Точка пересечения серединных перпендикуляров треугольника как найти

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Задать вопрос автору статьи

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1, {BB}_1, {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Медианы треугольника

Рисунок 1. Медианы треугольника

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Доказательство.

Рассмотрим треугольник $ABC$, где $AM, BP, CK$ его биссектрисы. Пусть точка $O$ – точка пересечения биссектрис $AM и BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Биссектрисы треугольника

Рисунок 2. Биссектрисы треугольника

«Четыре замечательные точки треугольника» 👇

Для доказательства нам потребуется следующая теорема.

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ, OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n, m, p$ его серединные перпендикуляры. Пусть точка $O$ – точка пересечения серединных перпендикуляров $n и m$ (рис. 3).

Серединные перпендикуляры треугольника

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC, OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1, {BB}_1, {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Высоты треугольника

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ — середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ — середина стороны $C_2A_2$, а точка $C$ — середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1bot A_2B_2, {BB}_1bot A_2C_2, {AA}_1bot C_2B_2$. Следовательно, ${AA}_1, {BB}_1, {CC}_1$ — серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1, {BB}_1, {CC}_1$ пересекаются в одной точке.

Теорема доказана.

Пример задачи на использование 4 замечательных точек треугольника

Пример 1

Серединные перпендикуляры к сторонам $AB$ и $AC$ треугольника $ABC$ пересекаются в точке $D$ стороны $BC$. Докажите, что

а) точка $D$ — середина стороны $BC$.

б) $angle A=angle B+angle C$

Решение.

Изобразим рисунок.

Рисунок 5.

а) По теореме 4, все серединные перпендикуляры пересекаются в точке $D$. Следовательно, $D$ – основание серединного перпендикуляра к стороне $BC$. Значит точка $D$ — середина стороны $BC$.

б) Так как $X$ и $D$ — середины сторон, то $XD$ — средняя линия треугольника. Тогда, по теореме о средней линии треугольника $XD||AC$. Значит,$angle A=angle DXB$, как соответственные углы. Значит, $angle A={90}^0$. Тогда$angle B+angle C={180}^0-angle A={180}^0-{90}^0={90}^0=angle A$

ч. т. д.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Свойство серединных перпендикуляров к сторонам треугольника

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Seredinnyie perpendikulyaryi k storonam treugolnikaДано:

∆ ABC,

m, n, k — серединные перпендикуляры к сторонам AB, BC, AC

Доказать: m, n, k пересекаются в одной точке.

Доказательство:

Сначала докажем, что серединные перпендикуляры к двум сторонам треугольника пересекаются в одной точке.

Предположим, что m и k не пересекаются. Тогда m ∥ k.

    [left. begin{array}{l} AC bot k\ kparallel m end{array} right} Rightarrow AC bot m]

    [left. begin{array}{l} AC bot m\ AB bot m end{array} right} Rightarrow ACparallel AB]

Но прямые AB и AC пересекаются в точке A. Пришли к противоречию. Следовательно, прямые m и k пересекаются.

Обозначим точку пересечения прямых m и k как O.

По свойству серединного перпендикуляра к отрезку AO=OC и AO=BO. Следовательно, и OC=BO. Значит, точка O равноудалена от концов отрезка BC, следовательно, лежит на серединном перпендикуляре n к этому отрезку. Таким образом, все три серединных перпендикуляра m, n, k к сторонам треугольника ABC пересекаются в одной точке O.

Что и требовалось доказать.

Точка пересечения серединных перпендикуляров к сторонам треугольника является центром описанной около этого треугольника окружности

(поскольку OA=OB=OC).

Точка пересечения серединных перпендикуляров к сторонам треугольника — одна из четырех замечательных точек треугольника.

Теорема 1. Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.

Теорема 2. (обратная) Точка, лежащая внутри неразвёрнутого угла и равноудалённая от его сторон, лежит на биссектрисе этого угла.

Bisektrise.png

Теорема 3. Каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Теорема 4. (обратная) Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.

Vidusperpendikuls.png

Первая замечательная точка треугольника — точка пересечения биссектрис

Теорема 5. Биссектрисы треугольника пересекаются в одной точке.

Trijst_bisektrises.png

(AN), (BM) — биссектрисы, (O) — точка их пересечения.

Является ли биссектрисой (CK)? Если точка (O) равноудалена от сторон (AB) и (AC) и от сторон (BA) и (BC), то она лежит на биссектрисе угла

∠C

, так как равноудалена от сторон угла.

Эта точка и есть центр вписанной в треугольник окружности, всегда находится в треугольнике.

Вторая замечательная точка треугольника — точка пересечения серединных перпендикуляров сторон треугольника

Теорема 6. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

 Trijst_vidusp.png

Допустим, точка (O) — точка пересечения двух серединных перпендикуляров сторон (AB) и (BC). Она равноудалена и от точек (A) и (B), и от точек (B) и (C). Следовательно, она лежит на серединном перпендикуляре стороны (AC), так как равноудалена от её конечных точек.

Эта точка и есть центр описанной около треугольника окружности, находится в треугольниках с острыми углами, вне треугольника с тупым углом и на гипотенузе прямоугольного треугольника.

Третья замечательная точка треугольника — точка пересечения медиан

Теорема 7. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении (2 : 1), считая от вершины.

Mediana1.png

Точка пересечения медиан является центром тяжести треугольника.

Четвёртая замечательная точка треугольника — точка пересечения высот треугольника

Теорема 8. Высоты треугольника или их продолжения пересекаются в одной точке.

Augstums1.png

Augstums3.png

Точка пересечения высот называется ортоцентром треугольника.

В (1765) году немецкий математик Эйлер доказал, что в любом треугольнике ортоцентр, центр тяжести и центр описанной окружности лежат на одной прямой, названой позже прямой Эйлера.

Eilera_taisne.png

В двадцатых годах (XIX) века французские математики Понселе, Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середины отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности.

Eilera_taisne_rl.png

Ззамечательные точки треугольника – свойства, применение и примеры решения

Замечательные точки треугольника не просто так описываются таким прилагательным. Для многих учеников, а начинают знакомиться с этим понятием в 8 классе, эта тема кажется наиболее интересной и простой в курсе геометрии, поэтому многочисленные теоремы и свойства запоминаются достаточно просто.

Итак, какие же четыре точки называются замечательными? Перечислим их:

точку пересечения медиан треугольника;

точку пересечения биссектрис треугольника;

точку пересечения высот треугольника;

точку пересечения серединных перпендикуляров сторон треугольника.

Все точки обладают своими особенностями и свойствами, про всех есть свои теоремы и следствия из них. Кроме того, существует свойство, которое справедливо сразу для четырёх этих точек. Вне зависимости от того, медиана ли это, биссектриса или высота, все они пересекаются в одной точке.

Замечательные точки характерны не только для треугольников. Например, в трапеции так же четыре замечательные точки.

Теперь рассмотрим основные положения, связанные с замечательными точками треугольника.

Точка пересечения медиан треугольника

Из курса геометрии известно определение медианы треугольника.

На данном рисунке она обозначена прямой m, которая исходит из вершины А и заканчивается точкой М, являющейся центром стороны ВС.

Теперь сделаем чертёж треугольника, на котором укажем замечательную точку пересечения медиан.

Для начала постройте абсолютно любой треугольник и обозначьте его буквами А, В и С.

На отрезке АВ отметьте центр С1, на стороне ВС центр А1, на АС центр В1.

Проведите 3 медианы из вершин. Из угла А – медиана АА1,из угла В – медиана ВВ1, из угла С – медиана СС1.

Должно получиться так, как показано на рисунке: три проведённые линии пересекаются в одной точке G (что является их свойством).

Изучим следующее свойство точки пересечения трёх медиан треугольника.

Отрезки медианы треугольника, разделённой замечательной точкой, относятся друг к другу как 2:1. Проследим это свойство на примере используемого нами рисунка:

Точка пересечения биссектрис треугольника

Прежде чем мы приступим к изучению следующей точки, рассмотрим теорему о биссектрисе, проведённой из вершины неразвёрнутого угла, и докажем её.

Четыре замечательные точки треугольника

Вы будете перенаправлены на Автор24

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

О пересечении медиан треуголника: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где $_1, _1, _1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Точка пересечения биссектрис треугольника

О пересечении биссектрис треугольника: Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM, BP, CK$ его биссектрисы. Пусть точка $O$ – точка пересечения биссектрис $AM и BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Готовые работы на аналогичную тему

Для доказательства нам потребуется следующая теорема.

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ, OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Точка пересечения серединных перпендикуляров треугольника

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n, m, p$ его серединные перпендикуляры. Пусть точка $O$ – точка пересечения серединных перпендикуляров $n и m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC, OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Точка пересечения высот треугольника

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $_1, _1, _1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ — середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ — середина стороны $C_2A_2$, а точка $C$ — середина стороны $A_2B_2$. Из построения мы имеем, что $_1bot A_2B_2, _1bot A_2C_2, _1bot C_2B_2$. Следовательно, $_1, _1, _1$ — серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты $_1, _1, _1$ пересекаются в одной точке.

Пример задачи на использование 4 замечательных точек треугольника

Серединные перпендикуляры к сторонам $AB$ и $AC$ треугольника $ABC$ пересекаются в точке $D$ стороны $BC$. Докажите, что

а) точка $D$ — середина стороны $BC$.

б) $angle A=angle B+angle C$

Решение.

а) По теореме 4, все серединные перпендикуляры пересекаются в точке $D$. Следовательно, $D$ – основание серединного перпендикуляра к стороне $BC$. Значит точка $D$ — середина стороны $BC$.

б) Так как $X$ и $D$ — середины сторон, то $XD$ — средняя линия треугольника. Тогда, по теореме о средней линии треугольника $XD||AC$. Значит,$angle A=angle DXB$, как соответственные углы. Значит, $angle A=<90>^0$. Тогда$angle B+angle C=<180>^0-angle A=<180>^0-<90>^0=<90>^0=angle A$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 29 03 2022

Исследовательский проект Замечательные точки треугольника

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Kurchavov_Alexandr-1.doc

Глава1. Исторические сведения о замечательных точках треугольника

1.2. Медианы треугольника

1.3. Биссектрисы треугольника

1.4. Высоты в треугольнике

1.5. Серединные перпендикуляры к сторонам треугольника

Глава 2. Исследование замечательных точек треугольника.

Список использованной литературы

Геометрия – это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник – атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге “Начал” Евклид решает задачу: “Вписать круг в данный треугольник”. Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В “Началах” не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово “ортос” означает “прямой”, “правильный”). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы “замечательными” или “особенными” точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – “геометрии треугольника” или “новой геометрии треугольника”, одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже “прямой Эйлера”.

Треугольник — геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки — вершины треугольника, отрезки — стороны треугольника.

В А, В, С – вершины

АВ, ВС, СА – стороны

С каждым треугольником связаны четыре точки:

Точка пересечения медиан;

Точка пересечения биссектрис;

Точка пересечения высот.

Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― отрезок , соединяющий вершину треугольника с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой треугольника называется отрезок биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника — перпендикуляр , опущенный из вершины треугольника на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

у остроугольного треугольника – внутри;

у прямоугольного – на гипотенузе;

у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

[spoiler title=”источники:”]

http://spravochnick.ru/matematika/okruzhnost/chetyre_zamechatelnye_tochki_treugolnika/

http://infourok.ru/issledovatelskiy-proekt-zamechatelnie-tochki-treugolnika-3158516.html

[/spoiler]

Замечательные точки треугольника не просто так описываются таким прилагательным. Для многих учеников, а начинают знакомиться с этим понятием в 8 классе, эта тема кажется наиболее интересной и простой в курсе геометрии, поэтому многочисленные теоремы и свойства запоминаются достаточно просто. 

Итак, какие же четыре точки называются замечательными? Перечислим их:

  • точку пересечения медиан треугольника;

  • точку пересечения биссектрис треугольника;

  • точку пересечения высот треугольника;

  • точку пересечения серединных перпендикуляров сторон треугольника.

Все точки обладают своими особенностями и свойствами, про всех есть свои теоремы и следствия из них. Кроме того, существует свойство, которое справедливо сразу для четырёх этих точек. Вне зависимости от того, медиана ли это, биссектриса или высота, все они пересекаются в одной точке.

Замечательные точки характерны не только для треугольников. Например, в трапеции так же четыре замечательные точки.

Теперь рассмотрим основные положения, связанные с замечательными точками треугольника.

Точка пересечения медиан треугольника

Из курса геометрии известно определение медианы треугольника. 

Медиана треугольника

На данном рисунке она обозначена прямой m, которая исходит из вершины А и заканчивается точкой М, являющейся центром стороны ВС.

Теперь сделаем чертёж треугольника, на котором укажем замечательную точку пересечения медиан. 

Порядок построения:

  1. Для начала постройте абсолютно любой треугольник и обозначьте его буквами А, В и С.

  2. На отрезке АВ отметьте центр С1, на стороне ВС центр А1, на АС центр В1.

  3. Проведите 3 медианы из вершин. Из угла А – медиана АА1,из угла В – медиана ВВ1, из угла С – медиана СС1.

  4. Должно получиться так, как показано на рисунке: три проведённые линии пересекаются в одной точке G (что является их свойством).

Изучим следующее свойство точки пересечения трёх медиан треугольника.

Отрезки медианы треугольника, разделённой замечательной точкой, относятся друг к другу как 2:1. Проследим это свойство на примере используемого нами рисунка:

A1G = 2AG, B1G = 2BG, C1G = 2CG.

Точка пересечения медиан

Точка пересечения биссектрис треугольника

Прежде чем мы приступим к изучению следующей точки, рассмотрим теорему о биссектрисе, проведённой из вершины неразвёрнутого угла, и докажем её.

101

Рассмотрим пример. Дано:

  • угол ВАС < 180 градусов;

  • т. М лежит на прямой, исходящей из т. А;

  • АМ – биссектриса угла ВАС (угол КАМ = углу МАН).

Доказать: точка М – равноудалённая от отрезков АВ и АС.

Доказательство.

Для начала достроим чертёж. Расстоянием от точки М до отрезка АС будет являться перпендикуляр МН. Аналогично и с остальной стороной (перпендикуляр МК). 

В треугольниках АКМ и АНМ:

  • есть общая сторона – АМ;

  • угол КАМ = МАН, так как АМ – биссектриса.

Сторона АМ является биссектрисой одновременно треугольников МКА и МНА, а при ней лежат равные углы. Значит треугольники равны (по гипотенузе и острому углу).

Так как треугольники равны, отрезки КМ и МН тоже равны, а значит т. М равноудалена от АВ и АС, что и требовалось доказать.

Переходим к построению замечательной точки.

103

Отрезки С1М, А1М иВ1М являются равными. Значит они однозначно могут быть радиусами вписанной в данный треугольник окружности. Это является свойством трёх пересекающихся биссектрис.

Точка пересечения серединных перпендикуляров сторон треугольника

Для начала вспомним определение серединного перпендикуляра. Теорема о серединном перпендикуляре:

Серединный перпендикуляр

Сделаем краткое доказательство. Соединим концы отрезка с вершиной серединного отрезка. Докажем равенство полученных треугольников, из чего следует АD = DB.

Построим эту точку.

105

В треугольнике АВС отмечаем середины его сторон. Проводим три серединных перпендикуляра КО, LO, МО и отмечаем точку их пересечения О.

106

4.

987456

Точка пересечения высот треугольника

107

Проведём три высоты в ∆АВС, все они пересекутся в т. Н. Точка Н по отношению к ∆АВС – ортоцентр.

Свойство высот треугольника:

  • если все три высоты треугольника или их продолжения пересекаются в одной точке, то это ортоцентр;

  • СH * HНС
    = АH * АНА = ВH * ВНВ.

Ортоцентр может располагаться внутри треугольника, снаружи или совпадать с одной из вершин. 

На рисунке показано расположение ортоцентра в остроугольном, прямоугольном и тупоугольном треугольниках.

108

Пример решения задач с построением

Замечательные точки треугольника замечательные именно потому, что они имеют много полезных для решения задач свойств. Рассмотрим пример решения задачи на эту тему.

Задача.

Серединный перпендикуляр в ∆АВС, опущенный к АС, пересекает ВС в т. В. Найти BD, DC, если AD = 5 см BC = 9 см.

109

Решение.

Сделаем дополнительное построение – серединный отрезок КD к прямой АС. Тогда DK это и высота, и медиана в ∆АВС. Если в треугольнике проведена прямая, которая является высотой и медианой, то он равнобедренный. Значит, AD = DC = 5 см.

ВD =ВС — DC = 4 см.

Ответ: DC = 5 см, ВD = 4 см.

Добавить комментарий