Свойства равностороннего треугольника как найти высоту

В данной публикации мы рассмотрим основные свойства высоты в равностороннем (правильном) треугольнике. Также разберем пример решения задачи по этой теме.

Примечание: треугольник называется равносторонним, если все его стороны равны.

  • Свойства высоты в равностороннем треугольнике

    • Свойство 1

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

    • Свойство 6

  • Пример задачи

Свойства высоты в равностороннем треугольнике

Свойство 1

Любая высота в равностороннем треугольнике одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.

Высота в равностороннем треугольнике

  • BD – высота, опущенная на сторону AC;
  • BD – медиана, которая делит сторону AC пополам, т.е. AD = DC;
  • BD – биссектриса угла ABC, т.е. ∠ABD = ∠CBD;
  • BD – серединный перпендикуляр, проведенный к AC.

Свойство 2

Все три высоты в равностороннем треугольнике имеют одинаковую длину.

Равенство высот в равностороннем треугольнике

AE = BD = CF

Свойство 3

Высоты в равностороннем треугольнике в ортоцентре (точке пересечения) делятся в отношении 2:1, считая от вершины, из которой они проведены.

Деление высот в равностороннем треугольнике в точке пересечения (ортоцентре)

  • AO = 2OE
  • BO = 2OD
  • CO = 2OF

Свойство 4

Ортоцентр равностороннего треугольника является центром вписанной и описанной окружностей.

Ортоцентр равностороннего треугольника как центр вписанной и описанной окружностей

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r (следует из Свойства 3).

Свойство 5

Высота в равностороннем треугольнике делит его на два равных по площади (равновеликих) прямоугольных треугольника.

Деление высотой равностороннего треугольника на два равновеликих треугольника

S1 = S2

Три высоты в равностороннем треугольнике делят его на 6 равных по площади прямоугольных треугольников.

Свойство 6

Зная длину стороны равностороннего треугольника его высоту можно вычислить по формуле:

Формула для нахождения высоты равностороннего треугольника через длину его стороны

a – сторона треугольника.

Пример задачи

Радиус окружности, описанной вокруг равностороннего треугольника, равняется 7 см. Найдите сторону этого треугольника.

Решение
Как мы знаем из Свойств 3 и 4, радиус описанной окружности составляет 2/3 от высоты равностороннего треугольника (h). Следовательно, h = 7 ∶ 2 ⋅ 3 = 10,5 см.

Теперь остается вычислить длину стороны треугольника (выражение выведено из формулы в Свойстве 6):

Нахождение высоты в равностороннем треугольнике через длину его стороны (пример)

Свойства равностороннего треугольника

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})

Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник.

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!

В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!

Итак, ещё раз:

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.

Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. (R=2cdot r)

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка( O) – центр треугольника.

Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).

Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Поэтому (OB=2cdot OK), то есть (R=2cdot r).

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Высота равностороннего треугольника

Формулы, используемые для этого, несложны. Вывод выражений основан на свойствах треугольника, при этом точка пересечения высот считается замечательной и даже имеет своё название — ортоцентр.

Общие сведения

Три отрезка, не принадлежащие одной прямой, каждый из которых соединяется с другими в двух точках, образуют геометрическую фигуру — треугольник. Прямые линии — это стороны, а точки их соприкосновения вершины. Один из отрезков, обычно который проходит параллельно горизонтальной плоскости, называют основанием.

В зависимости от размера внутренних углов замкнутой фигуры, треугольники разделяют на следующие виды:

  • остроугольные — все углы тела не превышают 90 градусов;
  • тупоугольные — один из разворотов имеет тупую форму;
  • прямоугольные — размер одного из трёх углов составляет 90 градусов.

По числу равных сторон треугольные фигуры разделяют на разносторонние, равнобедренные, равносторонние. Последние часто называют правильными, так как все стороны у такого объекта равны друг другу. Кроме этого, из особенностей равносторонней фигуры можно отметить, что центры вписанной и описанной окружности совпадают, а каждый из углов равен 60 градусам. Сумма всех углов треугольника равняется 180 градусам.

В любой трёхугольной фигуре можно построить так называемые 3 замечательные линии: медиана, биссектриса и высота.

Как найти высоту равностороннего треугольника

В правильном треугольнике эти 3 отрезка совпадают, то есть линия, опущенная из вершины к противолежащей стороне, одновременно являясь медианой, биссектрисой и высотой, образует прямой угол с основанием. При этом она делит его пополам. Фактически высота играет роль катета.

Получается, что в середине фигуры можно построить 3 отрезка, которые и будут высотами. Две из них будут опущены на боковые грани, а одна на основание. Точка пересечения перпендикулярных линий называется ортоцентром. Она располагается внутри геометрического тела и совпадает с центром вписанной окружности.

Для трёхугольного тела существует 2 теоремы. Одна из них утверждает, что противолежащие боковые стороны имеют одинаковую длину, а вторая, что если 2 угла невырожденного треугольника равны, то грани, противоположные им, также равны.

Интересно то, что эти правила справедливы как для абсолютной, так и сферической геометрии.

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

  • в нём все углы одинаковые и равны 60 градусов;
  • середина пересечения отрезков, совпадающих с высотой, биссектрисой и медианой, является центром геометрического тела;
  • радиус описанной окружности превышает радиус вписанной в 2 раза;
  • в равностороннем треугольнике длины всех элементов выражаются через длину стороны.

Высота в равностороннем треугольнике

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

  • радиус описанной окружности: R = (a * √3) / 3;‎
  • диаметр вписанного круга: r = (a * √3) / 6;
  • медиана: h = (a * √3) / 2;
  • площадь: s = (a2 * √3) / 4;
  • периметр: p = 3 * a.

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 600 = (AB * √3) / 2.

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Формула высоты

В равностороннем треугольнике длина стороны равна произведению удвоенной высоты и квадратного корня из трёх. Эту формулу легко доказать, используя теорему Пифагора. Так как высота одновременно является и биссектрисой, она, проведённая на противоположное основание, разделяет треугольник на 2 симметричные фигуры. Исходя из того, что отрезок — это перпендикуляр, полученные геометрические тела будут прямоугольными.

 высота правильного треугольника

Гипотенуза будет являться гранью основного тела, одним из катетов — проведённая линия, а вторым — половина основания. Последнее утверждение правдиво, так как в равносторонней фигуре все стороны равны. Соответственно, используя теорему Пифагора: c2 = b2 + a2, для рассматриваемого случая можно записать следующую формулу: a2 = h2 + a2 / 22, где: a — грань. После математических преобразований выражение примет вид: a = (2 * h) / √‎3. Отсюда уже можно вывести формулу для нахождения длины: h = (a * √‎3) / 2.

Аналогичное определение можно получить, используя для доказательства формулу Герона. Отрезок, являющийся высотой, можно найти из выражения: h = (2 * √‎p * (p — a) * (p — b) * (p — a)) / b. В равенстве p является периметром и находится как сумма всех сторон: p = (a + b + a). Так как одна из граней делится пополам, формулу можно привести к виду: p = (a + b + a) / 2 = a + b / 2.

После подстановки полученного выражения в формулу Герона, оно примет вид: h = 2 * √((a + b/2) * (b/2) * (a -b/2) * (b/2)) / b. Используя формулу сокращённого умножения: разность квадратов, равенство можно привести к виду: (a + b / 2) * (a — b / 2) = a2 — (b / 2)2.

Высота равностороннего треугольника формула

Для упрощения выражения под корень можно внести двойку и знаменатель b. Таким образом, формула примет вид: h = √(22 * (a2 — (b/2)2 * (b/2)2) * b2). Выполнив ряд сокращений, равенство можно будет представить: h = √(a2 — (b2/4)). Из-за того, что стороны в трёхугольной фигуре совпадают, окончательный вариант можно записать: h = (a√3) / 2. Что и следовало доказать.

Высоту можно определить, и зная радиус вписанной окружности. Её можно найти по формуле: r = (a √ 3) / 6. Если выражение переписать как r = (1 / 3) * ((a √3) / 2), возможно увидеть, что второй множитель как раз и есть высота. Соответственно, r = (1/3) * h. Отсюда: h = 3 * r. Это довольно простая формула, которая часто используется при геометрических вычислениях, поэтому её тоже нужно запомнить.

Решение примеров

Самостоятельное решение задач позволяет закрепить теоретические знания и запомнить формулы. Существуют определённые типы примеров, с помощью которых можно довольно быстро проработать весь изученный материал. Вот некоторые из них, рассчитанные на учеников восьмых классов средней школы:

Высота правильного треугольника

  1. Определить высоту равносторонней фигуры, если её грань равняется 6 см. Решение задачи нужно строить следующим образом. У такого треугольника все стороны равны. Так как высота является медианой, она делит противоположную сторону вершины, из которой опущена, на 2 равные части. Треугольник можно обозначить ABC, а искомый перпендикуляр BH. Образованное геометрическое тело является прямоугольным. Причём, согласно условию, у него известна гипотенуза и катет. Оставшийся катет, который и является высотой, легко найти по теореме Пифагора: BH2 + 32 = 62. Отсюда: BH2 = 25. Высота рассматриваемой фигуры будет равна 5 см.
  2. Сторона правильного треугольного тела равна √3. Узнать, чему будет равен радиус описанной окружности. Эту задачу можно решить, воспользовавшись свойством высоты в равностороннем треугольнике: точка пересечения медиан делит их в отношении 2 :1. Для наглядности можно нарисовать треугольник c вершинами ABC и высоту AK, а точку пересечения обозначить буквой O. Линия AO будет искомым радиусом окружности и составлять 2/3 от всей высоты AK. Длина отрезка равна: AK = √ (AB2 — AK2). Отсюда: R = (2 * √ (AB2 — AK2)) / 3 = (2 * √ (√ 32 — (3/2)2)) / 3 = 1. Задача решена.

Проверить правильность решения можно, используя онлайн-калькуляторы. Это интернет-сервисы, которые позволяют своим пользователям в автоматическом режиме вычислять различные математические примеры. Свои услуги они предоставляют бесплатно, от пользователя требуется только установленный веб-обозреватель и подключение к сети.

Важно ещё, что калькуляторы не только выдают быстро правильный ответ, но и показывают пошаговое решение. Это очень удобно, когда необходимо определить, на каком этапе была допущена ошибка.

Кроме этого, на своих страницах такого рода сервисы содержат краткий теоретический материал и даже примеры заданий. Так что калькуляторы будут полезны и на стадии обучения.

Какими свойствами обладает высота равностороннего треугольника? Как найти высоту равностороннего треугольника через его сторону, радиусы вписанной или описанной окружностей?

Теорема 1

(свойство высоты равностороннего треугольника)

В равностороннем треугольнике высота, проведённая к любой стороне, является также его медианой и биссектрисой.

vysota-ravnostoronnego-treugolnikaДоказательство:

Пусть в треугольнике ABC AB=BC=AC.

Так как AB=BC, треугольник ABC равнобедренный с основанием AC.

Проведём высоту BF.

kak-nahodit-vysotu-ravnostoronnego-treugolnikaПо свойству равнобедренного треугольника, BF является также его медианой и биссектрисой

(то есть, AF=FC, ∠ABF=∠CBF).

vysota-ravnostoronnego-treugolnika-ravnaАналогично, рассмотрев треугольник ABC как равнобедренный с основанием BC и треугольник ABC — равнобедренный с основанием AB, доказываем, что высоты AK и CD являются также его медианами и биссектрисами

(то есть, BK=KC, ∠BAK=∠CAK; AD=BD, ∠ACD=∠BCD).

Что и требовалось доказать.

Теорема 2

(свойство высот равностороннего треугольника)
Все три высоты равностороннего треугольника равны между собой.

Доказательство:

vysoty-ravnostoronnego-treugolnika-ravny

Пусть в треугольнике ABC AB=BC=AC.

AK, BF и CD — его высоты.

В прямоугольных треугольниках ABF, BCD и CAK:

гипотенузы AB, BC и CA равны по условию,

∠BAF=∠CBD=∠ACK (как углы равностороннего треугольника).

svojstvo-vysot-ravnostoronnego-treugolnikaСледовательно, треугольники ABF, BCD и CAK равны (по гипотенузе и острому углу).

Из равенства треугольников следует равенство соответствующих сторон: BF=CD=AK.

Что и требовалось доказать.

Из теорем 1 и 2 следует, что в равностороннем треугольнике все высоты, медианы и биссектрисы равны между собой.

1) Найдём высоту равностороннего треугольника через его сторону.

najti-vysotu-ravnostoronnego-treugolnika

В треугольнике ABC AB=BC=AC=a.

BF — высота, BF=h.

Рассмотрим прямоугольный треугольник ABF.

По определению синуса,

    [sin angle A = frac{{BF}}{{AB}}, Rightarrow BF = AB cdot sin angle A,]

    [BF = AB cdot sin {60^o} = frac{{ABsqrt 3 }}{2}.]

Отсюда формула высоты равностороннего треугольника через его сторону:

    [h = frac{{asqrt 3 }}{2}.]

(2-й способ: из прямоугольного треугольника ABF по теореме Пифагора

    [BF = sqrt {A{B^2} - A{F^2}}  = sqrt {{a^2} - {{(frac{a}{2})}^2}}  = sqrt {frac{{4{a^2} - {a^2}}}{4}}  = frac{{asqrt 3 }}{2}).]

2) Выразим высоту равностороннего треугольника через радиусы вписанной и описанной окружностей.

Точка O — центр правильного треугольника — является также центром его вписанной и описанной окружностей. Как центр вписанной окружности O — точка пересечения биссектрис треугольника. В правильном треугольнике биссектрисы и медианы совпадают. Следовательно, также является O точкой пересечения медиан.

vysota-ravnostoronnego-treugolnika-cherez-radiusА так как медианы треугольника в точке пересечения делятся в отношении 2 к 1, считая от вершины, то BO:OF=2:1, то есть

    [OF = frac{1}{3}BF,BO = frac{2}{3}BF,]

    [ Rightarrow BF = 3 cdot OF;BF = frac{3}{2} cdot BO.]

BO — радиус описанной окружности, OF — вписанной: BO=R, OF=r.

Следовательно, высота равностороннего треугольника равна трём радиусам вписанной окружности:

    [h = 3r]

и в полтора раза больше радиуса описанной окружности:

    [h = frac{{3R}}{2}.]

    [BF = BO + OF,]

    [h = R + r.]

Правильный (равносторонний, или равноугольный) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Содержание

  • 1 Свойства
  • 2 Правильный сферический треугольник
  • 3 Теоремы о равностороннем треугольнике или содержащие его
  • 4 См. также
  • 5 Примечания

Свойства[править | править код]

Правильный тетраэдр состоит из четырёх правильных треугольников.

Пусть a — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.

  • Радиус вписанной окружности правильного треугольника, выраженный через его сторону:
r = frac{sqrt 3}{6} a
  • Радиус описанной окружности правильного треугольника, выраженный через его сторону:
R = frac{sqrt 3}{3} a
  • Периметр правильного треугольника:
P = 3a = 3 sqrt 3 R = 6 sqrt 3 r
  • Высоты, медианы и биссектрисы правильного треугольника:
h = m = l = frac{sqrt 3}{2} a
  • Площадь правильного треугольника рассчитывается по формулам:
S={frac  {{sqrt  3}}{4}}a^{2}={frac  {3{sqrt  3}}{4}}R^{2}=3{sqrt  3}r^{2}={frac  {{sqrt  3}}{36}}P^{2}
  • Радиус описанной окружности равен двойному радиусу вписанной окружности:
R = 2r
  • Правильными треугольниками можно замостить плоскость.
  • В правильном треугольнике окружность девяти точек совпадает с вписанной окружностью.

Правильный сферический треугольник[править | править код]

Для любого значения в интервале от 60 до 180 градусов существует правильный сферический треугольник с равными этому значению углами.

Теоремы о равностороннем треугольнике или содержащие его[править | править код]

  • Задача Наполеона
  • Прямая Симсона одно из свойств
  • Теорема Вивиани
  • Теорема Морли
  • Теорема Наполеона
  • Теорема Помпею
  • Теоремы Тебо 2 и 3
  • Точки Аполлония
  • Точки Торричелли

См. также[править | править код]

  • Замечательные прямые треугольника
  • Замечательные точки треугольника
  • Равнобедренный треугольник
  • Теорема Чевы
  • Треугольник
  • Треугольник Рёло

Примечания[править | править код]

Перейти к шаблону «Символ Шлефли» 

Символ Шлефли

Многоугольники
  • {1}
  • {2}
  • {3}
  • {4}
  • {5}
  • {6}
  • {7}
  • {8}
  • {9}
  • {10}
  • {11}
  • {12}
  • {14}
  • {15}
  • {17}
  • {18}
  • {20}
  • {30}
  • {51}[de]
  • {257}
  • {65537}
  • {4294967295}
  • {∞}
Звёздчатые многоугольники
  • {5/2}
  • {6/2}
  • {7/2}
  • {7/3}
  • {8/2}
  • {8/3}
  • {9/2}
  • {9/3}
  • {9/4}
Паркеты на плоскости
  • {3,6}
  • {4,4}
  • {6,3}
Правильные многогранники
и сферические паркеты
  • {2,n}
  • {3,3}
  • {4,3}
  • {3,4}
  • {5,3}
  • {3,5}
  • {n,2}
Многогранники Кеплера — Пуансо
  • {5/2,5}
  • {5,5/2}
  • {5/2,3}
  • {3,5/2}
Соты

{4,3,4}

Четырёхмерные многогранники
  • {3,3,3}
  • {4,3,3}
  • {3,3,4}
  • {3,4,3}
  • {5,3,3}
  • {3,3,5}

Добавить комментарий