Точки экстремума функции как найти пример

Содержание:

Экстремум функции

Функция y=f(x) называется возрастающей (убывающей) в некотором интервале, если при Экстремум функции - определение и вычисление с примерами решения

Если дифференцируемая функция у = f(x) на отрезке Экстремум функции - определение и вычисление с примерами решения возрастает (убывает), то ее производная на этом отрезке Экстремум функции - определение и вычисление с примерами решения

Точка Экстремум функции - определение и вычисление с примерами решения называется точкой локального максимума (минимума) функции Экстремум функции - определение и вычисление с примерами решения если существует окрестность точки Экстремум функции - определение и вычисление с примерами решения для всех точек которой верно неравенство Экстремум функции - определение и вычисление с примерами решенияЭкстремум функции - определение и вычисление с примерами решения

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках – ее экстремумами.

Необходимые условия экстремума. Если точка хо является точкой экстремума функции Экстремум функции - определение и вычисление с примерами решения то либо Экстремум функции - определение и вычисление с примерами решения не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек. Первое достаточное условие. Пусть Экстремум функции - определение и вычисление с примерами решения – критическая точка. Если f'(х) при переходе через точку Экстремум функции - определение и вычисление с примерами решения меняет знак плюс на минус, то в точке Экстремум функции - определение и вычисление с примерами решения функция имеет максимум, в противном случае – минимум. Если при переходе через критическую точку производная не меняет знак, то в точке хо экстремума нет.

Второе достаточное условие. Пусть функция Экстремум функции - определение и вычисление с примерами решения имеет производную f'(х) в окрестности точки Экстремум функции - определение и вычисление с примерами решения и вторую производную Экстремум функции - определение и вычисление с примерами решения в самой точке Экстремум функции - определение и вычисление с примерами решения. Если Экстремум функции - определение и вычисление с примерами решенияЭкстремум функции - определение и вычисление с примерами решения то точка Экстремум функции - определение и вычисление с примерами решения является точкой локального минимума (максимума) функции f(x). Если же Экстремум функции - определение и вычисление с примерами решения то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке Экстремум функции - определение и вычисление с примерами решения функция у = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка Экстремум функции - определение и вычисление с примерами решения.

Пример:

Найти экстремумы функции Экстремум функции - определение и вычисление с примерами решения

Решение:

Так как Экстремум функции - определение и вычисление с примерами решения то критические точки функции Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения Экстремумы могут быть только в этих точках. Так как при переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знак минус на плюс, поэтому в точке Экстремум функции - определение и вычисление с примерами решения у функции минимум. Вычислив значения функции в точках Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) =13.

Пример:

Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется а погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение:

Обозначим стороны площадки через Экстремум функции - определение и вычисление с примерами решения Площадь площадки равна Экстремум функции - определение и вычисление с примерами решения Пусть у – это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2х + у = а. Поэтому Экстремум функции - определение и вычисление с примерами решения (длина и ширина площадки не могут быть отрицательными). Экстремум функции - определение и вычисление с примерами решения откуда Экстремум функции - определение и вычисление с примерами решения Поскольку Экстремум функции - определение и вычисление с примерами решения– единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При Экстремум функции - определение и вычисление с примерами решения значит, в точке Экстремум функции - определение и вычисление с примерами решения функция S имеет максимум. Значение функции Экстремум функции - определение и вычисление с примерами решения

Поскольку S непрерывна на Экстремум функции - определение и вычисление с примерами решения и ее значения на концах Экстремум функции - определение и вычисление с примерами решения равны нулю, то найденное значение будет наибольшим значением функции.

Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является у = 2х.

Пример:

Требуется изготовить закрытый цилиндрический бак вместимостью Экстремум функции - определение и вычисление с примерами решения Экстремум функции - определение и вычисление с примерами решения Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение:

Площадь полной поверхности цилиндра равна Экстремум функции - определение и вычисление с примерами решения Мы знаем объем цилиндра Экстремум функции - определение и вычисление с примерами решения Значит, Экстремум функции - определение и вычисление с примерами решения Находим производную этой функции:Экстремум функции - определение и вычисление с примерами решенияследовательно, Экстремум функции - определение и вычисление с примерами решения

Экстремумы функции

Введём несколько новых понятий. Окрестностью точки Экстремум функции - определение и вычисление с примерами решения называется любой промежуток, для которого Экстремум функции - определение и вычисление с примерами решения является внутренней точкой.

Точка Экстремум функции - определение и вычисление с примерами решения называется точкой минимума (максимума) функции Экстремум функции - определение и вычисление с примерами решения если для всех Экстремум функции - определение и вычисление с примерами решения из некоторой окрестности точки Экстремум функции - определение и вычисление с примерами решения выполняется неравенство Экстремум функции - определение и вычисление с примерами решения

Точки минимума и максимума обозначают Экстремум функции - определение и вычисление с примерами решения соответственно.

Значение функции в точке минимума называется минимумом функции, а в точке максимума — максимумом функции. Обозначают их: Экстремум функции - определение и вычисление с примерами решения

Точки минимума и максимума функции называют точками экстремума (лат. extremum — край, конец). Значения функции в точках её экстремума — её экстремальные значения, или экстремумы.

Например, для функции Экстремум функции - определение и вычисление с примерами решения точка Экстремум функции - определение и вычисление с примерами решения является точкой максимума (рис. 77). Её максимум: Экстремум функции - определение и вычисление с примерами решения

Для функции Экстремум функции - определение и вычисление с примерами решения точка Экстремум функции - определение и вычисление с примерами решения является точкой минимума (рис. 78). Её минимум: Экстремум функции - определение и вычисление с примерами решения

Функция, график которой изображён на рисунке 75, имеет четыре экстремальные точки: Экстремум функции - определение и вычисление с примерами решения — точки максимума; Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения — точки минимума.

Точка экстремума функции не может принадлежать промежутку, на котором эта функция возрастает или убывает (почему?). Следовательно, те точки, в которых производная функции положительная или отрицательная, не могут быть точками её экстремума. Все остальные точки области определения функции являются её критическими точками. Поэтому точками экстремума функции могут быть только её критические точки. Это — необходимое условие существования экстремума.

Выбрать из критических точек функции точки экстремума позволяет достаточное условие существования экстремума.

Экстремум функции - определение и вычисление с примерами решения

Экстремум функции - определение и вычисление с примерами решения

Пусть функция Экстремум функции - определение и вычисление с примерами решения непрерывна на промежутке Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения — её критическая точка, Экстремум функции - определение и вычисление с примерами решения Тогда: точка Экстремум функции - определение и вычисление с примерами решения при переходе через которую в направлении роста аргумента производная меняет знак с «плюса» на «минус», является точкой максимума, а точка, при переходе через которую производная меняет знак с «минуса» на «плюс» — точкой минимума.

Действительно, если производная функции Экстремум функции - определение и вычисление с примерами решения отрицательная, то при переходе через точку Экстремум функции - определение и вычисление с примерами решения возрастание функции изменяется на убывание (рис. 79). В этом случае Экстремум функции - определение и вычисление с примерами решения — точка максимума. Если же при переходе через точку Экстремум функции - определение и вычисление с примерами решения убывание функции изменяется на возрастание, то Экстремум функции - определение и вычисление с примерами решения — точка минимума (рис. 80).

Если же производная функции в точке Экстремум функции - определение и вычисление с примерами решения равна нулю, а слева и справа от Экстремум функции - определение и вычисление с примерами решения производная функции положительная (рис.81) или слева и справа отрицательная, то Экстремум функции - определение и вычисление с примерами решения не является точкой экстремума.

  • Заказать решение задач по высшей математике

Пример №552

Найдите точки экстремума и экстремальные значения функции Экстремум функции - определение и вычисление с примерами решения

Решение:

 Экстремум функции - определение и вычисление с примерами решения

Критические точки функции: Экстремум функции - определение и вычисление с примерами решения При переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знаке Экстремум функции - определение и вычисление с примерами решения поэтому Экстремум функции - определение и вычисление с примерами решения —точка максимума. При переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знак с Экстремум функции - определение и вычисление с примерами решения поэтому Экстремум функции - определение и вычисление с примерами решения — точка минимума (рис. 82).

Экстремум функции - определение и вычисление с примерами решения

Ответ. Экстремум функции - определение и вычисление с примерами решения

Нахождение экстремумов функции можно оформлять в виде таблицы, как на с. 176. Особенно это удобно при общем исследовании функции, когда находят не только её экстремумы, но и другие свойства, строят её график.

Чтобы исследовать функцию, можно пользоваться следующей схемой:

  1. найти область определения функции;
  2. исследовать функцию на чётность, нечётность, периодичность;
  3. найти точки пересечения графика функции с осями координат;
  4. исследовать функцию на монотонность, то есть найти промежутки возрастания и убывания функции;
  5. найти точки экстремума и экстремальные значения функции;
  6. найти асимптоты графика функции;
  7. построить график функции.

Пример №553

Исследуйте функцию Экстремум функции - определение и вычисление с примерами решения и постройте её график.

Решение:

Область определения функции — все действительные числа, кроме Экстремум функции - определение и вычисление с примерами решения Поскольку она не симметрична относительно нуля, то функция не может быть чётной или нечётной. Функция непериодическая.

Уравнение Экстремум функции - определение и вычисление с примерами решения не имеет решений, поэтому график функции не пересекает ось Экстремум функции - определение и вычисление с примерами решения Ось Экстремум функции - определение и вычисление с примерами решения он пересекает в точке с ординатой Экстремум функции - определение и вычисление с примерами решения

Экстремум функции - определение и вычисление с примерами решения

Критические точки: Экстремум функции - определение и вычисление с примерами решения

Составим и заполним таблицу.
Экстремум функции - определение и вычисление с примерами решения

На промежутках Экстремум функции - определение и вычисление с примерами решения функция возрастает, на промежутках  Экстремум функции - определение и вычисление с примерами решения функция убывает. Экстремум функции - определение и вычисление с примерами решения — точка максимума,  Экстремум функции - определение и вычисление с примерами решения Экстремум функции - определение и вычисление с примерами решения —точка минимума, Экстремум функции - определение и вычисление с примерами решения 

Область значений функции: Экстремум функции - определение и вычисление с примерами решения

График функции имеет вертикальную асимптоту Экстремум функции - определение и вычисление с примерами решения так как Экстремум функции - определение и вычисление с примерами решения

График этой функции изображён на рисунке 83.

Экстремум функции - определение и вычисление с примерами решения

Пример №554

Может ли нечётная функция иметь экстремум в точке Экстремум функции - определение и вычисление с примерами решения А чётная функция?

Решение:

Нечётная функция не может. Если в окрестности точки Экстремум функции - определение и вычисление с примерами решения функция имеет экстремум, то с одной стороны от нуля она возрастает, а с другой — убывает, или наоборот. А нечётная функция — или только возрастает, или только убывает в окрестности точки Экстремум функции - определение и вычисление с примерами решения Чётная функция может. Например, функция Экстремум функции - определение и вычисление с примерами решения

Пример №555

Существуют ли такие числа Экстремум функции - определение и вычисление с примерами решения при которых имеет экстремум функция Экстремум функции - определение и вычисление с примерами решения

Решение:

При любых действительных значениях Экстремум функции - определение и вычисление с примерами решенияЭкстремум функции - определение и вычисление с примерами решения В каждой точке Экстремум функции - определение и вычисление с примерами решенияпроизводная данной функции неотрицательная. Функция Экстремум функции - определение и вычисление с примерами решениявозрастает на Экстремум функции - определение и вычисление с примерами решения поэтому не может иметь экстремумов.

Ответ. Не существуют.

Пример №556

Исследуйте функцию Экстремум функции - определение и вычисление с примерами решения и постройте её график.

Решение. Экстремум функции - определение и вычисление с примерами решения

2) Функция — нечётная, поскольку Экстремум функции - определение и вычисление с примерами решения

Следовательно, её график симметричен относительно начала координат и достаточно исследовать функцию на промежутке Экстремум функции - определение и вычисление с примерами решения

3) если Экстремум функции - определение и вычисление с примерами решения — график пересекает оси координат только в точке Экстремум функции - определение и вычисление с примерами решения

4) Найдём производную функции:

Экстремум функции - определение и вычисление с примерами решения

Очевидно, что Экстремум функции - определение и вычисление с примерами решения для всех х из области определения. Следовательно, функция убывает на каждом из промежутков Экстремум функции - определение и вычисление с примерами решения и не имеет максимумов и минимумов.

Для более точного построения вычислим значение функции в нескольких точках:

Экстремум функции - определение и вычисление с примерами решения

График функции имеет вертикальные асимптоты Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения (Убедитесь самостоятельно.)

График функции изображён на рисунке 84.

Экстремум функции - определение и вычисление с примерами решения

  • Методы решения систем линейных алгебраических уравнений (СЛАУ)
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Определитель матрицы
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод

Чтобы определить характер функции  и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров  и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Определение 1

Функция y=f(x) будет возрастать на интервале x, когда при любых x1∈X и x2∈X , x2>x1неравенство f(x2)>f(x1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y=f(x) считается убывающей на интервале x, когда при любых x1∈X, x2∈X, x2>x1  равенство f(x2)>f(x1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Возрастание и убывание функции на интервале

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a;b), где х=а, х=b, точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x.

Основные свойства элементарных функций типа y=sinx – определенность и непрерывность  при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале -π2; π2, тогда возрастание на отрезке имеет вид -π2; π2.

Точки экстремума, экстремумы функции

Определение 3

Точка х0 называется точкой максимума для функции y=f(x), когда для всех значений x неравенство f(x0)≥f(x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается ymax.

Точка х0 называется точкой минимума для функции y=f(x), когда для всех значений x неравенство f(x0)≤f(x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида ymin.

Окрестностями точки х0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Точки экстремума, экстремумы функции

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Точки экстремума, экстремумы функции

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [a;b]. Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х=b.

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Определение 4

Пусть задана функция y=f(x), которая дифференцируема в ε окрестности точки x0, причем имеет непрерывность в заданной точке x0. Отсюда получаем, что

  • когда f'(x)>0 с x∈(x0-ε; x0) и f'(x)<0 при x∈(x0; x0+ε), тогда x0 является точкой максимума;
  • когда f'(x)<0 с x∈(x0-ε; x0) и f'(x)>0 при x∈(x0; x0+ε), тогда x0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком, то есть с + на -, значит, точка называется максимумом;
  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком с – на +, значит, точка называется минимумом.

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Пример 1

Найти точки максимума и минимума заданной функции y=2(x+1)2x-2.

Решение

Область определения данной функции – это все действительные числа кроме х=2. Для начала найдем производную функции и получим:

y’=2x+12x-2’=2·x+12’·(x-2)-(x+1)2·(x-2)'(x-2)2==2·2·(x+1)·(x+1)’·(x-2)-(x+1)2·1(x-2)2=2·2·(x+1)·(x-2)-(x+2)2(x-2)2==2·(x+1)·(x-5)(x-2)2

Отсюда видим, что нули функции – это х=-1, х=5, х=2, то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Алгоритм для нахождения точек экстремума

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х=-2, х=0, х=3, х=6.

Получаем, что

y'(-2)=2·(x+1)·(x-5)(x-2)2x=-2=2·(-2+1)·(-2-5)(-2-2)2=2·716=78>0, значит, интервал -∞; -1 имеет положительную производную. Аналогичным образом получаем, что

y'(0)=2·(0+1)·0-50-22=2·-54=-52<0y'(3)=2·(3+1)·(3-5)(3-2)2=2·-81=-16<0y'(6)=2·(6+1)·(6-5)(6-2)2=2·716=78>0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий  с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х=-1 функция будет непрерывна, значит, производная изменит знак с + на -. По первому признаку имеем, что х=-1 является точкой максимума, значит получаем

ymax=y(-1)=2·(x+1)2x-2x=-1=2·(-1+1)2-1-2=0

Точка х=5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

ymin=y(5)=2·(x+1)2x-2x=5=2·(5+1)25-2=24

Графическое изображение

Алгоритм для нахождения точек экстремума

Ответ: ymax=y(-1)=0, ymin=y(5)=24.

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x0, этим и упрощает вычисление.

Пример 2

Найти точки максимума и минимума функции y=16×3=2×2+223x-8.

Решение.

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

-16×3-2×2-223x-8, x<016×3-2×2+223x-8, x≥0

После чего необходимо найти производную:

y’=16×3-2×2-223x-8′, x<016×3-2×2+223x-8′, x>0y’=-12×2-4x-223, x<012×2-4x+223, x>0

Точка х=0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y’x→0-0=lim yx→0-0-12×2-4x-223=-12·(0-0)2-4·(0-0)-223=-223lim y’x→0+0=lim yx→0-012×2-4x+223=12·(0+0)2-4·(0+0)+223=+223

Отсюда следует, что функция непрерывна в точке х=0, тогда вычисляем

lim yx→0-0=limx→0-0-16×3-2×2-223x-8==-16·(0-0)3-2·(0-0)2-223·(0-0)-8=-8lim yx→0+0=limx→0-016×3-2×2+223x-8==16·(0+0)3-2·(0+0)2+223·(0+0)-8=-8y(0)=16×3-2×2+223x-8x=0=16·03-2·02+223·0-8=-8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

-12×2-4x-223, x<0D=(-4)2-4·-12·-223=43×1=4+432·-12=-4-233<0x2=4-432·-12=-4+233<0

12×2-4x+223, x>0D=(-4)2-4·12·223=43×3=4+432·12=4+233>0x4=4-432·12=4-233>0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x=-6, x=-4, x=-1, x=1, x=4, x=6. Получим, что

y'(-6)=-12×2-4x-223x=-6=-12·-62-4·(-6)-223=-43<0y'(-4)=-12×2-4x-223x=-4=-12·(-4)2-4·(-4)-223=23>0y'(-1)=-12×2-4x-223x=-1=-12·(-1)2-4·(-1)-223=236<0y'(1)=12×2-4x+223x=1=12·12-4·1+223=236>0y'(4)=12×2-4x+223x=4=12·42-4·4+223=-23<0y'(6)=12×2-4x+223x=6=12·62-4·6+223=43>0

Изображение на прямой имеет вид

Алгоритм для нахождения точек экстремума

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x=-4-233, x=0, x=4+233, тогда отсюда точки максимума имеют значениx=-4+233, x=4-233

Перейдем к вычислению минимумов:

ymin=y-4-233=16×3-22+223x-8x=-4-233=-8273ymin=y(0)=16×3-22+223x-8x=0=-8ymin=y4+233=16×3-22+223x-8x=4+233=-8273

Произведем вычисления максимумов функции. Получим, что

ymax=y-4+233=16×3-22+223x-8x=-4+233=8273ymax=y4-233=16×3-22+223x-8x=4-233=8273

Графическое изображение

Алгоритм для нахождения точек экстремума

Ответ:

ymin=y-4-233=-8273ymin=y(0)=-8ymin=y4+233=-8273ymax=y-4+233=8273ymax=y4-233=8273

Второй признак экстремума функции

Если задана функция f'(x0)=0, тогда при ее f”(x0)>0 получаем, что x0 является точкой минимума, если f”(x0)<0, то точкой максимума. Признак связан с нахождением производной в точке x0.

Пример 3

Найти максимумы и минимумы функции y=8xx+1.

Решение

Для начала находим область определения. Получаем, что

D(y): x≥0x≠-1⇔x≥0

Необходимо продифференцировать функцию, после чего получим

y’=8xx+1’=8·x’·(x+1)-x·(x+1)'(x+1)2==8·12x·(x+1)-x·1(x+1)2=4·x+1-2x(x+1)2·x=4·-x+1(x+1)2·x

При х=1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение  при х=1. Получаем:

y”=4·-x+1(x+1)2·x’==4·(-x+1)’·(x+1)2·x-(-x+1)·x+12·x'(x+1)4·x==4·(-1)·(x+1)2·x-(-x+1)·x+12’·x+(x+1)2·x'(x+1)4·x==4·-(x+1)2x-(-x+1)·2x+1(x+1)’x+(x+1)22x(x+1)4·x==-(x+1)2x-(-x+1)·x+1·2x+x+12x(x+1)4·x==2·3×2-6x-1x+13·x3⇒y”(1)=2·3·12-6·1-1(1+1)3·(1)3=2·-48=-1<0

Значит, использовав 2 достаточное условие экстремума, получаем, что х=1 является точкой максимума. Иначе запись имеет вид ymax=y(1)=811+1=4.

Графическое изображение

Второй признак экстремума функции

Ответ: ymax=y(1)=4..

Третье достаточное условие экстремума

Определение 5

Функция y=f(x) имеет ее производную до n-го порядка  в ε окрестности заданной точки x0 и производную до n+1-го порядка в точке x0. Тогда f'(x0)=f”(x0)=f”'(x0)=…=fn(x0)=0.

Отсюда следует, что когда n является четным числом, то x0 считается точкой перегиба, когда n является нечетным числом, то x0 точка экстремума, причем f(n+1)(x0)>0, тогда x0 является точкой минимума, f(n+1)(x0)<0, тогда x0 является точкой максимума.

Пример 4

Найти точки максимума и минимума функции yy=116(x+1)3(x-3)4.

Решение

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y’=116x+13′(x-3)4+(x+1)3x-34’==116(3(x+1)2(x-3)4+(x+1)34(x-3)3)==116(x+1)2(x-3)3(3x-9+4x+4)=116(x+1)2(x-3)3(7x-5)

Данная производная обратится в ноль при x1=-1, x2=57, x3=3. То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y”=116x+12(x-3)3(7x-5)’=18(x+1)(x-3)2(21×2-30x-3)y”(-1)=0y”57=-368642401<0y”(3)=0

Значит, что x2=57 является точкой максимума. Применив 3 достаточный признак, получаем, что при n=1 и f(n+1)57<0.

Необходимо определить характер точек x1=-1, x3=3. Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y”’=18(x+1)(x-3)2(21×2-30x-3)’==18(x-3)(105×3-225×2-45x+93)y”'(-1)=96≠0y”'(3)=0

Значит, x1=-1 является точкой перегиба функции, так как при n=2 и f(n+1)(-1)≠0. Необходимо исследовать точку x3=3. Для этого находим 4 производную и производим вычисления в этой точке:

y(4)=18(x-3)(105×3-225×2-45x+93)’==12(105×3-405×2+315x+57)y(4)(3)=96>0

Из выше решенного делаем вывод, что x3=3 является точкой минимума функции.

Графическое изображение

Третье достаточное условие экстремума

Ответ: x2=57 является точкой максимума, x3=3 – точкой минимума заданной функции.

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

на графике функции отмечены локальные минимумы и максимумы

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

найдите количество точек экстремумов функции

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

на графике функции отмечены локальные минимумы и максимумы         график производной и отмеченные на ней точки минимумов и максимумов функции

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

найдите количество точек экстремумов функции

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

по графику производной определить минимумы и максимумы функции

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

(-7): минимум.

(3): максимум.

Все вышесказанное можно обобщить следующими выводами:

– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)). 
  2. Найдите корни уравнения (f'(x)=0). 
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов). 
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью). 
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    – если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    – если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    – если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

нахождение минимума и максимума

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

схематичное изображение функции

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

(15x^4-60x^2=0)      (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0)       (x^2-4=0)
               (x=±2)

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

поиск минимумов и максимумов

Теперь очевидно, что точкой максимума является (-2).

Ответ. (-2).

Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов

Скачать статью

Алгебра и начала математического анализа, 11 класс

Урок № 16. Экстремумы функции.

Перечень вопросов, рассматриваемых в теме

1) Определение точек максимума и минимума функции

2) Определение точки экстремума функции

3) Условия достаточные для нахождения точек экстремума функции

Глоссарий по теме

Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Максимум функции. Значение функции в точке максимума называют максимумом функции 

Минимум функции. Значение функции в точке минимума называют минимумом функции 

Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).

Точка максимума функции. Точку  х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точка минимума функции. Точку  х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точки экстремума функции. Точки минимума и максимума называют точками экстремума.

Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Алгоритм исследования функции на монотонность и экстремумы:

1) Найти область определения функции D(f)

2) Найти f’ (x).

3) Найти стационарные (f'(x) = 0) и критические (f'(x) не

существует) точки функции y = f(x).

4) Отметить стационарные и критические точки на числовой

прямой и определить знаки производной на получившихся

промежутках.

5) Сделать выводы о монотонности функции и точках ее

экстремума.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.

  • Точку х = х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≥ f(x0).
  • Точку х = х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≤ f(x0).

Точки максимума и минимума – точки экстремума.

Функция может иметь неограниченное количество экстремумов.

Критическая точка – это точка, производная в которой равна 0 или не существует.

Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.

Алгоритм нахождения максимума/минимума функции на отрезке:

  1. найти экстремальные точки функции, принадлежащие отрезку,
  2. найти значение функции в экстремальных точках из пункта 1 и в концах отрезка,
  3. выбрать из полученных значений максимальное и минимальное.

Примеры и разбор решения заданий тренировочного модуля

№1. Определите промежуток монотонности функции у=х2 -8х +5

Решение: Найдем производную заданной функции: у’=2x-8

2x-8=0

х=4

Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)

Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)

№2. Найдите точку минимума функции у= 2х-ln(х+3)+9

Решение: Найдем производную заданной функции:

Найдем нули производной:

х=-2,5

Определим знаки производной функции и изобразим на рисунке поведение функции:

Ответ: -2,5 точка min

№3. Материальная точка движется прямолинейно по закону x(t) = 10t2 − 48t + 15, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3с.

Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени. 

V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 мc

Ответ: V=12 мc

№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.

Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3

Ответ: 3

Содержание:

  1. Критические точки и экстремумы функции
  2. Теорема Ферма (Необходимое условие существовании экстремумов)
  3. Достаточное условие существования экстремума
  4. Задача пример №117
  5. Задача пример №118
  6. Задача пример №119
  7. Задача пример №120
  8. Задача пример №121

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

1. Для значений Критические точки и экстремумы функции равных Критические точки и экстремумы функцииКритические точки и экстремумы функции угловой коэффициент касательной к графику равен 0. Т.e. Критические точки и экстремумы функции. Эти точки являются критическими точками функции.

2. В точках Критические точки и экстремумы функции функция не имеет производной. Эти тоже критические точки функции.

Критические точки и экстремумы функции

3. Для рассматриваемой нами функции критические точки Критические точки и экстремумы функцииКритические точки и экстремумы функции делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Критические точки и экстремумы функции– критические точки, которые не изменяют возрастание и убывание (или наоборот).

По графику видно, что в точках внутреннего экстремума Критические точки и экстремумы функции производная функции равна нулю, а в точке Критические точки и экстремумы функции производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Критические точки и экстремумы функции

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Критические точки и экстремумы функции производная функции Критические точки и экстремумы функции равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т.е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Достаточное условие существования экстремума

Пусть функция Критические точки и экстремумы функции непрерывна на промежутке Критические точки и экстремумы функции и Критические точки и экстремумы функции. Если Критические точки и экстремумы функции является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

1 ) Критические точки и экстремумы функции слева от точки Критические точки и экстремумы функции положительна, а справа – отрицательна, то точка Критические точки и экстремумы функции является точкой максимума.

2) Критические точки и экстремумы функции слева от Критические точки и экстремумы функции отрицательна, а справа – положительна, то точка Критические точки и экстремумы функции является точкой минимума

3) Критические точки и экстремумы функции с каждой стороны от точки Критические точки и экстремумы функции имеет одинаковые знаки, то точка Критические точки и экстремумы функции не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Критические точки и экстремумы функции на отрезке Критические точки и экстремумы функции записываются как Критические точки и экстремумы функции и Критические точки и экстремумы функции.

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Критические точки и экстремумы функции

Задача пример №117

Для функции Критические точки и экстремумы функции определите максимумы и минимумы и схематично изобразите график.

Решение:

Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки функции: Критические точки и экстремумы функции

3. Точки Критические точки и экстремумы функции и Критические точки и экстремумы функции разбивают область определения функции на три промежутка.

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки:

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание и убывание Критические точки и экстремумы функции

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции. (-1;3) – максимум

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции (1;-1) – минимум

4. Используя полученные для функции Критические точки и экстремумы функции данные и найдя координаты нескольких дополнительных точек, построим график функции.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Задача пример №118

Найдите наибольшее и наименьшее значение функции Критические точки и экстремумы функции на отрезке [-1;2].

Решение:

Сначала найдем критические точки. Так как Критические точки и экстремумы функции, то критические точки можно найти из уравнения Критические точки и экстремумы функции. Критическая точка Критические точки и экстремумы функции не принадлежит данному отрезку [-1; 2], и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Критические точки и экстремумы функции и на концах отрезка.

Критические точки и экстремумы функции

Из этих значений наименьшее – 4, наибольшее 12. Таким образом: Критические точки и экстремумы функции

Задача пример №119

Найдите экстремумы функции Критические точки и экстремумы функции.

Решение:

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки: Критические точки и экстремумы функции, Критические точки и экстремумы функции

3. Интервалы, на которые критические точки делят область определения функции: Критические точки и экстремумы функции

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки.

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Для промежутка (0; 1,5) возьмем Критические точки и экстремумы функции

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции

Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание-убывание Критические точки и экстремумы функции

Используя полученную для функции Критические точки и экстремумы функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Критические точки и экстремумы функции и Критические точки и экстремумы функции касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Критические точки и экстремумы функции Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

• Точка Критические точки и экстремумы функции критическая точка функции Критические точки и экстремумы функции, но не является экстремумом.

• Функция Критические точки и экстремумы функции на промежутке [0; 1,5] возрастает.

• Функция Критические точки и экстремумы функциина промежутке Критические точки и экстремумы функции убывает.

Критические точки и экстремумы функции

Задача пример №120

Найдите экстремумы функции Критические точки и экстремумы функции

Решение:

1. Производная Критические точки и экстремумы функции

2. Критические точки: для этого надо решить уравнение Критические точки и экстремумы функции или найти точки, в которых производная не существует. В точке Критические точки и экстремумы функции функция не имеет конечной производной. Однако точка Критические точки и экстремумы функции принадлежит области определения. Значит, точка Критические точки и экстремумы функции является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Критические точки и экстремумы функции и Критические точки и экстремумы функции

Определим знак Критические точки и экстремумы функции, выбрав пробные точки для каждого промежутка:

Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции

Возрастание-убывание Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции убывает.

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

Критические точки и экстремумы функции

Задача пример №121

По графику функции производной Критические точки и экстремумы функции схематично изобразите график самой функции.

Критические точки и экстремумы функции

Решение:

Производная Критические точки и экстремумы функции в точке Критические точки и экстремумы функции равна нулю, а при Критические точки и экстремумы функции отрицательна, значит, на интервале Критические точки и экстремумы функции функция убывающая. При Критические точки и экстремумы функции производная положительна, а это говорит о том, что функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает. Точкой перехода от возрастания к убыванию функции является точка Критические точки и экстремумы функции. Соответствующий график представлен на рисунке.

Критические точки и экстремумы функции

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Объемы подобных фигур
  • Нахождение промежутков возрастания и убывания функции
  • Построение графиков функции с помощью производной
  • Задачи на экстремумы. Оптимизации

Лекции:

  • Экстремумы функции двух переменных. Производная по направлению
  • Доказательство неравенств
  • Системы уравнений
  • Максимальные и минимальные значения функции
  • Действия с корнями
  • Отрицательное биномиальное распределение
  • Длина дуги кривой
  • Вычислить несобственный интеграл
  • Градиент функции: пример решения
  • Интеграл натурального логарифма

Добавить комментарий