Статистика как найти средний уровень ряда

Средние показатели динамики: уровень ряда, абсолютный прирост, темп роста

Средний уровень ряда в статистике

Средний уровень ряда определяет обобщенную величину абсолютных уровней. Он определяется по средней, исчисленной из значений, меняющихся во времени. Методы расчета среднего уровня интервального и моментного рядов динамики разные.

Средний уровень из абсолютных уровней для интервальных рядов динамики рассчитывается по формуле средней арифметической:

1. При равных интервалах используют среднюю арифметическую простую:

Средний уровень из абсолютных уровней для интервальных рядов динамики

где у — абсолютные уровни ряда;

n — число уровней ряда.

2. При неравных интервалах используют среднюю арифметическую взвешенную:

где у1,…,уn — уровни ряда динамики;

t1,… tn — веса, длительность интервалов времени.

Средний уровень моментного ряда динамики рассчитывается по формуле:

1. С равностоящими уровнями рассчитывается по формуле средней хронологической моментного ряда:

Средний уровень моментного ряда динамики

где у1,…,уn — уровни периода, за который делается расчет;
n — число уровней;
n-1 — длительность периода времени.

2. С неравностоящими уровнями рассчитывается по формуле средней хронологической взвешенной:

где у1,…,уn — уровни рядов динамики;
t — интервал времени между смежными уровнями

Средний абсолютный прирост в задачах статистики

Средний абсолютный прирост определяется как среднее из абсолютных приростов за равные промежутки времени одного периода. Он рассчитывается по формулам:

1. По цепным данным об абсолютных приростах за ряд лет рассчитывают средний абсолютный прирост как среднюю арифметическую простую:

Средний абсолютный прирост

где n — число степенных абсолютных приростов в исследуемом периоде.

2. Средний абсолютный прирост рассчитывают через базисный абсолютный прирост в случае равных интервалов

формула среднего абсолютного прироста

где m — число уровней ряда динамики в исследуемом периоде, включая базисный.

Средний темп роста

Средний темп роста есть свободная обобщающая характеристика интенсивности изменения уровней ряда динамики и показывает, во сколько раз в среднем за единицу времени изменяется уровень ряда динамики.

В качестве основы и критерия правильности вычисления среднего темпа роста (снижения) применяется обобщающий показатель, который рассчитывается как произведение цепных темпов роста, равное темпу роста за весь рассматриваемый период. Если значение признака образуется как произведение отдельных вариантов, то используют среднюю геометрическую.

Так как средний темп роста представляет собой средний коэффициент роста, выражен в процентах, то для равностоящих рядов динамики расчеты по средней геометрической сводятся к вычислению средних коэффициентов роста из цепных по «цепному способу»:

Средний темп роста

где n — число цепных коэффициентов роста;
Кц — цепные коэффициенты роста;
Кб — базисный коэффициент роста за весь период.

Определение среднего коэффициента роста может быть упрощено, если будут ясны уровни динамического ряда. Так как произведение цепных коэффициентов роста равно базисному, то в подкоренное выражение подставляют базисный коэффициент роста.

Формула для определения среднего коэффициента роста для равностоящих рядов динамики по «базисному способу» будет такая:

Средний коэффициент роста

Средний темп прироста

Средние темпы прироста рассчитываются на основе средних темпов роста (Тр) вычитанием из последних 100%:

Средний темп прироста

Для того чтобы определить средний коэффициент прироста (Кпр), нужно из значений коэффициентов роста (Кр) вычесть единицу.

Средний коэффициент прироста

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

Определение среднего уровня ряда динамики.

В
качестве обобщенной характеристики
уровней ряда динамики служит средний
уровень ряда динамики
.
В зависимости от типа ряда динамики
используются различные расчетные
формулы.

Интервальный
ряд абсолютных величин с равными
периодами (интервалами времени):

Моментный
ряд с равными интервалами между датами:

Моментный
ряд с неравными интервалами между
датами:

где
– уровни ряда, сохраняющиеся без
изменения на протяжении интервала
времени.

Показатели изменения уровней ряда динамики.

Одним
из важнейших направлений анализа рядов
динамики является изучение особенностей
развития явления за отдельные периоды
времени.

С
этой целью для динамических рядов
рассчитывают ряд показателей:

К
– темпы роста;


абсолютные приросты;


темпы прироста.

Темп
роста

– относительный показатель, получающийся
в результате деления двух уровней
одного ряда друг на друга. Темпы роста
могут рассчитываться как цепные, когда
каждый уровень ряда сопоставляется с
предшествующим ему уровнем:
,
либо как базисные, когда все уровни
ряда сопоставляются с одним и тем же
уровнем,
выбранным за базу сравнения:. Темпы роста могут быть представлены
в виде коэффициентов либо в виде
процентов.

Абсолютный
прирост

– разность между двумя уровнями ряда
динамики, имеет ту же размерность, что
и уровни самого ряда динамики. Абсолютные
приросты могут быть цепными и базисными,
в зависимости от способа выбора базы
для сравнения:

цепной
абсолютный прирост –
;

базисный
абсолютный прирост –
.

Для
относительной оценки абсолютных
приростов рассчитываются показатели
темпов прироста.

Темп
прироста

– относительный показатель, показывающий
на сколько процентов один уровень ряда
динамики больше (или меньше) другого,
принимаемого за базу для сравнения.

Базисные
темпы прироста:
.

Цепные
темпы прироста:
.

и


абсолютный базисный или цепной прирост;


уровень ряда динамики, выбранный за
базу для определения базисных абсолютных
приростов;


уровень ряда динамики, выбранный за
базу для определения i-го цепного
абсолютного прироста.

Существует
связь между темпами роста и прироста:

К
= К – 1 или
К
= К – 100 % (если темпы роста определены в
процентах).

Если
разделить абсолютный прирост (цепной)
на темп прироста (цепной) за соответствующий
период, получим показатель, называемый
абсолютное
значение одного процента

прироста:
.

Определение среднего абсолютного прироста, средних темпов роста и прироста.

По
показателям изменения уровней ряда
динамики (абсолютные приросты, темпы
роста и прироста), полученным в результате
анализа исходного ряда, могут быть
рассчитаны обобщающие показатели в
виде средних величин – средний абсолютный
прирост, средний темп роста, средний
темп прироста.

Средний
абсолютный прирост может быть получен
по одной из формул:

или
,

где
n – число уровней ряда динамики;


первый уровень ряда динамики;


последний уровень ряда динамики;


цепные абсолютные приросты.

Средний
темп роста можно определить, пользуясь
формулами:

где
n – число рассчитанных цепных или базисных
темпов роста;


уровень ряда, принятый за базу для
сравнения;


последний уровень ряда;


цепные темпы роста (в коэффициентах);


первый базисный темп роста;


последний базисный темп роста.

Между
темпами прироста
и темпами роста К существует соотношение=
К – 1, аналогичное соотношение верно и
для средних величин.

Определение
в рядах динамики общей тенденции
развития.

Определение
уровней ряда динамики на протяжении
длительного периода времени обусловлено
действием ряда факторов, которые
неоднородны по силе и направлению
воздействия, оказываемого на изучаемое
явление.

Рассматривая
динамические ряды, пытаются разделить
эти факторы на постоянно действующие
и оказывающие определяющее воздействие
на уровни ряда, формирующие основную
тенденцию развития, и случайные
факторы, приводящие к кратковременным
изменениям уровней ряда динамики.
Наиболее важна при анализе ряда
динамики его основная тенденция развития,
но часто по одному лишь внешнему виду
ряда динамики ее установить невозможно,
поэтому используют специальные методы
обработки, позволяющие показать основную
тенденцию ряда. Методы обработки
используются как простые, так и достаточно
сложные. Простейший способ обработки
ряда динамики, применяемый с целью
установления закономерностей развития
метод
укрупнения интервалов.

Суть
метода в том, чтобы от интервалов, или
периодов времени, для которых определены
исходные уровни ряда динамики, перейти
к более продолжительным периодам времени
и посмотреть, как уровни ряда изменяются
в этом случае.

Другой
способ определения тенденции в ряду
динамики —
метод скользящих средних
.
Суть метода заключается в том, что
фактические уровни ряда заменяются
средними уровнями, вычисленными по
определённому правилу, например:

—исходные
или фактические уровни ряда динамики
заменяются средними уровнями:

В
результате получается сглаженный ряд,
состоящий из скользящих пятизвенных
средних уровней
.
Между расположением уровнейиустанавливается соответствие:

— —
— —,

сглаженный
ряд короче исходного на число уровней
,
где k – число уровней, выбранных для
определения средних уровней ряда.

Сглаживание
методом скользящих средних можно
производить по четырём, пяти или другому
числу уровней ряда, используя
соответствующие формулы для усреднения
исходных уровней.

Полученные
при этом средние уровни называются
четырёхзвенными скользящими средними,
пятизвенными скользящими средними и
т.д.

При
сглаживании ряда динамики по чётному
числу уровней выполняется дополнительная
операция, называемая центрированием,
поскольку, при вычислении скользящего
среднего, например по четырём уровням,
относится к временной точке между
моментами времени, когда были зафиксированы
фактические уровнии.
Схема вычислений и расположений уровней
сглаженного ряда становится сложнее:


— исходные уровни;

— —

— сглаженные уровни;

— —

— центрированные сглаженные уровни;

.

Метод
скользящих средних не позволяет получить
численные оценки для выражения основной
тенденции в ряду динамики, давая лишь
наглядное графическое представление.

Наиболее
совершенным способом определения
тенденции развития в ряду динамики
является метод аналитического
выравнивания. При этом методе исходные
уровни ряда динамики
заменяются теоретическими или расчетными,
которые представляют из себя некоторую
достаточно простую математическую
функцию времени, выражающую общую
тенденцию развития ряда динамики. Чаще
всего в качестве такой функции выбирают
прямую, параболу, экспоненту и др.

Например,
,

где
– коэффициенты, определяемые в методе
аналитического выравнивания;


моменты времени, для которых были
получены исходные и соответствующие
теоретические уровни ряда динамики,
образующие прямую, определяемую
коэффициентами
.

Расчет
коэффициентов
ведется на основе метода наименьших
квадратов:

Если
вместо
подставить(или соответствующее выражение для
других математических функций), получим:

Это
функция двух переменных
(всеиизвестны), которая при определенныхдостигает минимума. Из этого выражения
на основе знаний, полученных в курсе
высшей математики об экстремуме функций
n переменных, получают значения
коэффициентов.

Для
прямой:

где
n — число моментов времени, для которых
были получены исходные уровни ряда
.

Если
вместо абсолютного времени
выбрать
условное время таким образом, чтобы,
то записанные выражения для определенияупрощаются:

Определение
в рядах внутригодовой динамики.

Многие
процессы хозяйственной деятельности,
торговли, сельского хозяйства и других
сфер человеческой деятельности подвержены
сезонным изменениям, например, продажа
мороженого, потребление электроэнергии,
производство молока, сахара, продажа
сельхозпродукции и др.

Для
анализа рядов динамики, подверженных
сезонным изменениям, используются
специальные методы, позволяющие
установить и описать особенности
изменения уровней ряда. Прежде, чем
использовать методы изучения сезонности,
необходимо подготовить данные, приведённые
в сопоставимый вид, за несколько лет
наблюдения по месяцам или кварталам.
Изменения сезонных колебаний производится
с помощью индексов сезонности. В
зависимости от существующих в ряду
динамики тенденций используются
различные правила построения индексов.

1.
Ряд динамики не имеет общей тенденции
развития, либо она не велика.

Индекс
сезонности:
,

где
— средний уровень ряда, полученный в
результате осреднения уровней ряда за
одноимённые периоды времени (например,
средний уровень января за все годы
наблюдения);

—общий
средний уровень ряда за всё время
наблюдения.

Вывод
о наличии или отсутствия в ряду динамики
ярко выраженной тенденции может
производиться, например, при помощи
метода укрупнения интервалов.

2.
Ряд динамики имеет общую тенденцию, и
она определена либо методом скользящего
среднего, либо методом аналитического
выравнивания.

Индекс
сезонности
,

где
— исходные уровни ряда:

—уровни
ряда, полученные в результате определения
скользящих средних для тех же периодов
времени, что и исходные уровни:

I
— номер месяца или квартала, для которого
определяется индекс сезонности:

n
— число лет наблюдения за процессом.

В
случае, если тенденция развития
определялась методом аналитического
выравнивания, расчетная формула получения
индексов сезонности совершенно аналогична
предыдущей, но вместо
— уровней, полученных методом скользящих
средних, используются— полученные методом аналитического
выравнивания.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Показатели ряда динамики

Примеры решения задач


Задача 1

По АО
«Керамик» имеются данные о производстве кирпича за год. Рассчитайте все
недостающие в таблице уровни ряда и цепные показатели анализа динамики.
Рассчитайте средний уровень ряда, средние абсолютный прирост и темп роста.

Месяцы Произведено кирпича,
тыс.р.
Цепные показатели
абсолютный темп роста, % темп прироста, % абсолютное значение 1%
прироста
Январь 450        
Февраль       100  
Март     80    
Апрель   -30      
Май     250    
Июнь       -30  
Июль          
Август   300     5,0
Сентябрь     150    
Октябрь       80  
Ноябрь   -60      
Декабрь     300    

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Формулы цепных показателей динамики

Абсолютный цепной прирост можно
найти по формуле:

 -уровень ряда;

 -предыдущий
уровень ряда

Цепной темп роста:

Темп прироста:

Абсолютное
содержание 1% прироста:

Расчет недостающих уровней ряда динамики

Исходя из формул, заполним
недостающие показатели:

Февраль: 

Март:

Апрель:

Май:

Июнь:

Июль:

Август: 

Сентябрь:

Октябрь:

Ноябрь:

Декабрь:

Вычисление цепных показателей динамики

Абсолютные приросты цепные:

Темпы роста цепные:

Темпы прироста цепные:

Абсолютное содержание 1% прироста:

Показатели динамики производства кирпича

Месяцы Произведено
кирпича, тыс.р.
Цепные
показатели
абсолютный темп роста,
%
темп
прироста, %
абсолютное
значение 1% прироста
Январь 450 —- 100 —- —–
Февраль 900 450 200 100 4.5
Март 720 -180 80.0 -20.0 9,0
Апрель 690 -30 95.8 -4.2 7.2
Май 1725 1035 250.0 150.0 6.9
Июнь 1208 -517 70.0 -30.0 17.25
Июль 500 -708 41.4 -58.6 12.08
Август 800 300 160.0 60.0 5,0
Сентябрь 1200 400 150.0 50.0 8,0
Октябрь 2160 960 180.0 80.0 12,0
Ноябрь 2100 -60 97.2 -2.8 21.6
Декабрь 6300 4200 300 200 21,0

Расчет средних уровней ряда динамики

Средний
уровень исследуемого динамического ряда найдем по формуле средней
арифметической:

Среднегодовой
абсолютный прирост:

Среднегодовой
темп роста:

Среднегодовой
темп прироста:

Вывод к задаче

Среднемесячный
показатель производства составил 1562,8 тыс.р. В среднем за месяц показатель
увеличивался на 531,8 тыс.р. или на 27,1% в относительном выражении.


Задача 2

Для
изучения динамики товаропотока рассчитайте:

  • Абсолютные и относительные показатели динамики по годам периода (абсолютные
    приросты – базисные и цепные; темпы роста – базисные и цепные).
  • Динамические средние за период в целом – среднегодовой уровень ряда,
    среднегодовой абсолютный прирост, среднегодовой темп роста. Объясните их смысл.
  • Выполните прогнозы уровня ряда на следующий год, используя среднегодовой
    абсолютный прирост и среднегодовой темп роста. Сделайте выводы о развитии
    изучаемого процесса.
  • Постройте график динамики изучаемого процесса.

Динамика
экспорта РФ в Португалию, млрд. долл. США

Годы 2004 2005 2006 2007 2008 2009 2010
Экспорт 0.62 1.14 1.38 1.25 0.21 0.13 0.20

Решение

1)

Абсолютные приросты цепные:

Абсолютные приросты базисные:

Темпы роста цепные:

Темпы роста базисные:

Темпы прироста цепные:

Темпы прироста базисные:

Показатели динамики экспорта 2004-2010 гг.

Годы Экспорт,
млрд.долл
Абсолютные
приросты, млрд.долл
Темпы
роста, %
Темпы
прироста, %
цепные базисные цепные базисные цепные базисные
2004 0.62 —– —– 100.0 100.0 —– —–
2005 1.14 0.52 0.52 183.9 183.9 83.9 83.9
2006 1.38 0.24 0.76 121.1 222.6 21.1 122.6
2007 1.25 -0.13 0.63 90.6 201.6 -9.4 101.6
2008 0.21 -1.04 -0.41 16.8 33.9 -83.2 -66.1
2009 0.13 -0.08 -0.49 61.9 21.0 -38.1 -79.0
2010 0.20 0.07 -0.42 153.8 32.3 53.8 -67.7

 

2)
Средний уровень исследуемого динамического ряда найдем по формуле средней
арифметической:

Среднегодовой
абсолютный прирост:

Среднегодовой
темп роста:

Среднегодовой
темп прироста:

Таким
образом в среднем за исследуемый период экспорт
составлял 0,704 млрд. долл. в год. В среднем показатель уменьшался на 0,07 млрд.долл. в год или на 17,2% в
относительном выражении.

3)
Прогноз на 2011 год с помощью среднего абсолютного прироста:

Прогноз
на 2011 год с помощью среднегодового темпа роста:

На
2011 год показатель, прогнозируемый с помощью среднего
абсолютного прироста составил 0,13 млрд. долл., а с помощью
среднегодового темпа роста – 0,166 млрд. долл.

4)

График динамики экспорта 2004-2010 гг.

9.2. Показатели ряда динамики

При анализе динамического ряда рассчитываются следующие показатели:

  • средний уровень динамического ряда;
  • абсолютные приросты: цепные и базисные, средний абсолютный прирост;
  • темпы роста: цепные и базисные, средний темп роста;
  • темпы прироста: цепные и базисные, средний темп прироста;
  • абсолютное значение одного процента прироста.

Цепные и базисные показатели вычисляются для характеристики изменения уровней динамического ряда и различаются между собой базами сравнения: цепные рассчитываются по отношению к предыдущему уровню (переменная база сравнения), базисные – к уровню, принятому за базу сравнения (постоянная база сравнения).

Средние показатели представляют собой обобщенные характеристики ряда динамики. С их помощью сравнивают интенсивность развития явления по отношению к различным объектам, например по странам, отраслям, предприятиям и т.д., или периодам времени.

9.2.1. Средний уровень ряда динамики

Конкретное числовое значение статистического показателя, относящееся к моменту или периоду времени, называется уровнем ряда динамики и обозначается через yi (где i – показатель времени).

Методика расчета среднего уровня зависит от вида динамического ряда, а именно: является ли он моментным или интервальным, с равными или неравными временными промежутками между соседними датами.

Если дан интервальный ряд динамики абсолютных или средних величин с равными периодами времени, то для расчета среднего уровня применяется формула средней арифметической простой:

где y1, y2, yi, …, yn – уровни динамического ряда;

п – число уровней ряда.

Пример 9.2. По данным таблицы определим среднемесячный размер страхового возмещения, выплаченного страховой компанией, в расчете на один пострадавший объект за полугодие:

Таблица
9.6.

Месяц Январь Февраль Март Апрель Май Июнь
Средний размер выплаченного страхового возмещения, тыс. руб 106 108 108 111 110 112

Если временные промежутки интервального динамического ряда неравны, то значение среднего уровня находят по формуле средней арифметической взвешенной, в которой в качестве весов используют длину временных периодов, соответствующих уровням ряда динамики (ti)

Пример 9.3. По данным, представленным в таблице, определим среднемесячный размер страхового возмещения, выплаченного страховой компанией, в расчете на один пострадавший объект:

Таблица
9.7.

Месяц Январь Февраль Март II квартал III квартал IV квартал
Средний размер выплаченного страхового возмещения, тыс. руб. 106 110 138 150 160 140

В моментных рядах динамики с одинаковыми временными промежутками между датами средний уровень ряда рассчитывается по формуле средней хронологической простой

где yn – значения показателя на конец рассматриваемого периода.

Пример 9.4. По приведенным ниже данным о размере денежных средств на счете вкладчика на начало каждого месяца определим средний размер вклада в I квартале 2006 г.:

Таблица
9.8.

Дата 01.01.06 01.02.06 01.03.06 01.04.06
Остаток денежных средств, руб. 132 000 147 289 151 870 148 500

Средний уровень моментного ряда динамики равен:

Хотя I квартал включает три месяца (январь, февраль, март), в расчете должны быть использованы четыре уровня ряда (включая данные на 1 апреля). Это легко доказать. Действительно, если исчислять средние уровни по месяцам, то получим:

в январе

в феврале

в марте

Рассчитанные средние образуют интервальный ряд динамики с равными временными промежутками, в котором средний уровень исчисляется, как мы видели выше, по формуле средней арифметической простой:

Аналогично, если требуется рассчитать средний уровень моментного ряда динамики с равными интервалами между датами за первое полугодие, то в качестве последнего уровня в формуле средней хронологической простой следует взять данные на 1 июля, а если за год – данные на 1 января следующего года.

В моментных рядах динамики с неравными промежутками между датами для определения среднего уровня применяется формула средней хронологической взвешенной:

где ti – длина временного периода между двумя соседними датами.

Пример 9.5. По данным о запасах товаров на начало месяца определим средний размер товарных запасов в 2006 г.

Таблица
9.9.

Дата 01.01.06 01.02.06 01.03.06 01.07.06 01.09.06 01.12.06 01.01.07
Запасы товаров, тыс. руб. 1 320 1 472 1 518 1 300 1 100 1 005 920

Средний уровень ряда равен:

Расстояние между датами

Если имеется полная информация о значениях моментного статистического показателя на каждую дату, то среднее значение этого показателя за весь период исчисляется по формуле средней арифметической взвешенной:

где yi – значения показателя

ti – длина периода, в течение которого это значение статистического показателя оставалось неизменным.

Если мы дополним пример 9.4 информацией о датах изменения денежных средств на счете вкладчика в I квартале 2006 г., то получим:

  • остаток денежных средств на 1 января – 132 000 руб.;
  • января выдано – 19 711 руб.;
  • 28 января внесено – 35 000 руб.;
  • 20 февраля внесено – 2000 руб.;
  • 24 февраля внесено – 2581 руб.;
  • 3 марта выдано – 3370 руб. (в марте других изменений не происходило).

Итак, с 1 по 4 января (четыре дня) значение показателя оставалось равным 132 000 руб., с 5 по 27 января (23 дня) его значение составило 112 289 руб., с 28 января по 19 февраля (23 дня) – 147 289 руб., с 20 по 23 февраля (четыре дня) – 149 289 руб., с 24 февраля по 2 марта (семь дней) – 151 870 руб., с 3 по 31 марта (29 дней) – 148 500 руб. Для удобства проведения расчетов представим эти данные в таблице:

Таблица
9.10.

Длина периода, дней 4 23 23 4 7 29
Остаток денежных средств, руб. 132 00 112 289 147 289 149 289 151 879 148 500

По формуле средней арифметической взвешенной находим значение среднего уровня ряда

Как видим, среднее значение отличается от полученного в примере 9.4, оно является более точным, так как в вычислениях использовалась более точная информация. В примере 9.4 были известны лишь данные на начало каждого месяца, при этом не оговаривалось, когда же именно происходили изменения показателя, была применена формула хронологической средней.

В заключение отметим, что расчет среднего уровня ряда теряет свой аналитический смысл в случаях большой изменяемости показателя внутри ряда, а также при резкой смене направления развития явления.

9.2.2. Показатели абсолютного изменения уровней динамического ряда

Абсолютные приросты рассчитываются как разность между двумя значениями соседних уровней динамического ряда (цепные приросты) или как разность между значениями текущего уровня и уровня, принятого за базу сравнения (базисные приросты). Показатели абсолютного прироста имеют те же единицы измерения, что и уровни динамического ряда. Они показывают, на сколько единиц изменился показатель при переходе от одного момента или периода времени к другому.

Базисные абсолютные приросты рассчитывают по формуле

где уi – i-й текущий уровень ряда,

y1 – первый уровень ряда динамики, принятый за базу сравнения.

Формула для определения цепных абсолютных приростов имеет вид

где уi – 1 – уровень, предшествующий i-му уровню динамического ряда.

Средний абсолютный прирост показывает, на сколько единиц в среднем ежемесячно, или ежеквартально, или ежегодно и т.д. изменялось значение показателя в течение рассматриваемого периода времени. В зависимости от того, какими данными мы располагаем, его можно рассчитать следующими способами:

  1. – цепные абсолютные приросты показателя;

  2. где yn – последний уровень ряда

Пример 9.6. По данным таблицы определим показатели абсолютных приростов размера страхового возмещения, выплаченного страховой компанией.

Таблица
9.11.

* Сумма всех рассчитанных цепных абсолютных приростов дает базисный абсолютный прирост последнего периода.

Среднемесячный абсолютный прирост за полугодие равен

Таким образом, в среднем ежемесячно размер выплат страхового возмещения увеличивался на 1,2 тыс. руб.

9.2.3. Показатели относительного изменения уровней динамического ряда

Характеристиками относительного изменения уровней ряда динамики являются коэффициенты и темпы роста значений показателя и темпы их прироста.

Коэффициент роста представляет собой соотношение двух уровней динамического ряда, выраженное в виде простого кратного отношения. Он показывает, во сколько раз изменилось значение показателя в одном периоде (моменте) времени по сравнению с другим. Темп роста – это коэффициент роста, выраженный в процентах. Он показывает, сколько процентов составляет значение показателя в данном периоде, если уровень, с которым проводится сравнение, принять за 100%.

Так же, как и абсолютные приросты, коэффициенты и темпы роста могут быть цепными и базисными.

Цепные коэффициент и темп роста измеряют относительное изменение текущего уровня показателя по сравнению с предшествующим ему уровнем:

коэффициент роста:

темп роста:

Базисные коэффициент и темп роста характеризуют относительное изменение текущего уровня показателя по сравнению с базисным (чаще всего с первым) уровнем:

коэффициент роста

темп роста

Цепные и базисные коэффициенты роста имеют между собой следующую связь:

  • произведение всех рассчитанных до текущего периода цепных коэффициентов роста дает базисный коэффициент роста текущего периода:

  • деление базисного коэффициента роста текущего периода на базисный коэффициент роста предшествующего периода дает цепной коэффициент роста текущего периода:

Средние темп роста и коэффициент роста в динамических рядах с равноотстоящими уровнями рассчитываются по формуле средней геометрической простой

– цепные коэффициенты роста;

– цепные темпы роста.

Эти формулы могут быть приведены к следующему виду:

Для того чтобы определить, на сколько процентов текущий уровень показателя больше или меньше значения предшествующего или базисного уровня, рассчитываются темпы прироста. Они исчисляют путем вычитания 100% из соответствующих темпов роста:

  • цепные темпы прироста:
  • базисные темпы прироста:

Средний темп прироста рассчитывается аналогичным образом: из среднего темпа роста вычитаются 100%:

Пример 9.7. В таблице приведены рассчитанные коэффициенты роста, темпы роста и прироста показателя, характеризующего среднемесячный размер выплаченного компанией страхового возмещения за период с января по июнь.

Таблица
9.12.

Месяц Средний размер выплаченного страхового возмещения, тыс. руб., yi Коэффициент роста Темпы роста, % Темпы прироста, % Абсолютное значение 1% прироста, тыс. руб.
цепные базисные цепные базисные цепные базисные
Январь 106 1 100
Февраль 108 1,019 1,019 101,9 101,9 1,9 1,9 1,06
Март 108 1,000 1,000 100,0 101,9 0 1,9 1,08
Апрель 111 1,028 1,047 102,8 104,7 2,8 4,7 1,08
Май 110 0,991 1,038 99,1 103,8 -0,9 3,8 1,11
Июнь 112 1,018 1,057 101,8 105,7 1,8 5,7 1,10

По формуле средней геометрической простой определим среднемесячный коэффициент роста показателя за период с февраля по июнь:

или

Средний темп роста, соответственно, равен 101,1%. Следовательно, в среднем ежемесячно размер выплат страхового возмещения увеличивался в 1,011 раза, или на 1,1%.

Если известны средние темпы (или коэффициенты) роста за некоторые неравные отрезки времени, то средний темп роста за весь период исчисляется по формуле средней геометрической взвешенной:

где Тi – средний темп роста за i-й период времени;

ti – длина i-го периода.

Пример 9.8. Среднегодовые коэффициенты роста числа страховых компаний в одной из областей России составили за период 1991-1995 гг. – 1,18; 1995-2000 гг. – 1,24; 2000-2004 – 1,56. Определим среднегодовой коэффициент роста числа страховых компаний за весь период с 1991 по 2004 гг.

Решение:

Таким образом, за период с 1991 по 2004 гг. среднегодовой темп роста числа страховых компаний в одной из областей России составил 131,1%, соответственно, среднегодовой темп прироста – 31,1%.

Для более полного анализа динамики расчет цепных показателей роста и прироста уровней динамического ряда часто сопровождаются указаниями абсолютных значений 1% прироста.

Абсолютное значение 1% прироста (Аi) определяется как отношение значения абсолютного прироста показателя к его темпу прироста в i-й момент времени:

В последней графе таблицы примера 9.7 рассчитаны цепные абсолютные значения 1% прироста.

Пример решения задачи. Ряд динамики

Условие задачи

Определить
вид ряда динамики. Для полученного ряда рассчитать: цепные и базисные
абсолютные приросты, темпы
роста, темпы прироста, средний уровень ряда, средний темп роста, средний
темп прироста. Проверить взаимосвязь абсолютных приростов и темпов роста. По
расчетам сделать выводы. Графически изобразить полученный ряд динамики.

Годы Объем производства,
млн.р.
2011 12
2012 10
2013 11
2014 10
2015 9

Решение задачи

Данный
ряд динамики – интервальный, так как значение показателя заданы за определенный
интервал времени.

Определяем цепные и базисные показатели ряда динамики

Абсолютные приросты цепные:

Абсолютные приросты базисные:

Темпы роста цепные:

Темпы роста базисные:

Темпы прироста цепные:

Темпы прироста базисные:

Показатели динамики объема производства 2011-2015 гг

Годы Объем производства,
млн.р.
Абсолютные приросты, млн.р. Темпы роста, % Темпы прироста, %
цепные базисные цепные базисные цепные базисные
2011 12 —– —– 100.0 100.0 —– —–
2012 10 -2 -2 83.3 83.3 -16.7 -16.7
2013 11 1 -1 110.0 91.7 10.0 -8.3
2014 10 -1 -2 90.9 83.3 -9.1 -16.7
2015 9 -1 -3 90.0 75.0 -10.0 -25.0

Определяем средние показатели ряда динамики

Средний
уровень исследуемого динамического ряда найдем по формуле средней
арифметической:

Среднегодовой
абсолютный прирост:

Среднегодовой
темп роста:

Среднегодовой
темп прироста:

Строим график

График динамики объема производства 2011-2015 гг

Таким образом на протяжении всего исследуемого
периода за исключением 2013 года объем производства продукции на предприятиях
снижался. В среднем предприятия производили продукции на 10,4 млн.р. в год. В
среднем показатель снижался на 0,75 млн.р. в год или на 6,9% в относительном
выражении.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная оплата переводом на карту СберБанка.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Добавить комментарий