12) = sin(255°) = -0.9659258263sin(3π/2) = sin(270°) = -1sin(19π/12) = sin(285°) = -0.9659258263sin(5π/3) = sin(300°) = -0.8660254038sin(7π/4) = sin(315°) = -0.7071067812sin(11π/6) = sin(330°) = -0.5sin(23π/12) = sin(345°) = -0.2588190451

Таблица Брадиса синусы

sin(0) = 0 sin(120) = 0.8660254038 sin(240) = -0.8660254038
sin(1) = 0.01745240644 sin(121) = 0.8571673007 sin(241) = -0.8746197071
sin(2) = 0.0348994967 sin(122) = 0.8480480962 sin(242) = -0.8829475929
sin(3) = 0.05233595624 sin(123) = 0.8386705679 sin(243) = -0.8910065242
sin(4) = 0.06975647374 sin(124) = 0.8290375726 sin(244) = -0.8987940463
sin(5) = 0.08715574275 sin(125) = 0.8191520443 sin(245) = -0.906307787
sin(6) = 0.1045284633 sin(126) = 0.8090169944 sin(246) = -0.9135454576
sin(7) = 0.1218693434 sin(127) = 0.79863551 sin(247) = -0.9205048535
sin(8) = 0.139173101 sin(128) = 0.7880107536 sin(248) = -0.9271838546
sin(9) = 0.156434465 sin(129) = 0.7771459615 sin(249) = -0.9335804265
sin(10) = 0.1736481777 sin(130) = 0.7660444431 sin(250) = -0.9396926208
sin(11) = 0.1908089954 sin(131) = 0.7547095802 sin(251) = -0.9455185756
sin(12) = 0.2079116908 sin(132) = 0.7431448255 sin(252) = -0.9510565163
sin(13) = 0.2249510543 sin(133) = 0.7313537016 sin(253) = -0.956304756
sin(14) = 0.2419218956 sin(134) = 0.7193398003 sin(254) = -0.9612616959
sin(15) = 0.2588190451 sin(135) = 0.7071067812 sin(255) = -0.9659258263
sin(16) = 0.2756373558 sin(136) = 0.6946583705 sin(256) = -0.9702957263
sin(17) = 0.2923717047 sin(137) = 0.6819983601 sin(257) = -0.9743700648
sin(18) = 0.3090169944 sin(138) = 0.6691306064 sin(258) = -0.9781476007
sin(19) = 0.3255681545 sin(139) = 0.656059029 sin(259) = -0.9816271834
sin(20) = 0.3420201433 sin(140) = 0.6427876097 sin(260) = -0.984807753
sin(21) = 0.3583679495 sin(141) = 0.629320391 sin(261) = -0.9876883406
sin(22) = 0.3746065934 sin(142) = 0.6156614753 sin(262) = -0.9902680687
sin(23) = 0.3907311285 sin(143) = 0.6018150232 sin(263) = -0.9925461516
sin(24) = 0.4067366431 sin(144) = 0.5877852523 sin(264) = -0.9945218954
sin(25) = 0.4226182617 sin(145) = 0.5735764364 sin(265) = -0.9961946981
sin(26) = 0.4383711468 sin(146) = 0.5591929035 sin(266) = -0.9975640503
sin(27) = 0.4539904997 sin(147) = 0.544639035 sin(267) = -0.9986295348
sin(28) = 0.4694715628 sin(148) = 0.5299192642 sin(268) = -0.999390827
sin(29) = 0.4848096202 sin(149) = 0.5150380749 sin(269) = -0.9998476952
sin(30) = 0.5 sin(150) = 0.5 sin(270) = -1
sin(31) = 0.5150380749 sin(151) = 0.4848096202 sin(271) = -0.9998476952
sin(32) = 0.5299192642 sin(152) = 0.4694715628 sin(272) = -0.999390827
sin(33) = 0.544639035 sin(153) = 0.4539904997 sin(273) = -0.9986295348
sin(34) = 0.5591929035 sin(154) = 0.4383711468 sin(274) = -0.9975640503
sin(35) = 0.5735764364 sin(155) = 0.4226182617 sin(275) = -0.9961946981
sin(36) = 0.5877852523 sin(156) = 0.4067366431 sin(276) = -0.9945218954
sin(37) = 0.6018150232 sin(157) = 0.3907311285 sin(277) = -0.9925461516
sin(38) = 0.6156614753 sin(158) = 0.3746065934 sin(278) = -0.9902680687
sin(39) = 0.629320391 sin(159) = 0.3583679495 sin(279) = -0.9876883406
sin(40) = 0.6427876097 sin(160) = 0.3420201433 sin(280) = -0.984807753
sin(41) = 0.656059029 sin(161) = 0.3255681545 sin(281) = -0.9816271834
sin(42) = 0.6691306064 sin(162) = 0.3090169944 sin(282) = -0.9781476007
sin(43) = 0.6819983601 sin(163) = 0.2923717047 sin(283) = -0.9743700648
sin(44) = 0.6946583705 sin(164) = 0.2756373558 sin(284) = -0.9702957263
sin(45) = 0.7071067812 sin(165) = 0.2588190451 sin(285) = -0.9659258263
sin(46) = 0.7193398003 sin(166) = 0.2419218956 sin(286) = -0.9612616959
sin(47) = 0.7313537016 sin(167) = 0.2249510543 sin(287) = -0.956304756
sin(48) = 0.7431448255 sin(168) = 0.2079116908 sin(288) = -0.9510565163
sin(49) = 0.7547095802 sin(169) = 0.1908089954 sin(289) = -0.9455185756
sin(50) = 0.7660444431 sin(170) = 0.1736481777 sin(290) = -0.9396926208
sin(51) = 0.7771459615 sin(171) = 0.156434465 sin(291) = -0.9335804265
sin(52) = 0.7880107536 sin(172) = 0.139173101 sin(292) = -0.9271838546
sin(53) = 0.79863551 sin(173) = 0.1218693434 sin(293) = -0.9205048535
sin(54) = 0.8090169944 sin(174) = 0.1045284633 sin(294) = -0.9135454576
sin(55) = 0.8191520443 sin(175) = 0.08715574275 sin(295) = -0.906307787
sin(56) = 0.8290375726 sin(176) = 0.06975647374 sin(296) = -0.8987940463
sin(57) = 0.8386705679 sin(177) = 0.05233595624 sin(297) = -0.8910065242
sin(58) = 0.8480480962 sin(178) = 0.0348994967 sin(298) = -0.8829475929
sin(59) = 0.8571673007 sin(179) = 0.01745240644 sin(299) = -0.8746197071
sin(60) = 0.8660254038 sin(180) = 0 sin(300) = -0.8660254038
sin(61) = 0.8746197071 sin(181) = -0.01745240644 sin(301) = -0.8571673007
sin(62) = 0.8829475929 sin(182) = -0.0348994967 sin(302) = -0.8480480962
sin(63) = 0.8910065242 sin(183) = -0.05233595624 sin(303) = -0.8386705679
sin(64) = 0.8987940463 sin(184) = -0.06975647374 sin(304) = -0.8290375726
sin(65) = 0.906307787 sin(185) = -0.08715574275 sin(305) = -0.8191520443
sin(66) = 0.9135454576 sin(186) = -0.1045284633 sin(306) = -0.8090169944
sin(67) = 0.9205048535 sin(187) = -0.1218693434 sin(307) = -0.79863551
sin(68) = 0.9271838546 sin(188) = -0.139173101 sin(308) = -0.7880107536
sin(69) = 0.9335804265 sin(189) = -0.156434465 sin(309) = -0.7771459615
sin(70) = 0.9396926208 sin(190) = -0.1736481777 sin(310) = -0.7660444431
sin(71) = 0.9455185756 sin(191) = -0.1908089954 sin(311) = -0.7547095802
sin(72) = 0.9510565163 sin(192) = -0.2079116908 sin(312) = -0.7431448255
sin(73) = 0.956304756 sin(193) = -0.2249510543 sin(313) = -0.7313537016
sin(74) = 0.9612616959 sin(194) = -0.2419218956 sin(314) = -0.7193398003
sin(75) = 0.9659258263 sin(195) = -0.2588190451 sin(315) = -0.7071067812
sin(76) = 0.9702957263 sin(196) = -0.2756373558 sin(316) = -0.6946583705
sin(77) = 0.9743700648 sin(197) = -0.2923717047 sin(317) = -0.6819983601
sin(78) = 0.9781476007 sin(198) = -0.3090169944 sin(318) = -0.6691306064
sin(79) = 0.9816271834 sin(199) = -0.3255681545 sin(319) = -0.656059029
sin(80) = 0.984807753 sin(200) = -0.3420201433 sin(320) = -0.6427876097
sin(81) = 0.9876883406 sin(201) = -0.3583679495 sin(321) = -0.629320391
sin(82) = 0.9902680687 sin(202) = -0.3746065934 sin(322) = -0.6156614753
sin(83) = 0.9925461516 sin(203) = -0.3907311285 sin(323) = -0.6018150232
sin(84) = 0.9945218954 sin(204) = -0.4067366431 sin(324) = -0.5877852523
sin(85) = 0.9961946981 sin(205) = -0.4226182617 sin(325) = -0.5735764364
sin(86) = 0.9975640503 sin(206) = -0.4383711468 sin(326) = -0.5591929035
sin(87) = 0.9986295348 sin(207) = -0.4539904997 sin(327) = -0.544639035
sin(88) = 0.999390827 sin(208) = -0.4694715628 sin(328) = -0.5299192642
sin(89) = 0.9998476952 sin(209) = -0.4848096202 sin(329) = -0.5150380749
sin(90) = 1 sin(210) = -0.5 sin(330) = -0.5
sin(91) = 0.9998476952 sin(211) = -0.5150380749 sin(331) = -0.4848096202
sin(92) = 0.999390827 sin(212) = -0.5299192642 sin(332) = -0.4694715628
sin(93) = 0.9986295348 sin(213) = -0.544639035 sin(333) = -0.4539904997
sin(94) = 0.9975640503 sin(214) = -0.5591929035 sin(334) = -0.4383711468
sin(95) = 0.9961946981 sin(215) = -0.5735764364 sin(335) = -0.4226182617
sin(96) = 0.9945218954 sin(216) = -0.5877852523 sin(336) = -0.4067366431
sin(97) = 0.9925461516 sin(217) = -0.6018150232 sin(337) = -0.3907311285
sin(98) = 0.9902680687 sin(218) = -0.6156614753 sin(338) = -0.3746065934
sin(99) = 0.9876883406 sin(219) = -0.629320391 sin(339) = -0.3583679495
sin(100) = 0.984807753 sin(220) = -0.6427876097 sin(340) = -0.3420201433
sin(101) = 0.9816271834 sin(221) = -0.656059029 sin(341) = -0.3255681545
sin(102) = 0.9781476007 sin(222) = -0.6691306064 sin(342) = -0.3090169944
sin(103) = 0.9743700648 sin(223) = -0.6819983601 sin(343) = -0.2923717047
sin(104) = 0.9702957263 sin(224) = -0.6946583705 sin(344) = -0.2756373558
sin(105) = 0.9659258263 sin(225) = -0.7071067812 sin(345) = -0.2588190451
sin(106) = 0.9612616959 sin(226) = -0.7193398003 sin(346) = -0.2419218956
sin(107) = 0.956304756 sin(227) = -0.7313537016 sin(347) = -0.2249510543
sin(108) = 0.9510565163 sin(228) = -0.7431448255 sin(348) = -0.2079116908
sin(109) = 0.9455185756 sin(229) = -0.7547095802 sin(349) = -0.1908089954
sin(110) = 0.9396926208 sin(230) = -0.7660444431 sin(350) = -0.1736481777
sin(111) = 0.9335804265 sin(231) = -0.7771459615 sin(351) = -0.156434465
sin(112) = 0.9271838546 sin(232) = -0.7880107536 sin(352) = -0.139173101
sin(113) = 0.9205048535 sin(233) = -0.79863551 sin(353) = -0.1218693434
sin(114) = 0.9135454576 sin(234) = -0.8090169944 sin(354) = -0.1045284633
sin(115) = 0.906307787 sin(235) = -0.8191520443 sin(355) = -0.08715574275
sin(116) = 0.8987940463 sin(236) = -0.8290375726 sin(356) = -0.06975647374
sin(117) = 0.8910065242 sin(237) = -0.8386705679 sin(357) = -0.05233595624
sin(118) = 0.8829475929 sin(238) = -0.8480480962 sin(358) = -0.0348994967
sin(119) = 0.8746197071 sin(239) = -0.8571673007 sin(359) = -0.01745240644

Похожие калькуляторы

Как найти угол, если известен синус

Синус и косинус – пара основных тригонометрических функций, которые косвенно выражают величину угла в градусах. Всего таких функций существует больше десятка и среди них есть те, что позволяют по значению, например, синуса восстановить величину угла в градусах. Для практической работы с ними можно использовать программный калькулятор или сетевые сервисы.

Как найти угол, если известен синус

Инструкция

Используйте функцию арксинус для вычисления величины угла в градусах, если известно значение синуса этого угла. Если угол обозначить буквой α, в общем виде такое решение можно записать так: α = arcsin(sin(α)).

Если у вас есть возможность пользоваться компьютером, для практических расчетов проще всего использовать встроенный калькулятор операционной системы. В последних двух версиях ОС Windows его можно запустить так: нажмите клавишу Win, наберите буквы «ка» и надавите Enter. В более ранних выпусках этой ОС ссылку «Калькулятор» ищите в подразделе «Стандартные» раздела «Все программы» главного меню системы.

После запуска приложения переключите его в режим, позволяющий работать с тригонометрическими функциями. Сделать это можно выбором строки «Инженерный» в разделе «Вид» меню калькулятора или нажатием клавиш Alt + 2.

Введите значение синуса. По умолчанию в интерфейсе калькулятора нет кнопки для вычисления арксинуса. Чтобы получить возможность использовать эту функцию, вам нужно инвертировать значения кнопок по умолчанию – кликните по клавише Inv в окне программы. В более ранних версиях эту кнопку заменяет чекбокс с таким же обозначением – поставьте в нем отметку.

Кликните по кнопке вычисления синуса – после инвертирования функций ее обозначение сменится на sin⁻¹. Калькулятор рассчитает угол и отобразит его величину.

Можно использовать в расчетах и различные онлайн-сервисы, которых более чем достаточно в интернете. Например, перейдите на страницу http://planetcalc.com/326/, прокрутите ее немного вниз и в поле Input введите значение синуса. Для запуска процедуры вычисления здесь предназначена оранжевая кнопка с надписью Calculate – кликните по ней. Результат вычислений вы найдете в первой строке таблицы под этой кнопкой. Кроме арксинуса в ней отображаются и величины арккосинуса, арктангенса и арккотангенса введенного значения.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Косинус острого угла прямоугольного треугольника

Cos (α) острого угла прямоугольного треуголь

Cos (α) острого угла прямоугольного треугольника — это отношение прилежащего катета(AC) к гипотенузе(AB).Пимер:α = 40°; AC = 6,98см; AB = 9см. cos (40°) = 6,989   = 0,776

Угол (градусы) Синус (Sin) Косинус (Cos)
1
0.0174524064 0.9998476952
0.0348994967 0.9993908270
0.0523359562 0.9986295348
0.0697564737 0.9975640503
0.0871557427 0.9961946981
0.1045284633 0.9945218954
0.1218693434 0.9925461516
0.1391731010 0.9902680687
0.1564344650 0.9876883406
10° 0.1736481777 0.9848077530
11° 0.1908089954 0.9816271834
12° 0.2079116908 0.9781476007
13° 0.2249510543 0.9743700648
14° 0.2419218956 0.9702957263
15° 0.2588190451 0.9659258263
16° 0.2756373558 0.9612616959
17° 0.2923717047 0.9563047560
18° 0.3090169944 0.9510565163
19° 0.3255681545 0.9455185756
20° 0.3420201433 0.9396926208
21° 0.3583679495 0.9335804265
22° 0.3746065934 0.9271838546
23° 0.3907311285 0.9205048535
24° 0.4067366431 0.9135454576
25° 0.4226182617 0.9063077870
26° 0.4383711468 0.8987940463
27° 0.4539904997 0.8910065242
28° 0.4694715628 0.8829475929
29° 0.4848096202 0.8746197071
30° 0.5 0.8660254038
31° 0.5150380749 0.8571673007
32° 0.5299192642 0.8480480962
33° 0.5446390350 0.8386705679
34° 0.5591929035 0.8290375726
35° 0.5735764364 0.8191520443
36° 0.5877852523 0.8090169944
37° 0.6018150232 0.7986355100
38° 0.6156614753 0.7880107536
39° 0.6293203910 0.7771459615
40° 0.6427876097 0.7660444431
41° 0.6560590290 0.7547095802
42° 0.6691306064 0.7431448255
43° 0.6819983601 0.7313537016
44° 0.6946583705 0.7193398003
45° 0.7071067812 0.7071067812
46° 0.7193398003 0.6946583705
47° 0.7313537016 0.6819983601
48° 0.7431448255 0.6691306064
49° 0.7547095802 0.6560590290
50° 0.7660444431 0.6427876097
51° 0.7771459615 0.6293203910
52° 0.7880107536 0.6156614753
53° 0.7986355100 0.6018150232
54° 0.8090169944 0.5877852523
55° 0.8191520443 0.5735764364
56° 0.8290375726 0.5591929035
57° 0.8386705679 0.5446390350
58° 0.8480480962 0.5299192642
59° 0.8571673007 0.5150380749
60° 0.8660254038 0.5
61° 0.8746197071 0.4848096202
62° 0.8829475929 0.4694715628
63° 0.8910065242 0.4539904997
64° 0.8987940463 0.4383711468
65° 0.9063077870 0.4226182617
66° 0.9135454576 0.4067366431
67° 0.9205048535 0.3907311285
68° 0.9271838546 0.3746065934
69° 0.9335804265 0.3583679495
70° 0.9396926208 0.3420201433
71° 0.9455185756 0.3255681545
72° 0.9510565163 0.3090169944
73° 0.9563047560 0.2923717047
74° 0.9612616959 0.2756373558
75° 0.9659258263 0.2588190451
76° 0.9702957263 0.2419218956
77° 0.9743700648 0.2249510543
78° 0.9781476007 0.2079116908
79° 0.9816271834 0.1908089954
80° 0.9848077530 0.1736481777
81° 0.9876883406 0.1564344650
82° 0.9902680687 0.1391731010
83° 0.9925461516 0.1218693434
84° 0.9945218954 0.1045284633
85° 0.9961946981 0.0871557427
86° 0.9975640503 0.0697564737
87° 0.9986295348 0.0523359562
88° 0.9993908270 0.0348994967
89° 0.9998476952 0.0174524064
90° 1
91° 0.9998476952 -0.0174524064
92° 0.9993908270 -0.0348994967
93° 0.9986295348 -0.0523359562
94° 0.9975640503 -0.0697564737
95° 0.9961946981 -0.0871557427
96° 0.9945218954 -0.1045284633
97° 0.9925461516 -0.1218693434
98° 0.9902680687 -0.1391731010
99° 0.9876883406 -0.1564344650
100° 0.9848077530 -0.1736481777
101° 0.9816271834 -0.1908089954
102° 0.9781476007 -0.2079116908
103° 0.9743700648 -0.2249510543
104° 0.9702957263 -0.2419218956
105° 0.9659258263 -0.2588190451
106° 0.9612616959 -0.2756373558
107° 0.9563047560 -0.2923717047
108° 0.9510565163 -0.3090169944
109° 0.9455185756 -0.3255681545
110° 0.9396926208 -0.3420201433
111° 0.9335804265 -0.3583679495
112° 0.9271838546 -0.3746065934
113° 0.9205048535 -0.3907311285
114° 0.9135454576 -0.4067366431
115° 0.9063077870 -0.4226182617
116° 0.8987940463 -0.4383711468
117° 0.8910065242 -0.4539904997
118° 0.8829475929 -0.4694715628
119° 0.8746197071 -0.4848096202
120° 0.8660254038 -0.5
121° 0.8571673007 -0.5150380749
122° 0.8480480962 -0.5299192642
123° 0.8386705679 -0.5446390350
124° 0.8290375726 -0.5591929035
125° 0.8191520443 -0.5735764364
126° 0.8090169944 -0.5877852523
127° 0.7986355100 -0.6018150232
128° 0.7880107536 -0.6156614753
129° 0.7771459615 -0.6293203910
130° 0.7660444431 -0.6427876097
131° 0.7547095802 -0.6560590290
132° 0.7431448255 -0.6691306064
133° 0.7313537016 -0.6819983601
134° 0.7193398003 -0.6946583705
135° 0.7071067812 -0.7071067812
136° 0.6946583705 -0.7193398003
137° 0.6819983601 -0.7313537016
138° 0.6691306064 -0.7431448255
139° 0.6560590290 -0.7547095802
140° 0.6427876097 -0.7660444431
141° 0.6293203910 -0.7771459615
142° 0.6156614753 -0.7880107536
143° 0.6018150232 -0.7986355100
144° 0.5877852523 -0.8090169944
145° 0.5735764364 -0.8191520443
146° 0.5591929035 -0.8290375726
147° 0.5446390350 -0.8386705679
148° 0.5299192642 -0.8480480962
149° 0.5150380749 -0.8571673007
150° 0.5 -0.8660254038
151° 0.4848096202 -0.8746197071
152° 0.4694715628 -0.8829475929
153° 0.4539904997 -0.8910065242
154° 0.4383711468 -0.8987940463
155° 0.4226182617 -0.9063077870
156° 0.4067366431 -0.9135454576
157° 0.3907311285 -0.9205048535
158° 0.3746065934 -0.9271838546
159° 0.3583679495 -0.9335804265
160° 0.3420201433 -0.9396926208
161° 0.3255681545 -0.9455185756
162° 0.3090169944 -0.9510565163
163° 0.2923717047 -0.9563047560
164° 0.2756373558 -0.9612616959
165° 0.2588190451 -0.9659258263
166° 0.2419218956 -0.9702957263
167° 0.2249510543 -0.9743700648
168° 0.2079116908 -0.9781476007
169° 0.1908089954 -0.9816271834
170° 0.1736481777 -0.9848077530
171° 0.1564344650 -0.9876883406
172° 0.1391731010 -0.9902680687
173° 0.1218693434 -0.9925461516
174° 0.1045284633 -0.9945218954
175° 0.0871557427 -0.9961946981
176° 0.0697564737 -0.9975640503
177° 0.0523359562 -0.9986295348
178° 0.0348994967 -0.9993908270
179° 0.0174524064 -0.9998476952
180° -1
181° -0.0174524064 -0.9998476952
182° -0.0348994967 -0.9993908270
183° -0.0523359562 -0.9986295348
184° -0.0697564737 -0.9975640503
185° -0.0871557427 -0.9961946981
186° -0.1045284633 -0.9945218954
187° -0.1218693434 -0.9925461516
188° -0.1391731010 -0.9902680687
189° -0.1564344650 -0.9876883406
190° -0.1736481777 -0.9848077530
191° -0.1908089954 -0.9816271834
192° -0.2079116908 -0.9781476007
193° -0.2249510543 -0.9743700648
194° -0.2419218956 -0.9702957263
195° -0.2588190451 -0.9659258263
196° -0.2756373558 -0.9612616959
197° -0.2923717047 -0.9563047560
198° -0.3090169944 -0.9510565163
199° -0.3255681545 -0.9455185756
200° -0.3420201433 -0.9396926208
201° -0.3583679495 -0.9335804265
202° -0.3746065934 -0.9271838546
203° -0.3907311285 -0.9205048535
204° -0.4067366431 -0.9135454576
205° -0.4226182617 -0.9063077870
206° -0.4383711468 -0.8987940463
207° -0.4539904997 -0.8910065242
208° -0.4694715628 -0.8829475929
209° -0.4848096202 -0.8746197071
210° -0.5 -0.8660254038
211° -0.5150380749 -0.8571673007
212° -0.5299192642 -0.8480480962
213° -0.5446390350 -0.8386705679
214° -0.5591929035 -0.8290375726
215° -0.5735764364 -0.8191520443
216° -0.5877852523 -0.8090169944
217° -0.6018150232 -0.7986355100
218° -0.6156614753 -0.7880107536
219° -0.6293203910 -0.7771459615
220° -0.6427876097 -0.7660444431
221° -0.6560590290 -0.7547095802
222° -0.6691306064 -0.7431448255
223° -0.6819983601 -0.7313537016
224° -0.6946583705 -0.7193398003
225° -0.7071067812 -0.7071067812
226° -0.7193398003 -0.6946583705
227° -0.7313537016 -0.6819983601
228° -0.7431448255 -0.6691306064
229° -0.7547095802 -0.6560590290
230° -0.7660444431 -0.6427876097
231° -0.7771459615 -0.6293203910
232° -0.7880107536 -0.6156614753
233° -0.7986355100 -0.6018150232
234° -0.8090169944 -0.5877852523
235° -0.8191520443 -0.5735764364
236° -0.8290375726 -0.5591929035
237° -0.8386705679 -0.5446390350
238° -0.8480480962 -0.5299192642
239° -0.8571673007 -0.5150380749
240° -0.8660254038 -0.5
241° -0.8746197071 -0.4848096202
242° -0.8829475929 -0.4694715628
243° -0.8910065242 -0.4539904997
244° -0.8987940463 -0.4383711468
245° -0.9063077870 -0.4226182617
246° -0.9135454576 -0.4067366431
247° -0.9205048535 -0.3907311285
248° -0.9271838546 -0.3746065934
249° -0.9335804265 -0.3583679495
250° -0.9396926208 -0.3420201433
251° -0.9455185756 -0.3255681545
252° -0.9510565163 -0.3090169944
253° -0.9563047560 -0.2923717047
254° -0.9612616959 -0.2756373558
255° -0.9659258263 -0.2588190451
256° -0.9702957263 -0.2419218956
257° -0.9743700648 -0.2249510543
258° -0.9781476007 -0.2079116908
259° -0.9816271834 -0.1908089954
260° -0.9848077530 -0.1736481777
261° -0.9876883406 -0.1564344650
262° -0.9902680687 -0.1391731010
263° -0.9925461516 -0.1218693434
264° -0.9945218954 -0.1045284633
265° -0.9961946981 -0.0871557427
266° -0.9975640503 -0.0697564737
267° -0.9986295348 -0.0523359562
268° -0.9993908270 -0.0348994967
269° -0.9998476952 -0.0174524064
270° -1.
271° -0.9998476952 0.0174524064
272° -0.9993908270 0.0348994967
273° -0.9986295348 0.0523359562
274° -0.9975640503 0.0697564737
275° -0.9961946981 0.0871557427
276° -0.9945218954 0.1045284633
277° -0.9925461516 0.1218693434
278° -0.9902680687 0.1391731010
279° -0.9876883406 0.1564344650
280° -0.9848077530 0.1736481777
281° -0.9816271834 0.1908089954
282° -0.9781476007 0.2079116908
283° -0.9743700648 0.2249510543
284° -0.9702957263 0.2419218956
285° -0.9659258263 0.2588190451
286° -0.9612616959 0.2756373558
287° -0.9563047560 0.2923717047
288° -0.9510565163 0.3090169944
289° -0.9455185756 0.3255681545
290° -0.9396926208 0.3420201433
291° -0.9335804265 0.3583679495
292° -0.9271838546 0.3746065934
293° -0.9205048535 0.3907311285
294° -0.9135454576 0.4067366431
295° -0.9063077870 0.4226182617
296° -0.8987940463 0.4383711468
297° -0.8910065242 0.4539904997
298° -0.8829475929 0.4694715628
299° -0.8746197071 0.4848096202
300° -0.8660254038 0.5
301° -0.8571673007 0.5150380749
302° -0.8480480962 0.5299192642
303° -0.8386705679 0.5446390350
304° -0.8290375726 0.5591929035
305° -0.8191520443 0.5735764364
306° -0.8090169944 0.5877852523
307° -0.7986355100 0.6018150232
308° -0.7880107536 0.6156614753
309° -0.7771459615 0.6293203910
310° -0.7660444431 0.6427876097
311° -0.7547095802 0.6560590290
312° -0.7431448255 0.6691306064
313° -0.7313537016 0.6819983601
314° -0.7193398003 0.6946583705
315° -0.7071067812 0.7071067812
316° -0.6946583705 0.7193398003
317° -0.6819983601 0.7313537016
318° -0.6691306064 0.7431448255
319° -0.6560590290 0.7547095802
320° -0.6427876097 0.7660444431
321° -0.6293203910 0.7771459615
322° -0.6156614753 0.7880107536
323° -0.6018150232 0.7986355100
324° -0.5877852523 0.8090169944
325° -0.5735764364 0.8191520443
326° -0.5591929035 0.8290375726
327° -0.5446390350 0.8386705679
328° -0.5299192642 0.8480480962
329° -0.5150380749 0.8571673007
330° -0.5 0.8660254038
331° -0.4848096202 0.8746197071
332° -0.4694715628 0.8829475929
333° -0.4539904997 0.8910065242
334° -0.4383711468 0.8987940463
335° -0.4226182617 0.9063077870
336° -0.4067366431 0.9135454576
337° -0.3907311285 0.9205048535
338° -0.3746065934 0.9271838546
339° -0.3583679495 0.9335804265
340° -0.3420201433 0.9396926208
341° -0.3255681545 0.9455185756
342° -0.3090169944 0.9510565163
343° -0.2923717047 0.9563047560
344° -0.2756373558 0.9612616959
345° -0.2588190451 0.9659258263
346° -0.2419218956 0.9702957263
347° -0.2249510543 0.9743700648
348° -0.2079116908 0.9781476007
349° -0.1908089954 0.9816271834
350° -0.1736481777 0.9848077530
351° -0.1564344650 0.9876883406
352° -0.1391731010 0.9902680687
353° -0.1218693434 0.9925461516
354° -0.1045284633 0.9945218954
355° -0.0871557427 0.9961946981
356° -0.0697564737 0.9975640503
357° -0.0523359562 0.9986295348
358° -0.0348994967 0.9993908270
359° -0.0174524064 0.9998476952
360° 1

Как найти синус определенного угла в градусах? Нужна сама формула, а не таблица Брадиса

Во-первых, переведите угол из градусов в радианы по формуле x = alpha * pi / 180 а потом воспользуйтесь разложением в ряд Тейлора. С достаточно хорощей степенью точности можно ограничиться формулой sin(x) = x — x^3 / 3

такой формулы нет. только брадис или инженерный калькулятор ой!

Константин! Sin x = x — x^3/6

Синус угла A минут B = (3.14/180) + B * (3.14/(180*60))) Так будет точнее. В некоторых случаях минуты (B) равны нулю, тогда остается только первая часть. В интернете есть готовые калькуляторы, например: <a rel=»nofollow» href=»http:///bradis/tablica-sinusov/» target=»_blank»>http:///bradis/tablica-sinusov/</a> или что-нибудь подобное

Видео

Навигация по записям

Предыдущая статьяРешение слау при помощи обратной матрицы – Решение систем линейных алгебраических уравнений с помощью обратной матрицы.

Следующая статья Тесты по математике с 1 11 класс – Тест по математике 1 — 11 классы

Теги

Добавить комментарий