Сонаправленные векторы в параллелограмме как найти

Сложение векторов по правилу параллелограмма

Правило параллелограмма — что это такое

Чтобы сложить два вектора можно воспользоваться правилом параллелограмма.

Правило параллелограмма: если два неколлинеарных вектора a и b привести к общему началу, то вектор c=a+b совпадает с диагональю параллелограмма, построенного на векторах a и b. Начало вектора c совпадает с началом этих векторов.

Кроме того, по правилу параллелограмма можно осуществлять вычитание.

Сложение векторов по правилу параллелограмма

Для того чтобы сложить два вектора по правилу параллелограмма, необходимо:

  1. Взять произвольную точку А.
  2. Отложить от точки векторы a и b.
  3. Построить на векторах a и b параллелограмм.
  4. Диагональ параллелограмма и будет суммой векторов a+b

Также существуют еще два правила нахождения векторной суммы:

1. Правило треугольника.

Чтобы сложить два вектора, нужно из произвольной точки отложить первый вектор, из его конца отложить второй вектор и построить вектор, который соединит начало первого с концом второго. Полученный вектор — искомая сумма.

2. Правило многоугольника.

Чтобы сложить несколько векторов, нужно от произвольной точки отложить первый вектор, из его конца — второй вектор, из конца второго — третий, и так далее. Затем соединить начальную точку с концом последнего вектора, полученный вектор — искомая сумма.

Переместительный и сочетательный законы, доказательство

Для более ясного понимания правила параллелограмма, важно знать законы сложения векторов.

Переместительный закон: от перемены мест слагаемых сумма не меняется a+b=b+a.

От произвольной точки A отложим векторы AB=a и AD=b.

Построим параллелограмм ABCD.

По правилу треугольника заметим: AC=AB+BC, то есть равен сумме векторов a+b.

AC=AB+BC, AC=a+b⇒ a+b=b+a.

С другой стороны, AC=AD+DC, AC=b+a.

Что и требовалось доказать.

Именно переместительный закон применяется в правиле параллелограмма.

Сочетательный закон: (a+b)+c=a+(b+c).

От произвольной точки A отложим вектор AB=a, от точки B вектор BC=b, от точки C вектор CD=c.

Запишем сумму (a+b)+c через векторы:

Сумма AB+BC=AC (по правилу треугольника).

Запишем сумму a+(b+c) через векторы:

Что и требовалось доказать.

Примеры решения задач

Дан параллелограмм, построенный на векторах AB=6 см, BC=8 см. ∠B=90º. Найти сумму векторов AB+BC.

По правилу параллелограмма сумма векторов AB+BC=BD.

BD-диагональ параллелограмма. Диагональ можно найти по формуле:

B D = √ ( A B ² + B C ² – 2 * A B * B C * cos B ) .

ABCD — прямоугольник, так как ∠B=90º ⇒cosB=0.

Векторы на ЕГЭ по математике. Действия над векторами

Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B . Конечный результат — его перемещение из точки A в точку B , то есть перемещение на вектор .

Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора – по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов — правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий — перемещение из А в F .

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и – это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Онлайн-курс «Математика 10+11 100 баллов»

— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.

Сложение и вычитание векторов

Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .

Из данного выше построения сразу же будет следовать единственность данного вектора.

Сумма векторов. Сложение векторов. Правило треугольника

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Суммой нескольких векторов ( vec ) , ( vec ) , ( vec,;ldots ) называется вектор ( vec ) , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( <+ , + , + > right) )

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора ( overrightarrow ) выполняется равенство

Для произвольных точек ( A, B и C ) справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Разность векторов. Вычитание векторов

Разность двух одинаковых векторов равна нулевому вектору :
( vec – vec = vec <0>)

Длина нулевого вектора равна нулю:
( left| vec <0>right| = 0 )

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec – vec = left( <- , – , – > right) )

Умножение вектора на число

Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .

Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:

Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;

Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )

Обозначение: ( overrightarrow=koverrightarrow ) .

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/vektory-na-ege-po-matematike-v-zadache-v6-dejstviya-nad-vektorami/

http://calcsbox.com/post/slozenie-i-vycitanie-vektorov.html

[/spoiler]

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Векторы
  5. Законы сложения векторов. Правило параллелограмма

Теорема

Доказательство

Дано: , и .

Доказать: 10. + = + ; 20. ( + ) + = + ( + ).

Доказательство:

10. Пусть векторы и коллинеарны.

От произвольной точки А отложим векторы = и = , т.е. векторы и будут лежать на одной прямой и на той же прямой от точки А отложим векторы = и = .

+ = , + = , тогда , , при этом , так как модуль вектора – это длина отрезка, следовательно, . Поэтому точки С и С1 совпадают, значит, = (по определению равных векторов), значит, + = + .

Пусть теперь векторы и не коллинеарны.

От произвольной точки А отложим векторы = и = и на этих векторах построим параллелограмм АВСD. Противоположные стороны ВС и АD параллелограмма равны, при этом векторы и сонаправлены, следовательно, = = (по определению равных векторов), также DC = АВ (противоположные стороны параллелограмма) и векторы и сонаправлены, следовательно, = = .

По правилу треугольника = + = + . Аналогично = + = + , поэтому + = + .

20. От произвольной точки А отложим вектор = , от точки В – вектор = , а от точки С – вектор = .

Применяя правило треугольника, получим:

( + ) + = ( + ) + = + = ,

+ ( + ) = + ( + ) = + = .

Следовательно, ( + ) + = + ( + ).

Теорема доказана.

Правило параллелограмма

Советуем посмотреть:

Понятие вектора

Равенство векторов

Откладывание вектора от данной точки

Сумма двух векторов

Сумма нескольких векторов

Вычитание векторов

Произведение вектора на число

Применение векторов к решению задач

Средняя линия трапеции

Векторы


Правило встречается в следующих упражнениях:

7 класс

Задание 762,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 765,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 770,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 784,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 785,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 906,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 909,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 8,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1050,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1067,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Для начала решим задачу, которая поможет повторить всё, что мы знаем о векторах.

Итак, ABCD — параллелограмм.

Нам предстоит назвать все векторы, которые изображены на рисунке, и указать среди них: равные по длине, коллинеарные, сонаправленные, противоположно направленные, равные и векторы сонаправленные вектору ОО.

Чтобы назвать векторы, изображённые на рисунке, повторим определение понятия вектора.

Отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом, называется направленным отрезком или вектором.

На рисунках вектор изображают в виде отрезка со стрелкой, показывающей направление вектора.

Называют векторы двумя заглавными буквами со стрелкой над ними. При этом первая буква обозначает начало вектора, а вторая — конец.

По порядку назовём изображённые векторы:  Далее среди них найдём равные по длине. Стоит вспомнить, что длиной ненулевого вектора  называется длина отрезка AB.

Пользуясь тем, что перед нами параллелограмм, можем сказать, что его противоположные стороны равны. А также диагонали точкой пересечения делятся пополам.

А значит, равны длины векторов .

Теперь укажем коллинеарные векторы. Ненулевые векторы называются коллинеарными, если они лежат на одной прямой либо на параллельных прямых.

Мы знаем, что противоположные стороны параллелограмма не только равны, а ещё и параллельны. Поэтому коллинеарными будут векторы  и .

Ну, а векторы  и  коллинеарны, так как лежат на одной прямой.

Далее нам предстоит отыскать сонаправленные и противоположно направленные векторы.

Сонаправленными называют ненулевые коллинеарные векторы с одинаковыми направлениями.

Противоположно направленными называют ненулевые коллинеарные векторы с противоположными направлениями.

В обоих случаях векторы должны быть коллинеарны.

Мы же с вами указали только две пары коллинеарных векторов. Из них сонаправленными будут векторы  и , а противоположно направленными — векторы  и .

Далее вспомним определение равных векторов. Векторы называют равными, если они сонаправлены и их длины равны.

Ранее нами указана только одна пара сонаправленных векторов, между тем их длины равны. Значит, вектор .

В последнем пункте укажем векторы сонаправленные вектору ОО.

Такой вектор на рисунке не изображён, но с прошлых уроков вам известно понятие нулевого вектора.

Любая точка плоскости является нулевым вектором. Длина любого нулевого вектора равна нулю.

Так как начало и конец у такого вектора совпадают, то у него нет определённого направления и его можно задать любым направлением. Поэтому нулевой вектор считается сонаправленным любому вектору.

Тогда мы можем сказать, что каждый из векторов  сонаправлен вектору ОО.

В ходе выполнения данного задания мы повторили всё, что знаем о векторах. Теперь приступим к изучению новой темы.

Если точка А является началом вектора А, то говорят что вектор А отложен от точки А.

Имеет место следующее утверждение. От любой точки  можно отложить вектор, равный данному вектору , и притом только один.

Доказательство.

Рассмотрим два случая.

1. , то искомым, равным ему, вектором будет вектор .

2. , а точки А и B — его начало и конец, то через точку М проведём прямую p параллельную AB:   .

Теперь отложим отрезки MN и MN’, равные отрезку AB:   .

Из построения видно, что такой вектор только один.

Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой.

Поэтому вектор  можно обозначить как вектор .

Про такие векторы можно сказать, что это один и тот же вектор, но отложенный от разных точек.

Отложить векторы, равные ненулевому вектору , от каждой из вершин .

Для этого через каждую вершину проведём прямые параллельные вектору .

По каждую сторону от точек А, B и C на этих прямых отложим отрезки равные длине вектора . Таким образом получим по два вектора у каждой из вершин.

Но один из них будет сонаправлен вектору , а другой — противоположно направлен.

Нам подойдут вектора сонаправленные вектору .

Так мы отложили от каждой вершины треугольника ABC векторы, равные вектору .

Задача. От точки  необходимо отложить вектор:

а) равный вектору ;

б) сонаправленный вектору ;

в) противоположно направленный вектору .

Отложим от К вектор равный вектору . Для этого через точку К проведём прямую a, параллельную вектору .

От точки К на данной прямой отложим отрезки, длины которых равны длине вектора . Получаем два вектора. Выберем тот, который сонаправлен с вектором .

Так мы отложили от точки К вектор, равный вектору . Можем его так же обозначить как вектор .

  

Далее отложим от точки К вектор сонаправленный с вектором .

  

.

Последним необходимо от точки К отложить вектор противоположно направленный вектору .

  

Перейдём к решению последней задачи.

Задача. Диаметр  и хорда  окружности образуют угол в , а радиус окружности равен . Внутри данной окружности выбрана точка  и от неё отложены векторы  и  равные векторам  и  соответственно. Найти .

Решение.

1. ()

()

2. ()

()

3. 

3. 

4. 

односторонние при 

односторонние при 

5. .

6. :

7. 

8. 

Подведём итоги нашего урока.

Сегодня вы узнали, что от любой точки М можно отложить вектор, равный данному вектору , и притом только один. Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой. Про такие векторы можно сказать, что это один и тот же вектор, но отложенный от разных точек.

Комментарии преподавателя

 По­вто­ре­ние тео­рии. За­да­чи

 1. Основные определения

На­пом­ним, что су­ще­ству­ют такие фи­зи­че­ские ве­ли­чи­ны, для ко­то­рых важна не толь­ко ве­ли­чи­на, но и на­прав­ле­ние. Такие ве­ли­чи­ны на­зы­ва­ют­ся век­тор­ны­ми, или век­то­ра­ми, и обо­зна­ча­ют­ся они на­прав­лен­ным от­рез­ком, то есть таким от­рез­ком, у ко­то­ро­го от­ме­че­ны на­ча­ло и конец. Вве­де­но было по­ня­тие кол­ли­не­ар­ных век­то­ров, то есть таких, ко­то­рые лежат либо на одной пря­мой, либо на па­рал­лель­ных пря­мых.

Мы рас­смат­ри­ва­ем век­тор, ко­то­рый можно от­ло­жить от любой точки, за­дан­ный век­тор от про­из­воль­но вы­бран­ной точки можно от­ло­жить един­ствен­ным об­ра­зом.

Было вве­де­но по­ня­тие рав­ных век­то­ров – это такие со­на­прав­лен­ные век­то­ры, длины ко­то­рых равны. Со­на­прав­лен­ны­ми на­зы­ва­ют­ся кол­ли­не­ар­ные век­то­ры, на­прав­лен­ные в одну сто­ро­ну.

Были вве­де­ны пра­ви­ла тре­уголь­ни­ка и па­рал­ле­ло­грам­ма – пра­ви­ла сло­же­ния век­то­ров.

За­да­ны два век­то­ра – век­то­ры  и . Най­дем сумму этих двух век­то­ров . Для этого от­ло­жим из неко­то­рой точки А век­тор  – на­прав­лен­ный от­ре­зок, точка А – его на­ча­ло, а точка В – конец. Из точки В от­ло­жим век­тор . Тогда век­тор  на­зы­ва­ют сум­мой за­дан­ных век­то­ров:  – пра­ви­ло тре­уголь­ни­ка (см. Рис. 1).

Рис. 1

За­да­но два век­то­ра – век­то­ры  и . Най­дем сумму этих двух век­то­ров  по пра­ви­лу па­рал­ле­ло­грам­ма.

От­кла­ды­ва­ем из точки А век­тор  и век­тор  (см. Рис. 2). На от­ло­жен­ных век­то­рах можно по­стро­ить па­рал­ле­ло­грамм. Из точки В от­кла­ды­ва­ем век­тор , век­то­ры  и  равны, сто­ро­ны ВС и

Рис. 2

АВ1 па­рал­лель­ны. Ана­ло­гич­но па­рал­лель­ны и сто­ро­ны АВ и В1С, таким об­ра­зом, мы по­лу­чи­ли па­рал­ле­ло­грамм. АС – диа­го­наль па­рал­ле­ло­грам­ма. 

 2. Правила сложения векторов

Для сло­же­ния несколь­ких век­то­ров при­ме­ня­ют пра­ви­ло мно­го­уголь­ни­ка (см. Рис. 3). Нужно из про­из­воль­ной точки от­ло­жить пер­вый век­тор, из его конца от­ло­жить вто­рой век­тор, из конца вто­ро­го век­то­ра от­ло­жить тре­тий и так далее, когда все век­то­ры от­ло­же­ны – со­еди­нить на­чаль­ную точку с кон­цом по­след­не­го век­то­ра, в итоге по­лу­чит­ся сумма несколь­ких век­то­ров.

Рис. 3

Кроме того, мы рас­смот­ре­ли по­ня­тие об­рат­но­го век­то­ра – век­то­ра, име­ю­ще­го такую же длину, как за­дан­ный, но ему про­ти­во­на­прав­лен­но­го.

 3. Решение примеров

При­мер 1 – за­да­ча 747: вы­пи­ши­те пары кол­ли­не­ар­ных со­на­прав­лен­ных век­то­ров, ко­то­рые опре­де­ля­ют­ся сто­ро­на­ми па­рал­ле­ло­грам­ма; ука­жи­те про­ти­во­по­лож­но на­прав­лен­ные век­то­ры;

Задан па­рал­ле­ло­грамм MNPQ (см. Рис. 4). Вы­пи­шем пары кол­ли­не­ар­ных век­то­ров. В первую оче­редь это век­то­ры  и . Они не толь­ко кол­ли­не­ар­ные, но и рав­ные, т.к. они со­на­прав­ле­ны, и длины их равны по свой­ству па­рал­ле­ло­грам­ма (в па­рал­ле­ло­грам­ме про­ти­во­по­лож­ные сто­ро­ны равны). Сле­ду­ю­щая пара . Ана­ло­гич­но

Рис. 4

вы­пи­шем кол­ли­не­ар­ные век­то­ры вто­рой пары сто­рон: .

Про­ти­во­по­лож­но на­прав­лен­ные век­то­ры: .

При­мер 2 – за­да­ча 756: на­чер­ти­те по­пар­но некол­ли­не­ар­ные век­то­ры  и . По­строй­те век­то­ры ;;.

Для вы­пол­не­ния дан­но­го за­да­ния можем поль­зо­вать­ся пра­ви­лом тре­уголь­ни­ка или па­рал­ле­ло­грам­ма.

Спо­соб 1 – с по­мо­щью пра­ви­ла тре­уголь­ни­ка (см. Рис. 5):

Рис. 5

Спо­соб 2 – с по­мо­щью пра­ви­ла па­рал­ле­ло­грам­ма (см. Рис. 6):

Рис. 6

Ком­мен­та­рий: мы при­ме­ня­ли в пер­вом спо­со­бе пра­ви­ло тре­уголь­ни­ка – от­кла­ды­ва­ли из про­из­воль­но вы­бран­ной точки А пер­вый век­тор, из его конца – век­тор, про­ти­во­по­лож­ный вто­ро­му, со­еди­ня­ли на­ча­ло пер­во­го с кон­цом вто­ро­го, и таким об­ра­зом по­лу­ча­ли ре­зуль­тат вы­чи­та­ния век­то­ров. Во вто­ром спо­со­бе мы при­ме­ни­ли пра­ви­ло па­рал­ле­ло­грам­ма – по­стро­и­ли на нуж­ных век­то­рах па­рал­ле­ло­грамм и его диа­го­наль – ис­ко­мую раз­ность, помня тот факт, что одна из диа­го­на­лей – это сумма век­то­ров, а вто­рая – раз­ность.

При­мер 3 – за­да­ча 750: до­ка­жи­те, что если век­то­ры  и  равны, то се­ре­ди­ны от­рез­ков AD и BC сов­па­да­ют. До­ка­жи­те об­рат­ное утвер­жде­ние: если се­ре­ди­ны от­рез­ков AD и BC сов­па­да­ют, то век­то­ры  и  равны (см. Рис. 7).

Из ра­вен­ства век­то­ров  и  сле­ду­ет, что пря­мые АВ и CD па­рал­лель­ны, и что от­рез­ки АВ и CD равны. Вспом­ним при­знак па­рал­ле­ло­грам­ма: если у че­ты­рех­уголь­ни­ка пара про­ти­во­по­лож­ных сто­рон лежит на па­рал­лель­ных пря­мых, и их длины равны, то дан­ный че­ты­рех­уголь­ник – па­рал­ле­ло­грамм.

Рис. 7

Таким об­ра­зом, че­ты­рех­уголь­ник ABCD, по­стро­ен­ный на за­дан­ных век­то­рах, – па­рал­ле­ло­грамм. От­рез­ки AD и BC яв­ля­ют­ся диа­го­на­ля­ми па­рал­ле­ло­грам­ма, одно из свойств ко­то­ро­го: диа­го­на­ли па­рал­ле­ло­грам­ма пе­ре­се­ка­ют­ся и в точке пе­ре­се­че­ния де­лят­ся по­по­лам. Таким об­ра­зом, до­ка­за­но, что се­ре­ди­ны от­рез­ков AD и BC сов­па­да­ют.

До­ка­жем об­рат­ное утвер­жде­ние. Для этого вос­поль­зу­ем­ся дру­гим при­зна­ком па­рал­ле­ло­грам­ма: если в неко­то­ром че­ты­рех­уголь­ни­ке диа­го­на­ли пе­ре­се­ка­ют­ся и точ­кой пе­ре­се­че­ния де­лят­ся по­по­лам, то этот че­ты­рех­уголь­ник – па­рал­ле­ло­грамм. От­сю­да че­ты­рех­уголь­ник ABCD – па­рал­ле­ло­грамм, и его про­ти­во­по­лож­ные сто­ро­ны па­рал­лель­ны и равны, таким об­ра­зом, век­то­ры  и  кол­ли­не­ар­ны, оче­вид­но, что они со­на­прав­ле­ны, и мо­ду­ли их равны, от­сю­да век­то­ры  и  равны, что и тре­бо­ва­лось до­ка­зать.

При­мер 4 – за­да­ча 760: до­ка­жи­те, что для любых некол­ли­не­ар­ных век­то­ров  и  спра­вед­ли­во нера­вен­ство  (см. Рис. 8)

От­ло­жим из про­из­воль­ной точки А век­тор , по­лу­чим точку В, из нее от­ло­жим некол­ли­не­ар­ный ему век­тор . По пра­ви­лу па­рал­ле­ло­грам­ма или тре­уголь­ни­ка по­лу­чим сумму век­то­ров  – век­тор . Имеем тре­уголь­ник .

Длина суммы век­то­ров со­от­вет­ству­ет длине сто­ро­ны АС тре­уголь­ни­ка. По нера­вен­ству тре­уголь­ни­ка длина сто­ро­ны АС мень­ше, чем сумма длин двух дру­гих сто­рон АВ и ВС, что и тре­бо­ва­лось до­ка­зать.

Рис. 8

При­ме­не­ние век­то­ров к ре­ше­нию задач

 4. Выражение вектора через два неколлинеарных

На­пом­ним, что мы уже изу­чи­ли неко­то­рые факты о век­то­рах, и те­перь умеем опре­де­лять рав­ные век­то­ры, кол­ли­не­ар­ные век­то­ры, со­на­прав­лен­ные и про­ти­во­по­лож­но на­прав­лен­ные. Также мы умеем скла­ды­вать век­то­ры по пра­ви­лу тре­уголь­ни­ка и па­рал­ле­ло­грам­ма, скла­ды­вать несколь­ко век­то­ров по пра­ви­лу мно­го­уголь­ни­ка, умеем умно­жать век­тор на число. Ре­ше­ние задач с век­то­ра­ми ис­поль­зу­ет все эти зна­ния. Пе­рей­дем к ре­ше­нию неко­то­рых при­ме­ров.

При­мер 1 – за­да­ча 769: от­ре­зок ВВ1 – ме­ди­а­на тре­уголь­ни­ка . Вы­ра­зи­те через век­то­ры  и  век­то­ры  и .

От­ме­тим, что век­то­ры  и  некол­ли­не­ар­ны, то есть пря­мые АВ и АС не па­рал­лель­ны.

В даль­ней­шем мы узна­ем, что любой век­тор может быть вы­ра­жен через два некол­ли­не­ар­ных век­то­ра.

Вы­ра­зим пер­вый век­тор (см. Рис. 1): , т. к. по усло­вию ВВ1 – ме­ди­а­на тре­уголь­ни­ка, зна­чит, век­то­ры  и  имеют рав­ные мо­ду­ли, кроме того, оче­вид­но, что они кол­ли­не­ар­ны и при этом со­на­прав­ле­ны, зна­чит, дан­ные век­то­ра равны.

Рис. 1

Для вы­ра­же­ния сле­ду­ю­ще­го век­то­ра вос­поль­зу­ем­ся пра­ви­лом па­рал­ле­ло­грам­ма для вы­чи­та­ния. Мы пом­ним, что одна из диа­го­на­лей па­рал­ле­ло­грам­ма, по­стро­ен­но­го на двух век­то­рах, со­от­вет­ству­ет сумме этих век­то­ров, а вто­рая – их раз­но­сти. Диа­го­наль, со­от­вет­ству­ю­щая раз­но­сти век­то­ров, сле­ду­ет от конца к на­ча­лу, таким об­ра­зом, если по­стро­ить на за­дан­ных век­то­рах  и  па­рал­ле­ло­грамм, то его диа­го­наль  будет со­от­вет­ство­вать раз­но­сти .

Век­тор  яв­ля­ет­ся про­ти­во­по­лож­ным к за­дан­но­му век­то­ру , от­сю­да .

Век­тор  ана­ло­гич­но век­то­ру  можно пред­ста­вить в виде раз­но­сти век­то­ров . При вы­ра­же­нии сле­ду­ет учесть тот факт, что точка В1 яв­ля­ет­ся се­ре­ди­ной от­рез­ка АС, зна­чит, век­то­ры  и  равны, зна­чит, век­тор  можно пред­ста­вить как удво­ен­ное про­из­ве­де­ние век­то­ра .

Перед ре­ше­ни­ем за­да­чи мы ска­за­ли, что через за­дан­ные два некол­ли­не­ар­ных век­то­ра можно вы­ра­зить любой век­тор. Вы­ра­зим, на­при­мер, ме­ди­а­ну АА1 (см. Рис. 2).

По­лу­чи­ли си­сте­му урав­не­ний, вы­пол­ним их сло­же­ние:

Век­то­ры  в сумме со­став­ля­ют ну­ле­вой век­тор, так как они кол­ли­не­ар­ны и про­ти­во­на­прав­ле­ны, а мо­ду­ли их равны, таким об­ра­зом по­лу­ча­ем:

Рис. 2

По­де­лим обе части урав­не­ния на два, по­лу­чим: 

Из дан­ной за­да­чи можно сде­лать вывод, что если за­да­ны два некол­ли­не­ар­ных век­то­ра, то любой тре­тий век­тор на плос­ко­сти можно од­но­знач­но вы­ра­зить через эти два век­то­ра. Для этого необ­хо­ди­мо при­ме­нить пра­ви­ло сло­же­ния век­то­ров, либо ме­то­дом тре­уголь­ни­ка, либо па­рал­ле­ло­грам­ма, и пра­ви­ло умно­же­ния век­то­ра на число.

 5. Свойство средней линии треугольника

При­мер 2: до­ка­зать с по­мо­щью век­то­ров свой­ство сред­ней линии тре­уголь­ни­ка (см. Рис. 3).

Задан про­из­воль­ный тре­уголь­ник , точки M и N – се­ре­ди­ны сто­рон АВ и АС со­от­вет­ствен­но, MN – сред­няя линия тре­уголь­ни­ка. Свой­ство сред­ней линии: сред­няя линия па­рал­лель­на ос­но­ва­нию тре­уголь­ни­ка и равна его по­ло­вине.

До­ка­за­тель­ство дан­но­го свой­ства ана­ло­гич­но для тре­уголь­ни­ка и тра­пе­ции.

Рис. 3

Вы­ра­зим век­тор  двумя спо­со­ба­ми:

По­лу­чи­ли си­сте­му урав­не­ний:

          Вы­пол­ним сло­же­ние урав­не­ний си­сте­мы:

Сумма век­то­ров  – это ну­ле­вой век­тор, длины этих век­то­ров равны по усло­вию, кроме того, они оче­вид­но кол­ли­не­ар­ны и про­ти­во­на­прав­ле­ны. Ана­ло­гич­но сум­мой век­то­ров  будет ну­ле­вой век­тор. По­лу­ча­ем:

По­де­лим обе части урав­не­ния на два:

Таким об­ра­зом, мы по­лу­чи­ли, что сред­няя линия тре­уголь­ни­ка равна по­ло­вине его ос­но­ва­ния. Кроме того, из ра­вен­ства век­то­ра  по­ло­вине век­то­ра  сле­ду­ет, что эти век­то­ры кол­ли­не­ар­ны и со­на­прав­ле­ны, а зна­чит, пря­мые MN и ВС па­рал­лель­ны.

Таким об­ра­зом, мы до­ка­за­ли свой­ство сред­ней линии тра­пе­ции при по­мо­щи век­то­ров.

 6. Свойство точки пересечения медиан треугольника

При­мер 3: задан про­из­воль­ный тре­уголь­ник  (см. Рис. 4). В нем про­ве­де­ны ме­ди­а­ны АА1, ВВ1, СС1. Точка пе­ре­се­че­ния ме­ди­ан – М. Век­тор  со­от­вет­ству­ет силе  – силе  – силе . До­ка­зать, что .

На­пом­ним, что ме­ди­а­ны тре­уголь­ни­ка пе­ре­се­ка­ют­ся в одной точке и этой точ­кой де­лят­ся в от­но­ше­нии 2:1, счи­тая от вер­ши­ны.

Ино­гда точку пе­ре­се­че­ния ме­ди­ан на­зы­ва­ют цен­тром тя­же­сти тре­уголь­ни­ка.

Вы­пол­ним сло­же­ние век­то­ров , вос­поль­зу­ем­ся для этого пра­ви­лом па­рал­ле­ло­грам­ма (см. Рис. 5).

Рис. 4

По­лу­ча­ем: 

С дру­гой сто­ро­ны, , так как BMCD – па­рал­ле­ло­грамм, диа­го­на­ли па­рал­ле­ло­грам­ма точ­кой пе­ре­се­че­ния де­лят­ся по­по­лам, А1 – точка пе­ре­се­че­ния диа­го­на­лей па­рал­ле­ло­грам­ма, зна­чит, от­рез­ки МА1 и А1D равны, от­сю­да, по свой­ству точки пе­ре­се­че­ния ме­ди­ан, длины век­то­ров  и  равны, но дан­ные век­то­ры про­ти­во­на­прав­ле­ны, а зна­чит, их сумма

Рис. 5

равна ну­ле­во­му век­то­ру. Мы пом­ним, что век­тор , а век­тор , таким об­ра­зом, , что и тре­бо­ва­лось до­ка­зать.

 7. Неравенство треугольника

При­мер 4 – за­да­ча 773: до­ка­жи­те, что для любых век­то­ров  и  спра­вед­ли­во сле­ду­ю­щее нера­вен­ство: 

Ре­ше­ние: пред­ста­вим раз­ность век­то­ров в виде суммы: . Также об­ра­тим вни­ма­ние на тот факт, что длины про­ти­во­на­прав­лен­ных век­то­ров  и  равны: . Таким об­ра­зом, можно пе­ре­пи­сать ис­ход­ное вы­ра­же­ние:

Для удоб­ства вве­дем новую пе­ре­мен­ную:  и пе­ре­пи­шем вы­ра­же­ние:

. А дан­ное нера­вен­ство – нера­вен­ство тре­уголь­ни­ка – было до­ка­за­но в преды­ду­щем уроке. От­ме­тим, что ра­вен­ство на­блю­да­ет­ся в том слу­чае, когда тре­уголь­ник вы­рож­да­ет­ся в от­ре­зок.

Итак, мы вспом­ни­ли все ос­нов­ные опре­де­ле­ния и свой­ства век­то­ров, вспом­ни­ли ос­нов­ные опе­ра­ции над век­то­ра­ми, рас­смот­ре­ли при­ме­не­ние век­то­ров при ре­ше­нии раз­лич­ных задач, до­ка­за­ли неко­то­рые свой­ства фигур и ре­ши­ли наи­бо­лее рас­про­стра­нен­ные типы задач.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/vektory/vektory-povtorenie-teorii-zadachi

http://interneturok.ru/ru/school/geometry/8-klass/vektory/primenenie-vektorov-k-resheniyu-zadach

http://metodbook.ru/index.php/matematika/9-testy-po-geometrii-9-klass/8-itogovyj-test-po-teme-vektory-variant-1.html

http://metodbook.ru/index.php/matematika/9-testy-po-geometrii-9-klass/9-itogovyj-test-po-teme-vektory-variant-2.html

http://uslide.ru/images/22/28455/960/img5.jpg

http://www.studfiles.ru/html/2706/538/html_OqWQ3sDQeV.5bGa/htmlconvd-WBhq8w_html_73af1ab4.png

http://uchkollektor39.ru/uploads/images/items/29cc1d8d90989d9f0e3df70c3d95a9ee.jpg

http://rushkolnik.ru/tw_files2/urls_3/891/d-890061/890061_html_m5ff065f.jpg

http://cs1-48v4.vk-cdn.net/p24/3551abddfac0c8.mp3?extra=amJxaBk9gfTT0lPmsOEwb8Rn_T2twbNJH1OUazYT-T9cSSu4_1787ibMzOu6ytv1rZKrpdEq7XnWZN1f-bjAuKyWIFf7mzw

http://matssir.ucoz.ru/_ld/0/33_G8p84-85.pptx

http://nsportal.ru/sites/default/files/2014/05/11/vektory._dokazatelstvo.pptx

http://v.5klass.net/zip/b66d124d0243f848a0bf454b75404034.zip

Презентация на тему: ” Скалярное произведение векторов.. Задача 1. Д ано: АВСD – параллелограмм Найти: а) векторы, коллинеарные вектору ОС; б) векторы, сонаправленные вектору.” — Транскрипт:



1


Скалярное произведение векторов.


2


Задача 1. Д ано: АВСD – параллелограмм Найти: а) векторы, коллинеарные вектору ОС; б) векторы, сонаправленные вектору АВ; в) векторы, противоположно направленные вектору ВС; г) векторы, равные вектору ВО; д) ВD, если АВ = 4, ВС = 5, ВАD = 60 0 ; А С В D О


3


Задача 2. Дано: АВСD – квадрат. АВ = А В С D O а) ВО; б ) угол АВО, угол АОВ; ? ? в) Найти: г)


4


Угол между векторами. О А В


5


Ответьте на вопросы: О 1. Ч ему равен угол между векторами а и b? 1. Каков угол между векторами b и с? 1. Чему равен угол между векторами c и d? 1. Чему равен угол между векторами с и f (острый или тупой)? 1. Определите угол между векторами а и d. 1. Чему равен угол между векторами а и f?


6


Скалярное произведение векторов. Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними.


7


Если, то Если, то Если, то Если, то Скалярное произведение называется скалярным квадратом вектора


8


Свойства умножения: – переместительное свойство – сочетательное свойство – р- распределительное свойство


9


Какие из представленных на рисунке векторов перпендикулярны? 1. а и c 2. b и d 3. с и d 1. b и с 2. f и d


10


Выберите правильный ответ; Известно, что Скалярное произведение векторов равно: а) б) в)


Добавить комментарий