Тригонометрическая функция как найти целое число

Числовая окружность

В этой статье мы очень подробно разберем определение числовой окружности, узнаем её главное свойство и расставим числа 1,2,3 и т.д. Про то, как отмечать другие числа на окружности (например, (frac<π><2>, frac<π><3>, frac<7π><4>, 10π, -frac<29π><6>)) разбирается в этой статье .

Числовой окружностью называют окружность единичного радиуса, точки которой соответствуют действительным числам , расставленным по следующим правилам:

1) Начало отсчета находится в крайней правой точке окружности;

2) Против часовой стрелки – положительное направление; по часовой – отрицательное;

3) Если в положительном направлении отложить на окружности расстояние (t), то мы попадем в точку со значением (t);

4) Если в отрицательном направлении отложить на окружности расстояние (t), то мы попадем в точку со значением (–t).

Почему окружность называется числовой?
Потому что на ней обозначаются числа. В этом окружность похожа на числовую ось – на окружности, как и на оси, для каждого числа есть определенная точка.

Зачем знать, что такое числовая окружность?
С помощью числовой окружности определяют значение синусов, косинусов, тангенсов и котангенсов. Поэтому для знания тригонометрии и сдачи ЕГЭ на 60+ баллов, обязательно нужно понимать, что такое числовая окружность и как на ней расставить точки.

Что в определении означают слова «…единичного радиуса…»?
Это значит, что радиус этой окружности равен (1). И если мы построим такую окружность с центром в начале координат, то она будет пересекаться с осями в точках (1) и (-1).

Ее не обязательно рисовать маленькой, можно изменить «размер» делений по осям, тогда картинка будет крупнее (см. ниже).

Почему радиус именно единица? Так удобнее, ведь в этом случае при вычислении длины окружности с помощью формулы (l=2πR) мы получим:

Длина числовой окружности равна (2π) или примерно (6,28).

А что значит «…точки которой соответствуют действительным числам»?
Как говорили выше, на числовой окружности для любого действительного числа обязательно найдется его «место» – точка, которая соответствует этому числу.

Зачем определять на числовой окружности начало отсчета и направления?
Главная цель числовой окружности – каждому числу однозначно определить свою точку. Но как можно определить, где поставить точку, если неизвестно откуда считать и куда двигаться?

Тут важно не путать начало отсчета на координатной прямой и на числовой окружности – это две разные системы отсчета! А так же не путайте (1) на оси (x) и (0) на окружности – это точки на разных объектах.

Какие точки соответствуют числам (1), (2) и т.д?

Помните, мы приняли, что у числовой окружности радиус равен (1)? Это и будет нашим единичным отрезком (по аналогии с числовой осью), который мы будем откладывать на окружности.

Чтобы отметить на числовой окружности точку соответствующую числу 1, нужно от 0 пройти расстояние равное радиусу в положительном направлении.

Чтобы отметить на окружности точку соответствующую числу (2), нужно пройти расстояние равное двум радиусам от начала отсчета, чтобы (3) – расстояние равное трем радиусам и т.д.

При взгляде на эту картинку у вас могут возникнуть 2 вопроса:
1. Что будет, когда окружность «закончится» (т.е. мы сделаем полный оборот)?
Ответ: пойдем на второй круг! А когда и второй закончится, пойдем на третий и так далее. Поэтому на окружность можно нанести бесконечное количество чисел.

2. Где будут отрицательные числа?
Ответ: там же! Их можно так же расставить, отсчитывая от нуля нужное количество радиусов, но теперь в отрицательном направлении.

К сожалению, обозначать на числовой окружности целые числа затруднительно. Это связано с тем, что длина числовой окружности будет равна не целому числу: (2π). И на самых удобных местах (в точках пересечения с осями) тоже будут не целые числа, а доли числа (π) : ( frac<π><2>),(-frac<π><2>),(frac<3π><2>), (2π). Поэтому при работе с окружностью чаще используют числа с (π). Обозначать такие числа гораздо проще (как это делается можете прочитать в этой статье ).

Главное свойство числовой окружности

Одному числу на числовой окружности соответствует одна точка, но одной точке соответствует множество чисел.

Такая вот математическая полигамия.

И следствие из этого правила:

Все значения одной точки на числовой окружности можно записать с помощью формулы:

Если хотите узнать логику этой формулы, и зачем она нужна, посмотрите это видео .

В данной статье мы рассмотрели только теорию о числовой окружности, о том как расставляются точки на числовой и окружности и принципе, как с ней работать вы можете прочитать здесь .

Что надо запомнить про числовую окружность:

Тригонометрическая окружность с целыми числами

Числовая окружность

В этой статье мы очень подробно разберем определение числовой окружности, узнаем её главное свойство и расставим числа 1,2,3 и т.д. Про то, как отмечать другие числа на окружности (например, (frac , frac , frac , 10π, -frac )) разбирается в этой статье .

Числовой окружностью называют окружность единичного радиуса, точки которой соответствуют действительным числам , расставленным по следующим правилам:

1) Начало отсчета находится в крайней правой точке окружности;

2) Против часовой стрелки — положительное направление; по часовой – отрицательное;

3) Если в положительном направлении отложить на окружности расстояние (t), то мы попадем в точку со значением (t);

4) Если в отрицательном направлении отложить на окружности расстояние (t), то мы попадем в точку со значением (–t).

Почему окружность называется числовой?
Потому что на ней обозначаются числа. В этом окружность похожа на числовую ось – на окружности, как и на оси, для каждого числа есть определенная точка.

Зачем знать, что такое числовая окружность?
С помощью числовой окружности определяют значение синусов, косинусов, тангенсов и котангенсов. Поэтому для знания тригонометрии и сдачи ЕГЭ на 60+ баллов, обязательно нужно понимать, что такое числовая окружность и как на ней расставить точки.

Что в определении означают слова «…единичного радиуса…»?
Это значит, что радиус этой окружности равен (1). И если мы построим такую окружность с центром в начале координат, то она будет пересекаться с осями в точках (1) и (-1).

Ее не обязательно рисовать маленькой, можно изменить «размер» делений по осям, тогда картинка будет крупнее (см. ниже).

Почему радиус именно единица? Так удобнее, ведь в этом случае при вычислении длины окружности с помощью формулы (l=2πR) мы получим:

Длина числовой окружности равна (2π) или примерно (6,28).

А что значит «…точки которой соответствуют действительным числам»?
Как говорили выше, на числовой окружности для любого действительного числа обязательно найдется его «место» — точка, которая соответствует этому числу.

Зачем определять на числовой окружности начало отсчета и направления?
Главная цель числовой окружности — каждому числу однозначно определить свою точку. Но как можно определить, где поставить точку, если неизвестно откуда считать и куда двигаться?

Тут важно не путать начало отсчета на координатной прямой и на числовой окружности – это две разные системы отсчета! А так же не путайте (1) на оси (x) и (0) на окружности – это точки на разных объектах.

Какие точки соответствуют числам (1), (2) и т.д?

Помните, мы приняли, что у числовой окружности радиус равен (1)? Это и будет нашим единичным отрезком (по аналогии с числовой осью), который мы будем откладывать на окружности.

Чтобы отметить на числовой окружности точку соответствующую числу 1, нужно от 0 пройти расстояние равное радиусу в положительном направлении.

Чтобы отметить на окружности точку соответствующую числу (2), нужно пройти расстояние равное двум радиусам от начала отсчета, чтобы (3) – расстояние равное трем радиусам и т.д.

При взгляде на эту картинку у вас могут возникнуть 2 вопроса:
1. Что будет, когда окружность «закончится» (т.е. мы сделаем полный оборот)?
Ответ: пойдем на второй круг! А когда и второй закончится, пойдем на третий и так далее. Поэтому на окружность можно нанести бесконечное количество чисел.

2. Где будут отрицательные числа?
Ответ: там же! Их можно так же расставить, отсчитывая от нуля нужное количество радиусов, но теперь в отрицательном направлении.

К сожалению, обозначать на числовой окружности целые числа затруднительно. Это связано с тем, что длина числовой окружности будет равна не целому числу: (2π). И на самых удобных местах (в точках пересечения с осями) тоже будут не целые числа, а доли числа (π) : ( frac ),(-frac ),(frac ), (2π). Поэтому при работе с окружностью чаще используют числа с (π). Обозначать такие числа гораздо проще (как это делается можете прочитать в этой статье ).

Главное свойство числовой окружности

Одному числу на числовой окружности соответствует одна точка, но одной точке соответствует множество чисел.

Такая вот математическая полигамия.

И следствие из этого правила:

Все значения одной точки на числовой окружности можно записать с помощью формулы:

Если хотите узнать логику этой формулы, и зачем она нужна, посмотрите это видео .

В данной статье мы рассмотрели только теорию о числовой окружности, о том как расставляются точки на числовой и окружности и принципе, как с ней работать вы можете прочитать здесь .

Что надо запомнить про числовую окружность:

Единичная окружность

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

  • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
  • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
  • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
  • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

  • 2π радиан = 360°
  • 1 радиан = (360/2π) градусов
  • 1 радиан = (180/π) градусов
  • 360° = 2π радиан
  • 1° = (2π/360) радиан
  • 1° = (π/180) радиан

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Тригонометрический круг. Основные значения тригонометрических функций

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, тригонометрический круг :

Мы же здесь будем все подробно разбирать шаг за шагом + показать

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций, – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит тригонометрический круг ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, градусов, или .

Никак. можно, конечно, подключить формулы приведения… А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип, который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть ).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . Про тангенс и котангенс позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ тригонометрический круг , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в следующей статье.

Тригонометрический круг. Основные значения тригонометрических функций

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, тригонометрический круг :

Мы же здесь будем все подробно разбирать шаг за шагом + показать

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций, – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит тригонометрический круг ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, градусов, или .

Никак. можно, конечно, подключить формулы приведения… А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип, который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть ).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . Про тангенс и котангенс позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ тригонометрический круг , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в следующей статье.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/trigonometricheskaya-okruzhnost-s-tselymi-chislami

[/spoiler]

Содержание:

Тригонометрические функции

Изучая материал этого параграфа, вы расширите свои знания о тригонометрических функциях и их свойствах, узнаете, что такое радианная мера угла, какие функции называют периодическими.

Ознакомитесь с формулами, связывающими различные тригономет­рические функции, научитесь применять их для выполнения вычислений, упрощения выражений, доказательства тождеств.

Узнаете, какие уравнения называют простейшими тригонометричес­кими уравнениями; ознакомитесь с формулами корней простейших тригонометрических уравнений.

Радианная мера углов

До сих пор для измерения углов вы использовали градусы или части градуса — минуты и секунды.

Во многих случаях удобно пользоваться другой единицей измерения углов. Ее называют радианом.

Определение. Углом в один радиан называют централь­ный угол окружности, опирающийся на дугу, длина которой равна радиусу окружности.

На рисунке 8.1 изображен центральный угол АОВ, опирающий­ся на дугу А В , длина которой равна радиусу окружности. Величина угла АОВ равна одному радиану. Записывают: Тригонометрические функции с примерами решения

Также говорят, что радианная мера дуги АВ равна одному радиану. Записывают: Тригонометрические функции с примерами решения

Радианная мера угла (дуги) не зависит от радиуса окружности. Это утверждение проиллюстрировано на рисунке 8.2.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

На рисунке 8.3 изображены окружность радиуса R и дуга MN, длина которой равна Тригонометрические функции с примерами решения Тогда радианная мера угла MON (дуги MN) равна Тригонометрические функции с примерами решения рад. Вообще, если центральный угол окружности радиуса R опирается на дугу, длина которой равна Тригонометрические функции с примерами решения то говорят, что радианная мера этого центрального угла равна Тригонометрические функции с примерами решения рад. Длина полуокружности равна Тригонометрические функции с примерами решения Следовательно, радианная мера полуокружности равна Тригонометрические функции с примерами решения рад. Градусная мера полуокружности составляет 180°. Сказанное позволяет установить связь между ра­дианной и градусной мерами, а именно: Тригонометрические функции с примерами решения (1) Отсюда

Тригонометрические функции с примерами решения

Разделив 180 на 3,14 (напомним, что Тригонометрические функции с примерами решения), можно установить: 1 рад Тригонометрические функции с примерами решения Если обе части равенства (1) разделить на 180, то получим:

Тригонометрические функции с примерами решения (2)

Из этого равенства легко установить, что, например, 15° = 15—– рад = — рад, 90° = Тригонометрические функции с примерами решения Обычно при записи радианной меры угла обозначение «рад» опускают. Например, записывают: Тригонометрические функции с примерами решения В таблице приведены градусные и радианные меры часто встречающихся углов:

Тригонометрические функции с примерами решения

Используя радианную меру угла, можно получить удобную формулу для вычисления длины дуги окружности. Поскольку центральный угол в 1 рад опирается на дугу, длина которой равна радиусу Тригонометрические функции с примерами решения, то угол в Тригонометрические функции с примерами решения рад опирается на дугу, длина которой равна Тригонометрические функции с примерами решения. Если длину дуги, содержащей Тригонометрические функции с примерами решения рад, обозначить через Тригонометрические функции с примерами решения, то можно записать:

Тригонометрические функции с примерами решения

На координатной плоскости рассмотрим окружность единично­го радиуса с центром в начале координат. Такую окружность называют единичной. Пусть точка Тригонометрические функции с примерами решения, начиная движение от точки Тригонометрические функции с примерами решения, перемещается по единичной окружности против часовой стрелки. В некоторый момент времени она займет положение, при котором Тригонометрические функции с примерами решения(рис. 8.4). Будем говорить, что точка Тригонометрические функции с примерами решения получена в результате поворота точки Тригонометрические функции с примерами решения вокруг начала координат на угол Тригонометрические функции с примерами решения (на угол 1200)

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Пусть теперь точка Тригонометрические функции с примерами решения переместилась по единичной окружности по часовой стрелке и заняла положение, при котором Тригонометрические функции с примерами решения (рис. 8.5). Будем говорить, что точка Тригонометрические функции с примерами решения получена в результате поворота точки Тригонометрические функции с примерами решения вокруг начала координат на угол Тригонометрические функции с примерами решения.

Вообще, когда рассматривают движение точки по окружности против часовой стрелки (рис. 8.4), то угол поворота считают положительным, а когда по часовой стрелке (рис. 8.5) — то отрицательным.

Рассмотрим еще несколько примеров. Обратимся к рисунку 8.6.

Тригонометрические функции с примерами решения

Можно сказать, что точка А получена в результате поворота точки Тригонометрические функции с примерами решениявокруг начала координат на угол Тригонометрические функции с примерами решения(на угол 90°) или на угол Тригонометрические функции с примерами решения (на угол -270°). Точка В получена в результате поворота точки Тригонометрические функции с примерами решения на угол Тригонометрические функции с примерами решения (на угол 180°) или на угол Тригонометрические функции с примерами решения (на угол -180°). Точка С получена в результате поворота точки Тригонометрические функции с примерами решения. на угол Тригонометрические функции с примерами решения (на угол 270°) или на угол Тригонометрические функции с примерами решения(на угол -90°).

Если точка Тригонометрические функции с примерами решения, двигаясь по единичной окружности, сделает один полный оборот, то можно сказать, что угол поворота равен Тригонометрические функции с примерами решения (то есть 360°) или Тригонометрические функции с примерами решения (то есть -360°).

Если точка Тригонометрические функции с примерами решения сделает полтора оборота против часовой стрелки, то естественно считать, что угол поворота равен Тригонометрические функции с примерами решения (то есть 540°), если по часовой стрелке — то Тригонометрические функции с примерами решения (то есть -540°).

Величина угла поворота как в радианах, так и в градусах может выражаться любым действительным числом.

Угол поворота однозначно определяет положение точки Тригонометрические функции с примерами решения на единичной окружности. Однако любому положению точки Тригонометрические функции с примерами решения на окружности соответствует бесконечно много углов поворота. Например, точке Тригонометрические функции с примерами решения (рис. 8.7) соответствуют такие углы поворота: Тригонометрические функции с примерами решения и т.д., а также Тригонометрические функции с примерами решенияи т.д. Заметим, что все эти углы можно получить с помощью формулы Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции числового аргумента

В 9 классе, вводя определения тригонометрических функций углов от 0° до 180°, мы пользовались единичной полуокружностью. Обобщим эти определения для произвольного угла поворота Тригонометрические функции с примерами решения. Рассмотрим единичную окружность (рис. 9.1).

Тригонометрические функции с примерами решения

Определение. Косинусом и синусом угла поворота Тригонометрические функции с примерами решения называют соответственно абсциссу Тригонометрические функции с примерами решения и ординату у точки Тригонометрические функции с примерами решения единичной окружности, полученной в результате поворота точки Тригонометрические функции с примерами решения(1; 0) вокруг начала координат на угол Тригонометрические функции с примерами решения (рис. 9.1).

Записывают: Тригонометрические функции с примерами решения Точки Тригонометрические функции с примерами решения, А, В и С (рис. 9.2) имеют соответственно координаты (1; 0), (0; 1), (-1; 0), (0; -1). Эти точки получены в результате по­ворота точки Тригонометрические функции с примерами решения. (1; 0) соответственно на углы Тригонометрические функции с примерами решения Теперь, пользуясь данным определением, можно составить следующую таблицу1:

Тригонометрические функции с примерами решения

Пример:

Найдите все углы поворота Тригонометрические функции с примерами решения, при которых: 1) sin Тригонометрические функции с примерами решения = 0; 2) cos Тригонометрические функции с примерами решения = 0.

Решение:

1) Ординату, равную нулю, имеют только две точки единичной окружности: Тригонометрические функции с примерами решения и В (рис. 9.2). Эти точки получены в результате поворотов точки Тригонометрические функции с примерами решения на такие углы:

Тригонометрические функции с примерами решения . Все эти углы можно записать с помощью формулы Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения. Следовательно, sin Тригонометрические функции с примерами решения = 0 при Тригонометрические функции с примерами решения = Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения

2) Абсциссу, равную нулю, имеют только две точки единичной окружности: А и С (рис. 9.2). Эти точки получены в результате поворотов точки Тригонометрические функции с примерами решения на такие углы:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Все эти углы можно записать с помощью формулы Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения. Следовательно, Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

1 На форзаце 3 приведена таблица значений тригонометрических функций некоторых углов.

Определение. Тангенсом угла поворота а называют отно­шение синуса этого угла к его косинусу:

Тригонометрические функции с примерами решения

Например, Тригонометрические функции с примерами решения

Из определения тангенса следует, что тангенс определен для тех углов поворота Тригонометрические функции с примерами решения, для которых cos Тригонометрические функции с примерами решения, то есть при Тригонометрические функции с примерами решения.

Вы знаете, что каждому углу поворота Тригонометрические функции с примерами решения соответствует единственная точка единичной окружности. Следовательно, каждому значению угла Тригонометрические функции с примерами решения соответствует единственное число, являющееся значением синуса (косинуса, тангенса для Тригонометрические функции с примерами решения) угла Тригонометрические функции с примерами решения.

Поэтому зависимость значения синуса (косинуса, тангенса) от величины угла поворота является функциональной.

Функции Тригонометрические функции с примерами решения, соответствующие этим функциональным зависимостям, называют тригонометрическими функциями угла поворота Тригонометрические функции с примерами решения.

Каждому действительному числу Тригонометрические функции с примерами решения поставим в соответствие угол Тригонометрические функции с примерами решения рад. Это позволяет рассматривать тригонометрические функции числового аргумента. Например, запись «sin 2» означает «синус угла в 2 радиана». Из определений синуса и косинуса следует, что областью определения функций у = sin X и у = cos х является множество R.

Поскольку абсциссы и ординаты точек единичной окружности принимают все значения от -1 до 1 включительно, то областью значений функций у = sin х и у = cos х является промежуток [-1; 1].

Углам поворота Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, соответствует одна и та же точка единичной окружности, поэтому

Тригонометрические функции с примерами решения

Область определения функции Тригонометрические функции с примерами решения состоит из всех действи­тельных чисел, кроме чисел вида Тригонометрические функции с примерами решения. Областью значений функции Тригонометрические функции с примерами решения является множество Тригонометрические функции с примерами решения.

Можно доказать, что справедлива следующая формула:

Тригонометрические функции с примерами решения

Пример:

Найдите наибольшее и наименьшее значения вы­ражения Тригонометрические функции с примерами решения.

Решение:

Поскольку Тригонометрические функции с примерами решения, то Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения. Следовательно, наименьшее значение данного выражения равно -3; выражение принимает его при Тригонометрические функции с примерами решения. Наибольшее значение данного выражения равно 5; выражение принимает его при Тригонометрические функции с примерами решения.

Знаки значений тригонометрических функций. Четность и нечетность тригонометрических функций

Пусть точка Тригонометрические функции с примерами решения получена в результате поворота точки Тригонометрические функции с примерами решения (1; 0) вокруг начала координат на угол Тригонометрические функции с примерами решения. Если точка Р принадлежит I координатной четверти, то говорят, что Тригонометрические функции с примерами решения является углом I четверти. Аналогично можно говорить об углах II, III и IV четвертей.

Например, Тригонометрические функции с примерами решения и -300° — углы I четверти, Тригонометрические функции с примерами решения и -185° — углы II четверти, Тригонометрические функции с примерами решения и -96° — углы III четверти, 355° и — углы IV четверти. Углы вида Тригонометрические функции с примерами решения, не относят ни к какой четверти.

Точки, расположенные в I четверти, имеют положительные абсциссу и ординату. Следовательно, если Тригонометрические функции с примерами решения — угол I четверти, то Тригонометрические функции с примерами решения.

  • Если а — угол II четверти, то sin а > 0, cos а < 0.
  • Если а — угол III четверти, то sin а < 0, cos а < 0.
  • Если а — угол IV четверти, то sin а < 0, cos а > 0.

Знаки значений синуса и косинуса схематически показаны на рисунке 10.1.

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Поскольку Тригонометрические функции с примерами решения , то тангенсы углов I и III четвертей являются положительными, а углов II и IV четвертей — отрицательными (рис. 10.2). Пусть точки Тригонометрические функции с примерами решения получены в результате поворота точки Тригонометрические функции с примерами решения (1; 0) на углы Тригонометрические функции с примерами решения и –Тригонометрические функции с примерами решения соответственно (рис. 10.3).

Тригонометрические функции с примерами решения

Для любого угла Тригонометрические функции с примерами решения точки Тригонометрические функции с примерами решения имеют равные абсциссы и противоположные ординаты. Тогда из определений синуса и косинуса следует, что для любого действительного числа Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Это означает, что функция косинус является четной, а функция синус — нечетной.

Область определения функции Тригонометрические функции с примерами решения симметрична относительно начала координат (проверьте это самостоятельно). Кроме того: Тригонометрические функции с примерами решения

Следовательно, функция тангенс является нечетной.

Пример:

Какой знак имеет: 1) sin 280°; 2)tg(-140°)?

Решение:

1) Поскольку угол 280° является углом IV четверти, то sin 280° < 0.

2) Поскольку угол -140° является углом III четверти, то tg(-140°) > 0.

Пример:

Сравните sin 200° и sin (-200°).

Решение:

Поскольку угол 200° — угол III четверти, угол -200° — угол II четверти, то sin 200° < 0, sin (-200°) > 0. Следова­тельно, sin 200° < sin (-200°).

Пример:

Исследуйте на четность функцию: 1) Тригонометрические функции с примерами решения • 2)Тригонометрические функции с примерами решения.

Решение:

1) Область определения данной функции, D(f) = Тригонометрические функции с примерами решения, симметрична относительно начала координат.

Имеем:

Тригонометрические функции с примерами решения

Следовательно, рассматриваемая функция является четной.

2) Область определения данной функции, Тригонометрические функции с примерами решения, сим­метрична относительно начала координат. Запишем:

Тригонометрические функции с примерами решения Поскольку ни одно из равенств Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения не выполняется для всех Тригонометрические функции с примерами решения из области определения, то рассматриваемая функция не является ни четной, ни нечетной.

Свойства и графики тригонометрических функций

Вы знаете, что для любого числа х выполняются равенства

Тригонометрические функции с примерами решения Это указывает на то, что значения функций синус и косинус периодически повторяются при изменении аргумента на Тригонометрические функции с примерами решения. Функ­ции Тригонометрические функции с примерами решения являются примерами периодических функ­ций.

Определение. Функцию Тригонометрические функции с примерами решения называют периодической, если существует такое число Тригонометрические функции с примерами решения, что для любого Тригонометрические функции с примерами решения из области определения функции Тригонометрические функции с примерами решения выполняются равенства Тригонометрические функции с примерами решения Число Т называют периодом функции Тригонометрические функции с примерами решения.

Вы знаете, что для любого Тригонометрические функции с примерами решения из области определения функции Тригонометрические функции с примерами решения выполняются равенства

Тригонометрические функции с примерами решения Тогда из определения периодической функции следует, что тангенс является периодической функцией с периодом Тригонометрические функции с примерами решения.

Можно показать, что если функция Тригонометрические функции с примерами решения имеет период Тригонометрические функции с примерами решения, то любое из чисел Тригонометрические функции с примерами решения…. а также любое из чисел Тригонометрические функции с примерами решения… также является ее периодом. Из этого свойства следует, что каждая периодическая функция имеет бесконечно много периодов.

Например, любое число вида Тригонометрические функции с примерами решения является периодом функций у = sin х и у = cos х; а любое число вида Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения является периодом функции Тригонометрические функции с примерами решения

Если среди всех периодов функции f существует наименьший положительный период, то его называют главным периодом функции f.

Теорем а 11.1. Главным периодом функций Тригонометрические функции с примерами решения является число Тригонометрические функции с примерами решения; главным периодом функции Тригонометрические функции с примерами решения — число Тригонометрические функции с примерами решения.

Пример:

Найдите значение выражения:

1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения 3) Тригонометрические функции с примерами решения

Решение:

1)Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

2) Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

3) Тригонометрические функции с примерами решения

На рисунке 11.1 изображен график некоторой периодической функции Тригонометрические функции с примерами решения с периодом Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Фрагменты графика этой функции на промежутках [0; Т], [Т; 2Т], [2Т; ЗТ] и т. д., а также на промежутках [-Т ; 0], [-2Т; -Т ], [-ЗТ ; -2Т] и т. д. являются равными фигурами, причем любую из этих фигур можно получить из любой другой параллельным переносом на вектор с координатами Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения— некоторое целое число.

Пример:

На рисунке 11.2 изображен фрагмент графика периодической функции, период которой равен Т. Постройте график этой функции на промежутке Тригонометрические функции с примерами решения.

Решение:

Построим образы изображенной фигуры, полученные в результате параллельного переноса на векторы с координатами (Т; 0), (2Т; 0) и (-Т; 0). Объединение данной фигуры и полученных образов — искомый график (рис. 11.3).

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

При повороте точки Тригонометрические функции с примерами решения вокруг начала координат на углы от 0 до Тригонометрические функции с примерами решения большему углу поворота соответствует точка единичной окружности с большей ординатой (рис. 11.4). Это означает, что функция Тригонометрические функции с примерами решения возрастает на промежутке Тригонометрические функции с примерами решения. При повороте точки Тригонометрические функции с примерами решения на углы от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решения большему углу поворота соответствует точка единичной окружности с меньшей ординатой (рис. 11.4). Следовательно, функция Тригонометрические функции с примерами решения убывает на промежутке Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

При повороте точки Тригонометрические функции с примерами решения на углы от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решениябольшему углу поворота соответ­ствует точка единичной окружности с большей ординатой (рис. 11.4). Следовательно, функция Тригонометрические функции с примерами решения возрастает на промежутке Тригонометрические функции с примерами решения. Функция Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения имеет три нуля: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения то Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения то Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения достигает наибольшего значения, равного 1, при Тригонометрические функции с примерами решения и наименьшего значения, равного -1 , при Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решенияна промежутке Тригонометрические функции с примерами решения принимает все значения из промежутка [-1; 1].

Полученные свойства функции Тригонометрические функции с примерами решения позволяют построить ее график на промежутке Тригонометрические функции с примерами решения (рис. 11.5). График можно построить точнее, если воспользоваться данными таблицы значений тригонометрических функций некоторых углов, приведенной на форзаце 3.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

На всей области определения график функции Тригонометрические функции с примерами решения можно получить из построенного графика с помощью параллельных переносов на векторы с координатами Тригонометрические функции с примерами решения (рис. 11.6).

График функции Тригонометрические функции с примерами решения называют синусоидой.

Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения называют косинусоидой (рис. 11.8).

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения , то есть на промежутке длиной в период этой функции (напомним, что функция Тригонометрические функции с примерами решения в точках Тригонометрические функции с примерами решения не определена).

Можно показать, что при изменении угла поворота от Тригонометрические функции с примерами решения значения тангенса увеличиваются. Это означает, что функция Тригонометрические функции с примерами решениявозрастает на промежутке Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решенияимеет один нуль: х = 0. Если Тригонометрические функции с примерами решения, то Тригонометрические функции с примерами решения; если Тригонометрические функции с примерами решения

Полученные свойства функции Тригонометрические функции с примерами решения позволяют построить ее график на промежутке — Тригонометрические функции с примерами решения (рис. 11.9). График можно построить точнее, если воспользоваться данными таблицы значений тригонометрических функций некоторых аргументов, приведенной на форзаце 3.

Тригонометрические функции с примерами решения

На всей области определения график функции Тригонометрические функции с примерами решения можно получить из построенного графика с помощью параллельных переносов на векторы с координатами Тригонометрические функции с примерами решения (рис. 11.10).

Тригонометрические функции с примерами решения

В таблице приведены основные свойства тригонометрических функций.

Тригонометрические функции с примерами решения

Пример:

Сравните: 1) Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения.

Решение:

1) Поскольку числа Тригонометрические функции с примерами решенияпринадлежат промежутку Тригонометрические функции с примерами решения на котором функция Тригонометрические функции с примерами решения убывает, и Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения, то Тригонометрические функции с примерами решения

2) Поскольку углы 324° и 340° принадлежат промежутку [180°; 360°], на котором функция Тригонометрические функции с примерами решения возрастает, и 324° < 340°, то cos 324° < cos 340°.

Основные соотношения между тригонометрическими функциями одного и того же аргумента

В этом пункте установим тождества, связывающие значения тригонометрических функций одного и того же аргумента. Координаты любой точки Тригонометрические функции с примерами решения единичной окружности удовлетворяют уравнению Тригонометрические функции с примерами решения. Поскольку Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения — угол поворота, в результате которого из точки Тригонометрические функции с примерами решения была получена точка Тригонометрические функции с примерами решения, то

Тригонометрические функции с примерами решения (1)

Обратим внимание на то, что точка Р на единичной окружности выбрана произвольно, поэтому тождество (1) справедливо для любого Тригонометрические функции с примерами решения. Его называют основным тригонометрическим тождеством.

Используя основное тригонометрическое тождество, найдем зависимость между тангенсом и косинусом.

Пусть Тригонометрические функции с примерами решения. Разделим обе части равенства (1) на Тригонометрические функции с примерами решения. Получим:

Тригонометрические функции с примерами решения

Отсюда

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Упростите выражение:

1) Тригонометрические функции с примерами решения 2 ) Тригонометрические функции с примерами решения

Решение:

1) Тригонометрические функции с примерами решения

2) Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Известно, что Тригонометрические функции с примерами решения Вычислите Тригонометрические функции с примерами решения.

Решение:

Имеем:

Тригонометрические функции с примерами решения

Отсюда Тригонометрические функции с примерами решенияили Тригонометрические функции с примерами решения3 3 Рисунок 12.1 иллюстрирует эту задачу.

Пример:

Найдите Тригонометрические функции с примерами решения , если Тригонометрические функции с примерами решения

Решение:

Имеем:

Тригонометрические функции с примерами решения

Поскольку Тригонометрические функции с примерами решения, то Тригонометрические функции с примерами решения; следовательно,

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Формулы сложения

Формулами сложения называют формулы, выражающие Тригонометрические функции с примерами решения через тригонометрические функции углов Тригонометрические функции с примерами решения.

Докажем, чтоТригонометрические функции с примерами решения Пусть точки Тригонометрические функции с примерами решения получены в результате поворота точки Тригонометрические функции с примерами решения на углы Тригонометрические функции с примерами решения соответственно.

Рассмотрим случай, когда Тригонометрические функции с примерами решения. Тогда угол между векторамиТригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения (рис. 13.1). Координаты точек Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения соответственно равны Тригонометрические функции с примерами решенияи Тригонометрические функции с примерами решения. Тогда вектор Тригонометрические функции с примерами решения имеет координаты Тригонометрические функции с примерами решения, а вектор Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Выразим скалярное произведение векторов Тригонометрические функции с примерами решения через их координаты:

Тригонометрические функции с примерами решения В то же время по определению скалярного произведения векторов можно записать:

Тригонометрические функции с примерами решения Отсюда получаем формулу, которую называют косинусом разности:

Тригонометрические функции с примерами решения (1)

Формула (1) справедлива и в том случае, когда Тригонометрические функции с примерами решения Докажем формулу косинуса суммы:

Тригонометрические функции с примерами решения

Имеем: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Формулы синуса суммы и синуса разности имеют вид:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Формулы тангенса суммы и тангенса разности имеют вид:

Тригонометрические функции с примерами решения (2)

Тригонометрические функции с примерами решения (3)

Тождество (2) справедливо для всех Тригонометрические функции с примерами решения, при которых Тригонометрические функции с примерами решения Тождество (3) справедливо для всех Тригонометрические функции с примерами решения, при которых Тригонометрические функции с примерами решения

Формулы, выражающие тригонометрические функции аргумента Тригонометрические функции с примерами решения через тригонометрические функции аргумента а, называют формулами двойного аргумента.

В формулах сложения

Тригонометрические функции с примерами решения

положим Тригонометрические функции с примерами решения Получим:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Эти формулы соответственно называют формулами косинуса, синуса и тангенса двойного аргумента.

Поскольку Тригонометрические функции с примерами решения то из формулы Тригонометрические функции с примерами решения получаем еще две формулы:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Иногда эти формулы удобно использовать в таком виде:

Тригонометрические функции с примерами решения

или в таком виде:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Две последние формулы называют формулами понижения степени.

Пример:

Упростите выражение:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Решение:

1) Применяя формулы синуса суммы и синуса разности, получаем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

2) Заменим данное выражение на синус разности аргументов Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения. Получаем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Докажите тождество Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Пример:

Найдите значение выражения Тригонометрические функции с примерами решения.

Решение:

Используя формулу тангенса суммы углов 20° и 25°, получаем: Тригонометрические функции с примерами решения

Пример:

Упростите выражение:

1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения.

Решение:

1) Тригонометрические функции с примерами решения

2)Тригонометрические функции с примерами решения

Формулы приведения

Периодичность тригонометрических функций дает возможность сводить вычисление значений синуса и косинуса к случаю, когда значение аргумента принадлежит промежутку Тригонометрические функции с примерами решения. В этом пункте мы рассмотрим формулы, позволяющие в таких вычислениях I л п ограничиться лишь углами из промежутка Тригонометрические функции с примерами решения

Каждый угол из промежутка Тригонометрические функции с примерами решения можно представить в виде Тригонометрические функции с примерами решения или Тригонометрические функции с примерами решения, или Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения. Например, Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Вычисление синусов и косинусов углов вида Тригонометрические функции с примерами решения можно свести к вычислению синуса или косинуса угла Тригонометрические функции с примерами решения. Напри­мер:

Тригонометрические функции с примерами решения Применяя формулы сложения, аналогично можно получить:

Тригонометрические функции с примерами решения

Эти формулы называют формулами приведения для синуса. Следующие формулы называют формулами приведения для косинуса:

Тригонометрические функции с примерами решения

Проанализировав записанные формулы приведения, можно заметить закономерности, благодаря которым не обязательно заучи­ вать эти формулы. Для того чтобы записать любую из них, можно руководствоваться следующими правилами.

  1. В правой части равенства ставят тот знак, который имеет левая часть при условии, что Тригонометрические функции с примерами решения
  2. Если в левой части формулы аргумент имеет вид Тригонометрические функции с примерами решения, или Тригонометрические функции с примерами решения то синус заменяют на косинус и наоборот. Если аргумент имеет вид Тригонометрические функции с примерами решения то замена функции не происходит.

Покажем, как действуют эти правила для выражения . Тригонометрические функции с примерами решения Предположив, что Тригонометрические функции с примерами решенияприходим к выводу: Тригонометрические функции с примерами решенияявляется углом III координатной четверти. Тогда Тригонометрические функции с примерами решения. По первому правилу в правой части равенства должен стоять знак « – ».

Поскольку аргумент имеет вид Тригонометрические функции с примерами решения, то по второму правилу следует заменить синус на косинус. Следовательно, Тригонометрические функции с примерами решения.

Пример:

Упростите выражение Тригонометрические функции с примерами решения.

Решение:

Имеем: Тригонометрические функции с примерами решения

Пример:

Замените значение тригонометрической функции значением функции острого угла: 1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения.

Решение:

1) Тригонометрические функции с примерами решения. 2) Тригонометрические функции с примерами решения.

Уравнение COS x=b

Уравнение Тригонометрические функции с примерами решения

Поскольку областью значений функции Тригонометрические функции с примерами решения является промежуток Тригонометрические функции с примерами решения, то при Тригонометрические функции с примерами решения уравнение Тригонометрические функции с примерами решения не имеет реше­ний. Вместе с тем при любом Тригонометрические функции с примерами решения таком, что Тригонометрические функции с примерами решения, это уравнение имеет корни, причем их бесконечно много. Сказанное легко понять, обратившись к графической интерпретации: графики функций Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, имеют бесконечно много общих точек (рис. 15.1).

Тригонометрические функции с примерами решения

Понять, как решать уравнение Тригонометрические функции с примерами решения в общем случае, поможет рассмотрение частного случая. Например, решим уравнение Тригонометрические функции с примерами решения. На рисунке 15.2 изображены графики функций Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения (красная часть кривой на рисунке 15.2), то есть на промежутке, длина которого равна периоду этой функции. Прямая Тригонометрические функции с примерами решения пересекает график функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения в двух точках Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, абсциссы которых являются противоположными числами.

Следовательно, уравнение Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения имеет два корня. Поскольку Тригонометрические функции с примерами решения, то этими корнями являются числа Тригонометрические функции с примерами решения. Функция у = cos х — периодическая с периодом Тригонометрические функции с примерами решения. Поэтому каждый из остальных корней уравнения Тригонометрические функции с примерами решения отличается от одного из найденных корней Тригонометрические функции с примерами решенияили Тригонометрические функции с примерами решения на число вида Тригонометрические функции с примерами решения.

Итак, корни рассматриваемого уравнения можно задать формулами Тригонометрические функции с примерами решения. Как правило, эти две формулы заменяют одной записью:

Тригонометрические функции с примерами решения

Вернемся к уравнению Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения. На рисунке 15.3 показано, что на промежутке Тригонометрические функции с примерами решения это уравнение имеет два корня Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где а Тригонометрические функции с примерами решения (при b = 1 эти корни совпадают и равны нулю).

Тригонометрические функции с примерами решения

Тогда все корни уравнения Тригонометрические функции с примерами решения имеют вид

Тригонометрические функции с примерами решения

Эта формула показывает, что корень Тригонометрические функции с примерами решения играет особую роль: зная его, можно найти все остальные корни уравнения Тригонометрические функции с примерами решения. Корень Тригонометрические функции с примерами решенияимеет специальное название — арккосинус.

Определение. Арккосинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, называ­ют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения, косинус которого равен Тригонометрические функции с примерами решения. Для арккосинуса числа Тригонометрические функции с примерами решения используют обозначение Тригонометрические функции с примерами решения. Например,

  • Тригонометрические функции с примерами решения
  • Тригонометрические функции с примерами решения

Вообще, Тригонометрические функции с примерами решения, если Тригонометрические функции с примерами решения Теперь формулу корней уравнения Тригонометрические функции с примерами решения, можно записать в следующем виде:

Тригонометрические функции с примерами решения (1)

Заметим, что частные случаи уравнения Тригонометрические функции с примерами решения (для Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения) были рассмотрены ранее (см. п. 9).

Напомним полученные результаты:

Тригонометрические функции с примерами решения

Такие же ответы можно получить, используя формулу (1). Имеет место равенство

Тригонометрические функции с примерами решения

Пример:

Решите уравнение:

1) Тригонометрические функции с примерами решения 2 )Тригонометрические функции с примерами решения 3) Тригонометрические функции с примерами решения

Решение:

1) Используя формулу (1), запишем:

Тригонометрические функции с примерами решения Далее получаем:

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения 2) Имеем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

3) Перепишем данное уравнение следующим образом:

Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Тогда

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

Уравнения sin x=b и tg x=b

Уравнения Тригонометрические функции с примерами решения

Поскольку областью значений функции Тригонометрические функции с примерами решения является про­межуток [-1; 1], то при | b | > 1 уравнение Тригонометрические функции с примерами решения не имеет решений. Вместе с тем при любом Тригонометрические функции с примерами решения таком, что Тригонометрические функции с примерами решения, это уравнение имеет корни, причем их бесконечно много. Отметим, что частные случаи уравнения Тригонометрические функции с примерами решения (для Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения) были рассмотрены ранее (см. п. 9). Напомним полученные результаты:

Тригонометрические функции с примерами решения

Для того чтобы получить общую формулу корней уравнения Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, обратимся к графической интерпретации.

На рисунке 16.1 изображены графики функций Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения(красная часть кривой на рисунке 16.1), то есть на промежутке, длина которого равна периоду этой функции. На этом промежутке уравнение Тригонометрические функции с примерами решенияимеет два корня Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения(при Тригонометрические функции с примерами решения эти корни совпадают и равны Тригонометрические функции с примерами решения ).

Поскольку функция Тригонометрические функции с примерами решения — периодическая с периодом Тригонометрические функции с примерами решения, то каждый из остальных корней уравнения Тригонометрические функции с примерами решения отличается от одного из найденных корней на число вида Тригонометрические функции с примерами решения

Тогда корни уравнения Тригонометрические функции с примерами решения можно задать формулами

Тригонометрические функции с примерами решения Эти две формулы можно заменить одной записью:

Тригонометрические функции с примерами решения (1)

Действительно, если Тригонометрические функции с примерами решения — четное число, то есть Тригонометрические функции с примерами решения то получаем Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения — нечетное число, то есть Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения,Z, то получаем Тригонометрические функции с примерами решения

Формула (1) показывает, что корень Тригонометрические функции с примерами решения играет особую роль: зная его, можно найти все остальные корни уравнения Тригонометрические функции с примерами решения. Корень Тригонометрические функции с примерами решения имеет специальное название — арксинус.

Определение. Арксинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения, называют такое число Тригонометрические функции с примерами решения из промежуткаТригонометрические функции с примерами решения, синус которого равен Тригонометрические функции с примерами решения.

Для арксинуса числа Тригонометрические функции с примерами решения используют обозначение Тригонометрические функции с примерами решения.

Например, Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Вообще, Тригонометрические функции с примерами решения, если Тригонометрические функции с примерами решения

Теперь формулу корней уравнения Тригонометрические функции с примерами решения можно за­писать в следующем виде:

Тригонометрические функции с примерами решения (2) Имеет место равенство

Тригонометрические функции с примерами решения

Пример:

Решите уравнение: 1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения

Решение:

1) Используя формулу (2), запишем:

Тригонометрические функции с примерами решения

Далее получаем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ : Тригонометрические функции с примерами решения

2) Перепишем данное уравнение следующим образом:

Тригонометрические функции с примерами решения

Тогда Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияПоскольку областью значений функции Тригонометрические функции с примерами решения является мно­жество Тригонометрические функции с примерами решения, то уравнение Тригонометрические функции с примерами решения имеет решения при любом значенииТригонометрические функции с примерами решения.

Для того чтобы получить формулу корней уравнения Тригонометрические функции с примерами решения, обратимся к графической интерпретации. На рисунке 16.2 изображены графики функций Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Рассмотрим функцию Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения (красная кривая на рисунке 16.2), то есть на промежутке, длина которого равна периоду данной функции. На этом промежутке уравнение Тригонометрические функции с примерами решения при любом Тригонометрические функции с примерами решения имеет единственный корень Тригонометрические функции с примерами решения.

Поскольку функция Тригонометрические функции с примерами решения — периодическая с периодом Тригонометрические функции с примерами решения, то каждый из остальных корней уравнения Тригонометрические функции с примерами решения отличается от найденного корня на число вида Тригонометрические функции с примерами решения

Тогда корни уравнения Тригонометрические функции с примерами решения можно задать формулой

Тригонометрические функции с примерами решения Полученная формула показывает, что корень Тригонометрические функции с примерами решения играет особую роль: зная его, можно найти все остальные корни уравнения Тригонометрические функции с примерами решения. Корень Тригонометрические функции с примерами решения имеет специальное название — арктангенс.

Определение. Арктангенсом числа Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежуткаТригонометрические функции с примерами решения, тангенс которого равен Тригонометрические функции с примерами решения.

Для арктангенса числа Тригонометрические функции с примерами решения используют обозначение Тригонометрические функции с примерами решения Например,

  • Тригонометрические функции с примерами решения
  • Тригонометрические функции с примерами решения

Вообще, Тригонометрические функции с примерами решения

Теперь формулу корней уравнения Тригонометрические функции с примерами решенияможно записать в следующем виде:

Тригонометрические функции с примерами решения

Имеет место равенство

Тригонометрические функции с примерами решения

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Имеем: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Ответ : Тригонометрические функции с примерами решения

Тригонометрические уравнения, сводящиеся к алгебраическим

В пунктах 15, 16 мы получили формулы для решения уравнений вида Тригонометрические функции с примерами решения Эти уравнения называют простейшими тригонометрическими уравнениями. С помощью различных приемов и методов многие тригонометрические уравнения можно свести к простейшим.

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Выполним замену Тригонометрические функции с примерами решения Тогда данное уравнение принимает вид Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решениято уравнение Тригонометрические функции с примерами решения не имеет корней. Следовательно, исходное уравнение равносильно уравнению Тригонометрические функции с примерами решения Окончательно получаем: Тригонометрические функции с примерами решения Ответ: Тригонометрические функции с примерами решения

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Используя формулу Тригонометрические функции с примерами решения преобразуем данное уравнение:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

sin х – 3(1 – 2 sin2x) – 2 = 0; 6 sin2 х + sin x – 5 = 0.

Пусть Тригонометрические функции с примерами решения. Получаем квадратное уравнение Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения.

Итак, данное уравнение равносильно совокупности двух уравнений: Тригонометрические функции с примерами решения

Имеем: Тригонометрические функции с примерами решения

Ответ: Тригонометрические функции с примерами решения

Пример:

Решите уравнение Тригонометрические функции с примерами решения

Решение:

Поскольку Тригонометрические функции с примерами решения то данное уравнение можно записать следующим образом:

Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Пусть Тригонометрические функции с примерами решения. Имеем: Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения Получаем, что данное уравнение равносильно совокупности двух уравнений: Тригонометрические функции с примерами решения

Отсюда Тригонометрические функции с примерами решения

Ответ :Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияГЛАВНОЕ В ПАРАГРАФЕ 2

Радианная мера угла

Углом в один радиан называют центральный угол окружности, опирающийся на дугу, длина которой равна радиусу окруж­ности. Радианная и градусная меры угла связаны формулами

Тригонометрические функции с примерами решения

Косинус, синус и тангенс угла поворота

Косинусом и синусом угла поворота Тригонометрические функции с примерами решения называют соответственно абсциссу Тригонометрические функции с примерами решения и ординату Тригонометрические функции с примерами решения точки Тригонометрические функции с примерами решения единичной окружности, полученной в результате поворота точки Тригонометрические функции с примерами решения вокруг начала координат на угол Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Тангенсом угла поворота Тригонометрические функции с примерами решения называют отношение синуса этого sin о угла к его косинусу: Тригонометрические функции с примерами решения

Знаки значений тригонометрических функций

Тригонометрические функции с примерами решения

Периодические функции

ФункциюТригонометрические функции с примерами решения называют периодической, если существует такое число Тригонометрические функции с примерами решения что для любого Тригонометрические функции с примерами решения из области определения функции Тригонометрические функции с примерами решения выполняются равенства Тригонометрические функции с примерами решения Число Т на­зывают периодом функции Тригонометрические функции с примерами решения

Если среди всех периодов функции Тригонометрические функции с примерами решения существует наименьший положительный период, то его называют главным периодом функции Тригонометрические функции с примерами решения

Связь тригонометрических функций одного и того же аргумента

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Формулы сложения

Тригонометрические функции с примерами решения

Формулы приведения

Для того чтобы записать любую из формул приведения, можно руководствоваться следующими правилами:

1) в правой части равенства ставят тот знак, который имеет левая часть при условии, что Тригонометрические функции с примерами решения

2) если в левой части формулы аргумент имеет вид Тригонометрические функции с примерами решения или Тригонометрические функции с примерами решениято синус меняют на косинус и наоборот. Если аргумент имеет вид Тригонометрические функции с примерами решения то замена функции не происходит.

Формулы двойного аргумента

Тригонометрические функции с примерами решения

Арккосинус, арксинус и арктангенс

Арккосинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения косинус которого равен Тригонометрические функции с примерами решения Арксинусом числа Тригонометрические функции с примерами решения, где Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения синус которого равен Тригонометрические функции с примерами решения Арктангенсом числа Тригонометрические функции с примерами решения называют такое число Тригонометрические функции с примерами решения из промежутка Тригонометрические функции с примерами решения , тангенс которого равен Тригонометрические функции с примерами решения

Решение простейших тригонометрических уравнений

Тригонометрические функции с примерами решения

—–

Тригонометрические функции

Прежде чем рассматривать тригонометрические функции, напомним, что такое радианная мера угла.

Радианной мерой центрального угла называется отношение длины дуги, на которую он опирается, к радиусу окружности. Если Тригонометрические функции с примерами решения—длина радиуса, Тригонометрические функции с примерами решения—длина дуги, то радианная мера дуги Тригонометрические функции с примерами решения выразится так:

Тригонометрические функции с примерами решения

Так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения измеряются линейными единицами, то из (1) следует, что Тригонометрические функции с примерами решения—число отвлеченное. Из геометрии известно, что

Тригонометрические функции с примерами решения

где Тригонометрические функции с примерами решения—градусная мера центрального угла, опирающегося на дугу Тригонометрические функции с примерами решения. Поэтому радианная мера угла Тригонометрические функции с примерами решения будет

Тригонометрические функции с примерами решения

Находя Тригонометрические функции с примерами решения из формулы (2), получим выражение градусной меры угла через радианную:

Тригонометрические функции с примерами решения

Пример:

Найти радианную меру угла 30°.

Решение:

Подставляя в формулу (2) вместо Тригонометрические функции с примерами решения число 30, найдем

Тригонометрические функции с примерами решения

Пример:

Найти градусную меру угла, радианная мера которого равна 0,8.

Решение:

Подставляя в формулу (3)Тригонометрические функции с примерами решения, находим

Тригонометрические функции с примерами решения

или приближенно, полагая Тригонометрические функции с примерами решения, найдем Тригонометрические функции с примерами решения. Так как Тригонометрические функции с примерами решения —постоянное число, то формула (2) устанавливает прямую пропорциональность между числами Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения.

В тригонометрии, помимо положительных углов, вводятся и отрицательные, поэтому радианная мера угла может быть и отрицательной. Например, угол —90° имеет радианную меру Тригонометрические функции с примерами решения.

График функции y=sin x

График функции Тригонометрические функции с примерами решения

При построении графиков тригонометрических функций можно обойтись без таблиц. Для этого надо поступить так (рис. 26):

Тригонометрические функции с примерами решения

1. Возьмем окружность единичного радиуса и от точки Тригонометрические функции с примерами решения отложим на окружности в направлении, противоположном движению часовой стрелки, дугу Тригонометрические функции с примерами решения, длину которой обозначим Тригонометрические функции с примерами решения. Тогда радианная мера угла Тригонометрические функции с примерами решения будет численно равна Тригонометрические функции с примерами решения. Построим линию синуса этого угла; она изобразится отрезком Тригонометрические функции с примерами решения. Так как Тригонометрические функции с примерами решения, то синус угла, найденный как отношение Тригонометрические функции с примерами решения, численно равен длине отрезка Тригонометрические функции с примерами решения.

2. Возьмем оси координат (рис. 26). На оси Тригонометрические функции с примерами решения отложим отрезок Тригонометрические функции с примерами решения, длина которого равна длине Тригонометрические функции с примерами решения дуги Тригонометрические функции с примерами решения. Отрезок Тригонометрические функции с примерами решения, перпендикулярный оси, возьмем равным длине отрезка Тригонометрические функции с примерами решения. Тогда Тригонометрические функции с примерами решения. Следовательно, точка Тригонометрические функции с примерами решения имеет координаты Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения. Проделав это построение для различных дуг, получим ряд точек, лежащих на графике функции Тригонометрические функции с примерами решения. На рис. 26 построены точки, соответствующие дугам:

Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения периодическая и имеет период Тригонометрические функции с примерами решения. Это значит, что для любого значения Тригонометрические функции с примерами решения выполняется равенство^

Тригонометрические функции с примерами решения

График функции y=sin wx

График функции Тригонометрические функции с примерами решения

При изменении аргумента от 0 до Тригонометрические функции с примерами решения синус принимает все значения отТригонометрические функции с примерами решения до Тригонометрические функции с примерами решения. При дальнейшем увеличении аргумента значения синуса в силу периодичности повторяются.

Тригонометрические функции с примерами решения

Если рассмотрим функцию Тригонометрические функции с примерами решения, то при изменении аргумента Тригонометрические функции с примерами решения от 0 до Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения примет все значения от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решения. При дальнейшем увеличении аргумента сох значения sin сох будут повторяться. Найдем период функции Тригонометрические функции с примерами решения. Так как значения функции начнут повторяться с того момента, когда аргумент Тригонометрические функции с примерами решения станет равным Тригонометрические функции с примерами решения, то период найдется из равенства Тригонометрические функции с примерами решения.

Отсюда получаем, что Тригонометрические функции с примерами решения. Следовательно, Тригонометрические функции с примерами решения есть период функции Тригонометрические функции с примерами решения. В самом деле,

Тригонометрические функции с примерами решения

Поэтому функция Тригонометрические функции с примерами решения имеет график, изображенный на рис. 27. Если Тригонометрические функции с примерами решения, то график Тригонометрические функции с примерами решения сжимается по сравнению с графиком Тригонометрические функции с примерами решения. Если же Тригонометрические функции с примерами решения, то график растягивается (на рис. 27 Тригонометрические функции с примерами решения).

График функции y=sin (x-φ)

График функции Тригонометрические функции с примерами решения

Перейдем от старых осей координат к новым, начало которых находится в точке Тригонометрические функции с примерами решения. Старые координаты выражаются через новые так (см. § 2 гл. III):

Тригонометрические функции с примерами решения

Подставляя эти выражения в уравнение Тригонометрические функции с примерами решения, получимТригонометрические функции с примерами решения, т. е. график функции Тригонометрические функции с примерами решения в новой системе координат выглядит так же, как график функции

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения в старой системе координат. Следовательно, график функции Тригонометрические функции с примерами решения в старой системе координат можно получить, сдвигая график Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения вправо, если Тригонометрические функции с примерами решения, и влево, если Тригонометрические функции с примерами решения (на рис. 28 Тригонометрические функции с примерами решения).

График функции y=A sin x

График функции Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения, то каждая ордината на графике Тригонометрические функции с примерами решения имеет то же направление, что и ордината точки, лежащей на графике Тригонометрические функции с примерами решения, только ее длина умножается на число Тригонометрические функции с примерами решения. При этом, если Тригонометрические функции с примерами решения, то ордината увеличивается, если же

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения, то уменьшается. При Тригонометрические функции с примерами решения ордината изменяет направление на противоположное. На рис. 29 изображены графики функций Тригонометрические функции с примерами решения.

Таким образом, уравнение Тригонометрические функции с примерами решения определяет на плоскости кривую линию, называемую синусоидой. Коэффициент Тригонометрические функции с примерами решения, называемый частотой, влияет на растяжение синусоиды в направлении оси Тригонометрические функции с примерами решения. При этом, если Тригонометрические функции с примерами решения, то синусоида растягивается, если же Тригонометрические функции с примерами решения, то сжимается. Коэффициент Тригонометрические функции с примерами решения называется фазой, его величина влияет на сдвиг синусоиды, как целого, вдоль оси Тригонометрические функции с примерами решения. Если Тригонометрические функции с примерами решения положителен, то сдвиг производится вправо, если же Тригонометрические функции с примерами решения отрицателен, то — влево. Коэффициент Тригонометрические функции с примерами решения называется амплитудой, его величина влияет на растяжение синусоиды в направлении оси Тригонометрические функции с примерами решения.

На рис. 30 показано последовательное построение графика функцииТригонометрические функции с примерами решения. Сверху изображен график функции Тригонометрические функции с примерами решения, ниже—график функции Тригонометрические функции с примерами решения, еще ниже—графикТригонометрические функции с примерами решения и в самом низу —график функции Тригонометрические функции с примерами решения. На всех четырех графиках точки, имеющие одну и ту же абсциссу, лежат на одной вертикальной прямой.

Тригонометрические функции с примерами решения

Указанный метод построения синусоид может быть использован и для построения косинусоид. Приведем пример.

Пример:

Построим график функции Тригонометрические функции с примерами решения.

Решение:

Применяя формулы приведения, известные из тригонометрии будем иметь

Тригонометрические функции с примерами решения

Этот график уже построен на рис. 30, 4.

————-

Тригонометрические функции

Периодические функции

Многие события, происходящие в природе – восход и закат солнца, появление комет, сезонные изменения температуры воздуха, всплеск и затухание волн в океане и т.п., являются циклически повторяющимися событиями. Процесс по производству оборудования, движение частей машины и т.д., так же могут быть заданы периодической функцией. Исследуем периодические переменные на примере. Работа станка по нарезке ленты. В фирме по производству измерительной ленты имеется станок, при помощи которого тонкая лента разрезается на кусочки по 3 м и сворачивается. График работы станка и описание принципа работы висит на стене.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

1. 0,5 см-наибольшая высота, на которую поднимается нож.

2. Нож бездействует 3 секунды, с 0-3, 4 -7 секунды и т.д.

3. Нож опускается вниз в интервале с 3 до 3,5 сек., отрезает ленту, и с 3,5 до 4 сек. нож поднимается вверх.

4. На один полный цикл тратится 4 секунды. На какой, по вашему секунде, нож снова отрежет ленту?

Станок по изготовлению измерительной ленты циклически повторяет работу. Один цикл длится 4 секунды. График зависимости высоты ножа от времени, также соответствует одному циклу. В следующий раз нож разрежет ленту на 11,5 секунде. Такие функции называются циклическими (периодическими) функциями. Значения периодических функций повторяются на определённом интервале.

Пусть существует такое число Тригонометрические функции с примерами решения, что для произвольного х из области определения функции Тригонометрические функции с примерами решения, также принадлежит области определения и удовлетворяют условию Тригонометрические функции с примерами решения. Тогда Тригонометрические функции с примерами решения называется периодической функцией и, если период равен Т, то Тригонометрические функции с примерами решения также является периодом Тригонометрические функции с примерами решения. На самом деле, например,Тригонометрические функции с примерами решения.

Наименьший положительный период функции называется его основным периодом.

Периодичность тригонометрических функций

Можно увидеть , что при совпадении конечных сторон угла поворота, значения тригонометрических функций совпадают. Например, Тригонометрические функции с примерами решениядля всех значений х. Значит, значения тригонометрических функций повторяются. Значение синуса и косинуса повторяются с периодом Тригонометрические функции с примерами решения, а тангенса и котангенса с периодом Тригонометрические функции с примерами решения. Тригонометрическими функциями числового аргумента х называются одноименные тригонометрические функции угла равного х радиан. Все свойства функций для угла (четность и нечетность, периодичность и тд.) одинаковы для тригонометрических функций от числового аргумента. Чтобы построить график этой функции, достаточно изобразить его на отрезке, длина которого равна периоду, а затем повторить его.

График функций y= sin x и y=cos x

График функций Тригонометрические функции с примерами решения

График функции y=sin x

График функции Тригонометрические функции с примерами решения.

Периодическая функция Тригонометрические функции с примерами решения ири движении по окружности при повороте на угол Тригонометрические функции с примерами решения показывает высоту (расстояние по вертикали) от оси х. На единичной окружности координата каждой точки равна Тригонометрические функции с примерами решения и удовлетворяют уравнению Тригонометрические функции с примерами решения. Здесь угол Тригонометрические функции с примерами решения угол между единичным радиусом и положительным направлением оси х. Значит, координата у определяется Тригонометрические функции с примерами решения.

Между дугой, которую описывает точка, и значениями функции Тригонометрические функции с примерами решения, существует однозначное соответствие.

Тригонометрические функции с примерами решения

Разобьём дугу, принадлежащую I четверти на три равных дуги и в точках деленияТригонометрические функции с примерами решения проведём прямые, параллельные оси абсцисс. Через точки пересечения прямых Тригонометрические функции с примерами решения с соответствующими параллельными прямыми проведём сплошную линию. Получим график, как показано на рисунке.

Тригонометрические функции с примерами решения

Известно, что единичная окружность совершает полный оборот за 3600 или Тригонометрические функции с примерами решения радиана. Построим, аналогичным образом, график функции Тригонометрические функции с примерами решения на промежуткеТригонометрические функции с примерами решения: Тригонометрические функции с примерами решения

Так как синус является периодической функцией, то на промежутке длиной Тригонометрические функции с примерами решения: график Тригонометрические функции с примерами решения будет повторятся заново. Если обозначить функцию через у, а аргумент через х, то можно записать Тригонометрические функции с примерами решения. График функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения можно начертить, как показано ниже:

Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения называется синусоидой (с амплитудой, равной 1, и периодом Тригонометрические функции с примерами решения).

График функции Тригонометрические функции с примерами решения можно построить при помощи таблицы значений. Так как синус является периодической функцией, то достаточно построить этот график на отрезке [0; Тригонометрические функции с примерами решения] длиной Тригонометрические функции с примерами решения. Отметим значение точек из таблицы на графике и проведём сплошную линию. Полученный график, является графиком функцииТригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Как из таблицы значений, так и по графику видно, что график функции, Тригонометрические функции с примерами решения проходит через точку (0; 0) начало координат.

При возрастании х от 0 до Тригонометрические функции с примерами решения значения у возрастают от 0 до 1;

По таблице значений и графику функции Тригонометрические функции с примерами решения перечислим её свойства:

  1. Область определения множество всех действительных чисел.
  2. Область значений отрезок [-1; 1].
  3. Функция Тригонометрические функции с примерами решения нечётная: Тригонометрические функции с примерами решения, т.е. график симметричен относительно начала координат.
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения.
  5. Синусоида пересекает ось абсцисс в точках …, –Тригонометрические функции с примерами решения, …, и т.д., т.е. при Тригонометрические функции с примерами решенияфункция Тригонометрические функции с примерами решения обращается в нуль. Синусоида проходит через начало координат.
  6. Наибольшее значение равное 1 функция принимает при х … , Тригонометрические функции с примерами решения;Тригонометрические функции с примерами решения; ….., т.е. при Тригонометрические функции с примерами решения .
  7. Наименьшее значение равное -1 функция принимает при Тригонометрические функции с примерами решения;Тригонометрические функции с примерами решеният.е. при Тригонометрические функции с примерами решения.

График функции y=cos x

График функции Тригонометрические функции с примерами решения.

График функцииТригонометрические функции с примерами решения на отрезке [0; Тригонометрические функции с примерами решения] можно построить аналогично графику функции Тригонометрические функции с примерами решения геометрическим способом, используя единичную окружность, а также при помощи таблицы значений. Так как Тригонометрические функции с примерами решения, т.е. график можно построить переместив график функции Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения влево. Получаем график функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

По графику перечислим свойства функции Тригонометрические функции с примерами решения:

  1. Область определения: множество всех действительных чиселТригонометрические функции с примерами решения.
  2. Область значений отрезок [-1; 1].
  3. Функция Тригонометрические функции с примерами решения чётная функция (график симметричен относительно оси у)
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения
  5. График пересекает ось абсцисс в точках … , Тригонометрические функции с примерами решения,… , т.д., т.е. при Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения обращается в нуль. График пересекает ось ординат в точке (0; 1).
  6. Наибольшее значение равное 1 функция принимает при х …, Тригонометрические функции с примерами решения,… , т.е. при Тригонометрические функции с примерами решения .
  7. Наименьшее значение равное – 1 функция принимает при Тригонометрические функции с примерами решения,… , т.е. при Тригонометрические функции с примерами решения.

Строить графики функций у = sin х и у = cos х удобно при помощи пяти основных точек (точек пересечения с осью абсцисс и точками экстремума). Последовательность пяти точек для функции у = sin х на промежутке [0;Тригонометрические функции с примерами решения] может быть задана так: Тригонометрические функции с примерами решения

Последовательность пяти точек для функции у = cos х на промежутке [0; Тригонометрические функции с примерами решения] может быть задана так: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Преобразование графиков функций у = sin х и у = cos х.

Растяжение и сжатие.

Пример 1. Если на графики функции у = sinx абсциссы оставить без изменения, а ординаты увеличить в 2 раза, то получим точки, принадлежащие графику функции у = 2 sinх. Это говорит о том, что график функции у = 2 sinх может быть построен из графика функции у = sinх растяжением от оси абсцисс в 2 раза. График функции у = 0,5 sinх можно построить сжатием к оси абсцисс графика функции у = sinх в 2 раза.

Тригонометрические функции с примерами решения

Графики функций у = a sin х и у = a cos х получаются соответственно из графиков функций у = sin х и у = cos х растяжением от оси абсцисс при Тригонометрические функции с примерами решения и сжатием, при Тригонометрические функции с примерами решения. При а < 0 график функции отображается симметрично относительно оси х.

Пример 2. График функции у = sin 2х в 2 раза “обгоняет” график функции у = sin х. Если функция у = sin х принимает значения от 0 до 1 на промежуткеТригонометрические функции с примерами решения то функция у = sin 2х эти же значения принимает на интервале в этом промежутке Тригонометрические функции с примерами решения. Точки графика функции у = sin 2х можно получить, умножив абсциссы точек графика функции у = sin х на Тригонометрические функции с примерами решения, при этом не меняя значения ординат. График функции у = sin 2х получается из графика у = sin х сжатием в 2 раза и целый период умещается в отрезке Тригонометрические функции с примерами решения. График функции Тригонометрические функции с примерами решения получается растяжением графика функции у = sin х в 2 раза и целый период умещается в отрезок Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияГрафики функций у = sin bx и у = cos bx соответственно получаются из графиков функций у = sin х и у = cos х сжатием к оси ординат, при b > 1 и растяжением при 0 < b < 1. В случае b < 0 с учётом того, что синус является нечётной функцией, а косинус чётной приводит к случаям, указанным выше.

Графики функцийТригонометрические функции с примерами решения полученные растя-жснием(сжатием) вдоль координатных осей графиков Тригонометрические функции с примерами решения также являются синусоидами (косинусоидами).

При увеличении значения Тригонометрические функции с примерами решения амплитуда увеличивается, при уменьшении – уменьшается. При увеличении значения Тригонометрические функции с примерами решения период уменьшается, при уменьшении – увеличивается.Тригонометрические функции с примерами решения

Пример. Постройте график функции Тригонометрические функции с примерами решения .

1.График функции Тригонометрические функции с примерами решения строится растяжением в 2 раза графика функции Тригонометрические функции с примерами решения от оси ординат.

2.Полученный график растягивается от оси абсцисс в 2 раза.

Тригонометрические функции с примерами решения

Исследование. Пусть материальная точка движется по окружности радиуса Тригонометрические функции с примерами решения из начальной точки А (а; 0) с угловой скоростью Тригонометрические функции с примерами решения.

1)Для этой точки запишите зависимость координаты от времени Тригонометрические функции с примерами решения .

Тригонометрические функции с примерами решения

2)Найдите наибольшее и наименьшее значение абсцисс и ординат точки.

3)Обоснуйте, что положение точки не меняется при изменении

времени на Тригонометрические функции с примерами решения .

Период и амплитуда функций у = a sin bx и у = a cos bx

Теорема. Если основной период функции Тригонометрические функции с примерами решенияравен Т, то основной период функции Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения (здесь а и b числа, отличные от нуля).

Отсюда получаем, чтоТригонометрические функции с примерами решения является основным периодом для функций Тригонометрические функции с примерами решения. На самом деле,

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Число Тригонометрические функции с примерами решения является амплитудой. Амплитуда равна половине разности наибольшего и наименьшего значения.

Пример. Для функции Тригонометрические функции с примерами решения амплитуда равна |-3| или 3, основной 2л л период Тригонометрические функции с примерами решения.

Сдвиг по горизонтали – фаза.

В функциях Тригонометрические функции с примерами решения член с показывает смещение графика по горизонтали, которое называется фазой. Пример. Постройте график функции Тригонометрические функции с примерами решения

Построим график функции Тригонометрические функции с примерами решения растяжением графика

функции у = cos х в 2 раза от оси ординат. График функции

Тригонометрические функции с примерами решения можно получить смещением графика

функции Тригонометрические функции с примерами решения вправо на Тригонометрические функции с примерами решения единиц, т.е. получаем

график функцииТригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Смещение по вертикали

В функциях Тригонометрические функции с примерами решения член d показывает смещение но вертикали: если d > 0 график функции сдвигается вверх, d < 0 график сдвигается вниз.

Пример. Постройте график функции у = 2 sin х – 1.

Решение: ниже показаны этапы преобразования графика функции

у = sin x в график функции у = 2 sin х – 1 по шагам.

1.Увеличиваем амплитуду в 2 раза получаем график у = 2 sinx.

2.Сдвигаем график вниз на одну единицу и получаем график функции у = 2 sinx – 1. Тригонометрические функции с примерами решения

Множество значений функции Тригонометрические функции с примерами решения.

График функции у= 2 sin х-1 изменяется относительно прямой у = -1 на 2 единицы вверх и вниз. Эта линия называется средней линией.

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

максимум = средняя линия + амплитуда

минимум = средняя линия – амплитуда

Тригонометрические функции с примерами решения

Пример. Постройте график функции Тригонометрические функции с примерами решения.

1)График функции Тригонометрические функции с примерами решения получается из графика функции

у = cos х сжатием к оси ординат в 2 раза.

Тригонометрические функции с примерами решения

2) Смещая график функции у = cos 2х влево на Тригонометрические функции с примерами решения единицы получаем график функции Тригонометрические функции с примерами решения, т.е. Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

3) Растянем график функции Тригонометрические функции с примерами решениявдоль оси ординат в 3 раза и получим график функцииТригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

4) Сместим график функцииТригонометрические функции с примерами решения по вертикали на 1 единицу вверх и получим график функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

Построение синусоиды по пяти основным точкам

Преобразование при помощи движения и подобия сохраняет “форму” кривой. Поэтому не только график синуса, но в тоже время и кривая, полученная растяжением (сжатием) и последовательными смещениями, называется синусоидой. Свойства функций, заданных в виде Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решенияаналогичны свойствам функций синуса и косинуса, что помогает при их исследовании. В начале необходимо найти их период и точки, в которых значения функции равны 0 или ± а. График функции Тригонометрические функции с примерами решения иТригонометрические функции с примерами решенияможно легко построить по значениям пяти важных точек в промежутке Тригонометрические функции с примерами решения по следующему алгоритму.

  1. Определяем амплитуду графика.
  2. Определяем основной период графика Тригонометрические функции с примерами решения
  3. Разбиваем отрезок [0; Т] на 4 равных части: Тригонометрические функции с примерами решения.
  4. Пять важных точек – точки пересечения с осью х, точки максимума и минимума. Для вышеупомянутых точек х находятся значения у.
  5. Координаты 5-ти точек (х; у) отмечаются на координатной плоскости.
  6. Эти точки соединяются. Полученная синусоидальная кривая является графиком для одного периода. Повторяя построенный график, можно получить график заданной функции на любом отрезке.

Пример 1. Постройте график функции Тригонометрические функции с примерами решения по пяти основным точками.

Решение: амплитуда: Тригонометрические функции с примерами решения

Основной период: Тригонометрические функции с примерами решения

Отрезок, соответствующий одному периоду по оси х разделим на четыре равных части. Для целого периода Тригонометрические функции с примерами решения равна Тригонометрические функции с примерами решения. Начиная от точки Тригонометрические функции с примерами решения, через каждые Тригонометрические функции с примерами решения отметим справа последовательно точки Тригонометрические функции с примерами решениячерез Тригонометрические функции с примерами решения периода, Тригонометрические функции с примерами решения черезТригонометрические функции с примерами решения периода, Тригонометрические функции с примерами решения через Тригонометрические функции с примерами решения периода и, наконец,

Тригонометрические функции с примерами решения через целый период. Тригонометрические функции с примерами решения

Вычислим значения функции Тригонометрические функции с примерами решения в указанных точках. Тригонометрические функции с примерами решения

Отметим координаты этих точек на координатной плоскости, и соединим сплошной линией. Данный график является графиком функции Тригонометрические функции с примерами решения на отрезке Тригонометрические функции с примерами решения. Если параллельно перенести данный график вдоль оси абсцисс на Тригонометрические функции с примерами решения то получим график функции Тригонометрические функции с примерами решения на всей числовой оси (показано пунктиром).

Тригонометрические функции с примерами решения

Пример 2. Постройте график функции Тригонометрические функции с примерами решения.

Решение. Амплитуда: Тригонометрические функции с примерами решения. Значения у меняются от -2 до 2.

Основной период: Тригонометрические функции с примерами решения.

Разделим отрезок Тригонометрические функции с примерами решения (один период ) на 4 равные части. Найдём значения х и соответствующие значения функции. Построим график.

Тригонометрические функции с примерами решения

Пример 3. Для нахождения начальной и конечной точек периода функции Тригонометрические функции с примерами решения надо решить неравенство Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Здесь начальная точка — показывает и фазу тоже.

Разделив отрезок Тригонометрические функции с примерами решения на 4 равные части необходимо определить пять основных точек. Значения х в этих пяти точках будут Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

В этих точках х для функции Тригонометрические функции с примерами решения получаем точки Тригонометрические функции с примерами решения и строим график. Для функции Тригонометрические функции с примерами решения имеем: амплитуда:

Тригонометрические функции и периодические события

В природе и в жизни мы достаточно часто сталкиваемся с периодическими процессами – вращение Земли, изменение времен года, дыхание, сердечный ритм сердца человека и т.д.. Также периодическими являются очень многие физические явления. Например, при исследовании колебания электрических и оптических волн используют периодические функции. Самые простые колебания называются гармоническими колебаниями и записываются в виде Тригонометрические функции с примерами решения . Тригонометрические функции с примерами решения

Пример 1. Биология. В биологии прогнозирование численности зверей и птиц моделируют с помощью периодических функций. Учёные исследуют численность сов и мышей в одном регионе. В результате моделируется функция численности особей (по месяцам).

Для сов эта функция записывается так: Тригонометрические функции с примерами решения,

для мышей так: Тригонометрические функции с примерами решения.

По информации, представленной на графике, можно сделать выводы

о численности сов и мышей, которые являются нищей для сов.

а)Постройте графики каждой функции.

б)Какой вывод можно сделать об изменении численности сов и мышей?

в)Исследуйте отношение численности сов и мышей в зависимости от времени.

Решение:

а) Тригонометрические функции с примерами решения

Для сов имеем: максимум функции 1100, минимум 900.

Амплитуда: 100. Сдвиг по вертикали: d = 1000 (начальное значение). Средняя линия = 1000. Период:Тригонометрические функции с примерами решения, тогда Тригонометрические функции с примерами решения

Т.е., основной период функции 24 месяца.

Тригонометрические функции с примерами решения

Для мышей имеем: максимум функции 24 000, минимум 16 000.

Амплитуда : 4000. Сдвиг по вертикали: d = 20000 (начальное значение). Средняя линия = 20000. Период:Тригонометрические функции с примерами решения, Тригонометрические функции с примерами решения, тогда Тригонометрические функции с примерами решения .

То есть, основной период данной функции, также 24 месяца.

б) Если графики построены в одном масштабе, то их можно сравнить. Так как мыши являются пищей для сов, то при увеличении сов, численность мышей уменьшается и стремиться к минимальному значению. При уменьшении сов численность мышеи увеличивается и достигает наибольшего значения в то время, когда количество сов достигает минимума

Тригонометрические функции с примерами решения

в) В таблице показано отношение количества сов и мышей за каждые 6 месяцев.

Тригонометрические функции с примерами решения

Это отношение должно изменяться в определённой закономерности. Для того, чтобы увидеть эту закономерность, построим функцию соответствующую отношению при помощи граф калькулятора. Функцию Тригонометрические функции с примерами решения введём в граф калькулятор как Тригонометрические функции с примерами решения, а функцию Тригонометрические функции с примерами решения как Тригонометрические функции с примерами решения и построим график функции Тригонометрические функции с примерами решения . Увидим, что в этом случае отношение двух периодических функций является

периодической функцией. Тригонометрические функции с примерами решения

Графики функций y=tg x и y=ctg x

Графики функций Тригонометрические функции с примерами решения.

Исследование. Изменение тангенса угла.

1) На листе в клетку изобразите координатную плоскость и единичную окружность, с центром в начале координат. К окружности проведите касательную в точке (1;0).

2)Обозначим через К точку пересечения конечной стороны угла поворота Тригонометрические функции с примерами решения с касательной. Из Тригонометрические функции с примерами решения. Значение Тригонометрические функции с примерами решения, для острого угла поворота Тригонометрические функции с примерами решения равно длине отрезка АК.

3)В какой точке пересекает конечная сторона угла 45° касательную?

Тригонометрические функции с примерами решения

4)При помощи транспортира изобразите ещё несколько разных углов и и найдите ординаты точек пересечения с касательной.

5)Как изменяется ордината точки К, при стремлении угла Тригонометрические функции с примерами решения к 90″? Пересекается ли касательная с конечной стороной угла поворота при Тригонометрические функции с примерами решения = 90°?

6)Известно, что для периодической функции с периодом Т достаточно изучить функцию на одном интервале длиной Т.

На каком интервале для Тригонометрические функции с примерами решения целесообразно изучение функции?

7)Тригонометрические функции с примерами решения не определён для Тригонометрические функции с примерами решения = 90° и Тригонометрические функции с примерами решения = -90°. В интервале (-90°; 90°) функция определена.

Заполните таблицу и постройте график функции тангенса. Тригонометрические функции с примерами решения

8) Постройте график функции Тригонометрические функции с примерами решения при помощи граф калькулятора.

Функция y = tg х

Функция Тригонометрические функции с примерами решениях.

Значения тангенса для угла Тригонометрические функции с примерами решения равно угловому коэффициенту прямой, проходящей через начало координат и точки с координатами (cos Тригонометрические функции с примерами решения; sin Тригонометрические функции с примерами решения), расположенной на единичной окружности. Как видно по рисунку, длина отрезка касательной AQ равна ординате точки Q. Координаты точки Q равны Тригонометрические функции с примерами решения. Прямая AQ называется прямой тангенсов.

Тригонометрические функции с примерами решения

При Тригонометрические функции с примерами решения график функции Тригонометрические функции с примерами решения проходит через начало координат.

Если х, оставаясь меньше Тригонометрические функции с примерами решения, стремит к нему, то значения Тригонометрические функции с примерами решения увеличиваются и приближаются к Тригонометрические функции с примерами решения. Прямые Тригонометрические функции с примерами решения, так же как и

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения являются вертикальными асимптотами графика Тригонометрические функции с примерами решения.

Разобьём I четверть единичной окружности и отрезок Тригонометрические функции с примерами решенияна 4 равные части. На линии тангенсов построим отрезки, равные значению соответствующих углов. На оси Ох отметим точки, соответствующие данным углам, и восстановим к каждой из них перпендикуляр. Через эти точки, параллельно оси Ох, проведём параллельные прямые. Полученную последовательность точек соединим сплошной линией.Получим график функции Тригонометрические функции с примерами решения в промежутке Тригонометрические функции с примерами решения. Учитывая, что Тригонометрические функции с примерами решения, преобразуем полученный график симметрично относительно начала координат, получим график функции Тригонометрические функции с примерами решения на интервале Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Зная, что период функции Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения, построенный график продолжим на Тригонометрические функции с примерами решения вправо и влево. Получим график, который называется тангенсоида.

Основные свойства

График функции не является непрерывным, прерывается при х равных и кратных Тригонометрические функции с примерами решения в нечетное количество раз

Тригонометрические функции с примерами решения

Функция не имеет максимумов и минимумов.

Область значений функции множество всех действительных чисел.

Основной период функции равен Тригонометрические функции с примерами решения.

График функции пересекает ось х в точках Тригонометрические функции с примерами решения

Функция не определена в точках Тригонометрические функции с примерами решения. Пунктирные линии, проходящие через эти точки являются вертикальными асимптотами.

Область определения функций Тригонометрические функции с примерами решения.

Функция возрастает между двумя соседними асимптотами.

Функция нечетная: Тригонометрические функции с примерами решения

Функция y=ctg x

Функция Тригонометрические функции с примерами решения:

Для построения графика функции Тригонометрические функции с примерами решения– воспользуемся

тождеством Тригонометрические функции с примерами решения

1)Переместим график функции Тригонометрические функции с примерами решения влево вдоль оси абсцисс на Тригонометрические функции с примерами решения

2)Отобразим полученную кривую симметрично относительно оси абсцисс.

При Тригонометрические функции с примерами решения значения тангенса равны нулю, функция котангенса при данных значениях х не определена: Тригонометрические функции с примерами решения

Как видно по графику, точки пересечения с осью х (нули) и асимптоты функций тангенса и котангенса меняются местами. Тригонометрические функции с примерами решения

Основные свойства

График функции y= a tg bx

График функции Тригонометрические функции с примерами решения.

Для построения графика функции Тригонометрические функции с примерами решения, где а и b отличные от нуля различные числа, нужно определить следующее:

1.Период:Тригонометрические функции с примерами решенияНапример, период функции Тригонометрические функции с примерами решенияравен: Тригонометрические функции с примерами решения

2.Вертикальные асимптоты: Тригонометрические функции с примерами решения

Асимптотами функции Тригонометрические функции с примерами решения являются прямые:Тригонометрические функции с примерами решения

3. Определяется средняя точка отрезка между точкой пересечения оси х с асимптотой. Соответствующие значения у равны или а, или .

Пример 1. Построим график функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

Решение. период: Тригонометрические функции с примерами решения

Точка пересечения с осью абсцисс: (0; 0) Самая близкая асимптота от начала координат:Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения то есть

Тригонометрические функции с примерами решения Средние точки:Тригонометрические функции с примерами решения и на графике им соответствуют точки Тригонометрические функции с примерами решения.

Пример 2.

Постройте график функции Тригонометрические функции с примерами решенияна одном периоде

Тригонометрические функции с примерами решения

Решение: Для функции Тригонометрические функции с примерами решениязначения х на одном периоде меняется в интервалеТригонометрические функции с примерами решения. Соответствующий промежуток для функции Тригонометрические функции с примерами решениядля одного периода можно найти решив неравенство: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Асимптоты проходят через точкиТригонометрические функции с примерами решения. Учитывая точки Тригонометрические функции с примерами решенияи Тригонометрические функции с примерами решения построим схематично график функции.

Обратные тригонометрические функции

Точек, в которых синусоида пересекает прямую, параллельную оси абсцисс, бесконечно много. Значит, на всей числовой оси для

функцииТригонометрические функции с примерами решения нет обратной функции.

Тригонометрические функции с примерами решения

Однако, на отрезке Тригонометрические функции с примерами решениявозрастает и от -1 до 1 принимает все значения, а также каждому значению аргумента соответствует единственное значение функции. Значит, на отрезке Тригонометрические функции с примерами решения функция sin х обратима и при Тригонометрические функции с примерами решения уравнение Тригонометрические функции с примерами решения на отрезке Тригонометрические функции с примерами решения имеет единственный корень.

Угол, из промежутка Тригонометрические функции с примерами решения синус которого равен а, называется арксинусом числа а и записывается как arcsin а. Равенство х = arcsin а эквивалентно двум условиям: 1) Тригонометрические функции с примерами решения 2)Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Примеры: Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

Из определения имеем: Тригонометрические функции с примерами решения.

Можно показать, что Тригонометрические функции с примерами решения

При помощи арксинуса можно задать функцию Тригонометрические функции с примерами решения, с областью определения [-1; 1] и множеством значений Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решениятакже записывается как Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения получается симметричным преобразованием графика функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения относительно прямой Тригонометрические функции с примерами решения. Областью определения функции [- 1; 1], область значений Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Аналогично получаем, что на всей числовой оси не существует функции, обратной для Тригонометрические функции с примерами решения. Однако на отрезке Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения убывает и принимает все значения из отрезка [-1; 1]. То есть, на отрезке Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решения обратима и при Тригонометрические функции с примерами решения уравнение Тригонометрические функции с примерами решения имеет единственный корень на Тригонометрические функции с примерами решения.

Угол, из промежутка Тригонометрические функции с примерами решения косинус которого равен а, называется арккосинусом числа а и записывается как arccos а.

Равенство Тригонометрические функции с примерами решения эквивалентно двум условиям: 1)Тригонометрические функции с примерами решения

2)Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Примеры. Тригонометрические функции с примерами решения, так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

По определению: Тригонометрические функции с примерами решения

Можно показать, что Тригонометрические функции с примерами решения. Функция Тригонометрические функции с примерами решения, определённая на отрезке [-1; 1] является обратной для функции Тригонометрические функции с примерами решения, определённой на отрезкеТригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения может быть записана как Тригонометрические функции с примерами решения. График функции Тригонометрические функции с примерами решенияполучается симметричным преобразованием графика функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения относительно прямой у = х. Область определения функции Тригонометрические функции с примерами решения промежуток [- 1; 1], множество значений промежуток Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения возрастает на промежутке Тригонометрические функции с примерами решения и на промежуткеТригонометрические функции с примерами решения принимает все значения. Поэтому для любого числа а уравнение Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения имеет один корень.

Угол, из промежутка Тригонометрические функции с примерами решения, тангенс которого равен а, называется арктангенсом числа а и записывается как arctg а.

Равенство Тригонометрические функции с примерами решения эквивалентно двум условиям:

1)Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения

Примеры: Тригонометрические функции с примерами решения , так как Тригонометрические функции с примерами решенияи Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения. По определению: Тригонометрические функции с примерами решения Можно показать, что Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения является обратной для функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения.

График функции Тригонометрические функции с примерами решения получается симметричным преобразованием графика функции на промежутке Тригонометрические функции с примерами решения относительно прямой у = х.

ПрямыеТригонометрические функции с примерами решения и Тригонометрические функции с примерами решения являются горизонтальными асимптотами функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

По такому же правилу, вводится понятие арккотангенса.

Угол, из промежутка Тригонометрические функции с примерами решения, котангенс которого равен а, называется арккотангенсом числа а и записывается как arcctg а.

Равенство Тригонометрические функции с примерами решения эквивалентно двум условиям:

1) Тригонометрические функции с примерами решения 2)Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Примеры: Тригонометрические функции с примерами решения так как Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения,так как Тригонометрические функции с примерами решения.

По определению: Тригонометрические функции с примерами решения

Можно показать, что Тригонометрические функции с примерами решения.

Функция Тригонометрические функции с примерами решения является обратной для Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения

График функции Тригонометрические функции с примерами решения получается симметричным преобразованием графика функции Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения относительно прямой у = х. Ось абсцисс и прямая Тригонометрические функции с примерами решения являются горизонтальными асимптотами функции Тригонометрические функции с примерами решения. Тригонометрические функции с примерами решения

Функция Тригонометрические функции с примерами решения может быть записана как Тригонометрические функции с примерами решения , а функция Тригонометрические функции с примерами решенияможет быть записана как Тригонометрические функции с примерами решения .

На калькуляторе не предусмотрены кнопки Тригонометрические функции с примерами решения, так как эти функции можно выразить через функцииТригонометрические функции с примерами решения. Например, Тригонометрические функции с примерами решения означает, Тригонометрические функции с примерами решения и эту функцию можно выразить через косинусТригонометрические функции с примерами решения

Отсюда: Тригонометрические функции с примерами решения

Значит, для вычисления Тригонометрические функции с примерами решения надо вычислить Тригонометрические функции с примерами решения. Внимание! Тригонометрические функции с примерами решения

Пример. Найдите значение выражения Тригонометрические функции с примерами решения.

Пусть Тригонометрические функции с примерами решения. Тогда, Тригонометрические функции с примерами решения.

В прямоугольном треугольнике, найдём катет, прилежащий к углу а, если синус острого угла равен Тригонометрические функции с примерами решения.

Отсюда Тригонометрические функции с примерами решения. Учитывая обозначение, имеем:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

————в матемтике

Тригонометрические функции

Повторение и расширение сведений о функции

1) Понятие числовой функции

Числовой функцией с областью определения D называется зависи­мость, при которой каждому числу х из множества D (области определения) ставится в соответствие един­ственное число у. Записывают это соответствие такТригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Обозначения и термины

2) График функции

Графиком функции Тригонометрические функции с примерами решения называется множество всех точек координат ной плоскости с координатами Тригонометрические функции с примерами решения где первая координата х «пробегает» всю область определения функции, а вторая координата равна соответствующему значению функции Тригонометрические функции с примерами решения в точке х.

Тригонометрические функции с примерами решения

3) Возрастающие и убывающие функции

Функция f(х) возрастающая: Тригонометрические функции с примерами решения(при увеличении аргумента соответствующие точки графика поднимаются).

Тригонометрические функции с примерами решения

Функция f(х) убывающая: Тригонометрические функции с примерами решения(при увеличении аргумента соответствующие точки графика опускаются).

Тригонометрические функции с примерами решения

4) Четные и нечетные функции

Функция f(х) четная: Тригонометрические функции с примерами решениядля всех х из области определения. График четной функции симметричен относительно оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Функция f(х) нечетная: Тригонометрические функции с примерами решениядля всех х из области определения. График нечетной функции симметричен относительно начала координат (точки О).

Тригонометрические функции с примерами решения

Понятие функции

С понятием функции вы ознакомились в курсе алгеб­ры. Напомним, что зависимость переменной у от переменной х называется функцией, если каждому значению x соответствует единственное значение у. В курсе алгебры и начал анализа мы будем пользоваться таким определением числовой функции.

Числовой функцией с областью определения D называется зависимость, при которой каждому числу х из множества D ставится в соответствие единственное число у.

Функции обозначают латинскими (иногда греческими) буквами. Рассмотрим произвольную функцию f. Число у, соответствующее числу х (на рисунке 1 это показано стрелкой), называют значением функции f в точке х и обозначают f(х).

Область определения функции f — это множество тех значений, которые может принимать аргумент х. Она обозначается D (f).

Область значений функции f — это множество, состоящее из всех чисел f (х), где х принадлежит области определения. Ее обозначают Е (f).

Тригонометрические функции с примерами решения

Чаще всего функцию задают с помощью какой-либо формулы. Если нет дополнительных ограничений, то областью определения функции, заданной формулой, считается множество всех значений переменной, при которых эта формула имеет смысл.

Например, если функция задана формулой Тригонометрические функции с примерами решения то ее область определения: Тригонометрические функции с примерами решения а область значений: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Иногда функция может задаваться разными формулами на разных множествах значений аргумента. Например, Тригонометрические функции с примерами решения

Функция может задаваться не только с помощью формулы, а и с помощью таблицы, графика или словесного описания. Например, на рисунке 2 графически задана функция у = f(х) с областью определения D(f) = [-1; 3] и множеством значений Е(f) = [1; 4].

Тригонометрические функции с примерами решения

График функции

Напомним, что графиком функции у – f(x) называется множество всех точек координатной плоскости с координатами (х; f(х)), где первая координата х «пробегает» всю область определения функции, а вторая координата — это соответствующее значение функции f в точке х.

На рисунках к пункту 4 таблицы 1 приведены графики функций Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения а на рисунке 3 — график функцииТригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Приведем также график функции у = [х], где [х] — обозначение целой части числа х, то есть наибольшего целого числа, не превосходящего х (рис. 4). Об­ласть определения этой функции D(у) = R — множество всех действительных чисел, а область значений Е(y) = Z — множество всех целых чисел.

На рисунке 5 приведен график еще одной числовой функции у = {х}, где {х} — обозначение дробной части числа х (по определению {х} = х – [х]).

Тригонометрические функции с примерами решения

Возрастающие и убывающие функции

Важными характеристиками функций являются их возрастание и убывание. Функция f(х) называется возрастающей на множестве Р, если большему значению аргумента из этого множества соответствует большее значение функции.

То есть для любых двух значений Тригонометрические функции с примерами решенияи Тригонометрические функции с примерами решения из множества Р, если Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Например, функция f(х) = 2х воз­растающая (на всей области опреде­ления — на множестве R), поскольку при Тригонометрические функции с примерами решения, имеем Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения. У возрастающей функции при увеличении аргумента соответствующие точки графика поднимаются (рис. 6).

Тригонометрические функции с примерами решения

На рисунке 7 приведен график еще одной возрастающей функции Тригонометрические функции с примерами решенияДействительно, при Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Функция f(x) называется убывающей на множестве Р, если большему значению аргумента из этого множества соответствует меньшее значение функции. То есть для любых двух значений Тригонометрические функции с примерами решения из множества Р, если Тригонометрические функции с примерами решения тоТригонометрические функции с примерами решения

Например, функция f(х) =-2х убывающая (на всей области определения — на множестве R), поскольку при Тригонометрические функции с примерами решения, имеем Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения У убывающей функции при увеличении аргумента соответствующие точки графика опускаются (рис. 8).

Тригонометрические функции с примерами решения

Рассматривая график функции Тригонометрические функции с примерами решения (рис. 9), видим, что на всей области определения эта функция не является ни возрастающей, ни убывающей. Од­нако можно выделить промежутки области определения, где эта функция возрастает и где убывает. Так, на промежутке Тригонометрические функции с примерами решения функция Тригонометрические функции с примерами решениявозрастает, а на промежутке Тригонометрические функции с примерами решения — убывает.

Тригонометрические функции с примерами решения

Отметим, что для возрастающих и убывающих функций выполняются свойства, обратные утверждениям, содержащимся в определениях.

Если функция возрастает, то большему значению функции соответствует большее значение аргумента.

Если функция убывает, то большему значению функции соответ­ствует меньшее значение аргумента.

Обоснуем первое из этих свойств методом от противного. Пусть функция f(х) возрастает и Тригонометрические функции с примерами решения Допустим, что аргумент Тригонометрические функции с примерами решения не больше аргу­ментаТригонометрические функции с примерами решениято есть Тригонометрические функции с примерами решения Из этого предположения получаем: если Тригонометрические функции с примерами решения и f(х) возрастает, то Тригонометрические функции с примерами решения что противоречит условию Тригонометрические функции с примерами решения Таким образом, наше предположение неверно, и если Тригонометрические функции с примерами решения что и требовалось доказать. Аналогично обосновывается и второе свойство.

Например, если Тригонометрические функции с примерами решения то, учитывая возрастание функции Тригонометрические функции с примерами решения

Чётные и нечётные функции

Рассмотрим функции, области определения которых симметричны относительно начала координат, то есть содержат вме­сте с каждым числом х и число (-х). Для таких функций вводятся понятия четности и нечетности.

Функция f называется четной, если для любого х из ее области определения f (-х) = f(x).

Например, функция Тригонометрические функции с примерами решения — четная, поскольку Тригонометрические функции с примерами решения • Если функция f(х)четная, то ее графику вместе с каждой точкой М с ко­ординатами (х; у) = (x; f(х)) принадлежит также и точка Тригонометрические функции с примерами решения с координатами (-х; у) = (-х; f(-х)) = (-х; f(х)). Точки М и Тригонометрические функции с примерами решения, расположены симметрично относительно оси Тригонометрические функции с примерами решения (рис. 10), поэтому и весь график четной функции расположен симметрично относительно оси Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Например, график четной функции Тригонометрические функции с примерами решения (рис. 9) симметричен относительно оси Тригонометрические функции с примерами решения.

Функция f называется нечетной, если для любого х из ее области определения f(-х) = —f(х).

Например, функция Тригонометрические функции с примерами решения — нечетная, поскольку Тригонометрические функции с примерами решения

Если функция f(х) нечетная, то ее графику вместе с каждой точкой М с координатами (х; у) = (х; f(х)) принадлежит также и точка Тригонометрические функции с примерами решенияс координатами (-х; у) = (-х; f (-х)) = (-х ;- f(х)). Точки М и Тригонометрические функции с примерами решениярасположены симметрично относительно начала координат (рис. 11), поэтому и весь гра­фик нечетной функции расположен симметрично относительно начала координат.

Например, график нечетной функции Тригонометрические функции с примерами решения (см. пункт 4 табл. 1) симметричен относительно начала координат, то есть точки О.

Тригонометрические функции с примерами решения

Пример №1

Найдите область определения функции:Тригонометрические функции с примерами решения

Решение:

  1. Ограничений для нахождения значений выражения Тригонометрические функции с примерами решения нет, таким образом, D(у) = R;
  2. Область определения функции Тригонометрические функции с примерами решения задается ограничениемТригонометрические функции с примерами решения поскольку знаменатель дроби не может быть равным нулю. Выясним, когда Тригонометрические функции с примерами решения Имеем х(х + 1) = 0, х = 0 или х = -1 . Тогда область определения можно задать ограничениям и Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения или записать так: Тригонометрические функции с примерами решения
  3. Область определения функции Тригонометрические функции с примерами решения задается ограничением Тригонометрические функции с примерами решения поскольку под знаком квадратного корня должно стоят неотрицательное. Таким образом, Тригонометрические функции с примерами решения

Комментарий:

Поскольку все функции заданы формулами, то их области определения — это множество всех значений переменной х, при которых формула имеет смысл, то есть имеет смысл выражение, которое стоит в правой части формулы у= f(х). В курсе алгебры встречались толь­ко два ограничения, которые необходимо учитывать при нахождении об­ласти определения:

  1. если выражение записано в виде дроби Тригонометрические функции с примерами решения то знаменатель Тригонометрические функции с примерами решения
  2. если запись выражения содержит квадратный корень Тригонометрические функции с примерами решения то под­коренное выражение Тригонометрические функции с примерами решения

В других случаях, которые вам приходилось рассматривать, облас­тью определения выражения были все действительные числа.

Пример №2

Найдите область значений функции Тригонометрические функции с примерами решения

Решение:

Составим уравнение Тригонометрические функции с примерами решения Оно равносильно уравнению Тригонометрические функции с примерами решения которое имеет решения, если Тригонометрические функции с примерами решения то есть при Тригонометрические функции с примерами решения Все эти числа и составят область значений функции. Таким образом, область значений заданной функции Тригонометрические функции с примерами решения

Комментарий:

Обозначим значение заданной функции f(х) Тригонометрические функции с примерами решения через а и выясним, для каких а можно найти соответствующее значение х (при этом значении х значение f(х) = а).

Тогда все числа а, для которых существует хотя бы один корень уравнения f(х) = а, войдут в область значений функции f (х). Множество всех таких а и составит область значений функции.

Область значений функции у = f(x) совпадает с множеством тех значений а, при которых уравнение f(x) = a имеет решения.

Пример №3

Докажите, что при Тригонометрические функции с примерами решения областью значений линейной функции y= kx+b является множество всех действительных чисел.

Доказательство:

Если kx+b= а (где Тригонометрические функции с примерами решения), то решение этого уравненияТригонометрические функции с примерами решения существует для любого Тригонометрические функции с примерами решения по условию). Таким образом, значением заданной функции может быть любое действительное число. Итак, ее об­ласть значений Е(f) = R.

Комментарий:

Обозначим значение заданной функции f(х), то есть kx + b через а и выясним, для каких а можно най­ти соответствующее значение х, та­кое, что f(х) = а. Множество всех таких значений а и будет составлять область значений функции f (х).

Пример №4

Докажите, что линейная функция Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения явля­ется возрастающей, а при Тригонометрические функции с примерами решения — убывающей.

Доказательство:

Пусть Тригонометрические функции с примерами решения Рассмотрим разность Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решения то при k > 0 имеем Тригонометрические функции с примерами решения таким обра­зом, Тригонометрические функции с примерами решения и значит, функция возрастает. При Тригонометрические функции с примерами решения имеемТригонометрические функции с примерами решениятаким образом, Тригонометрические функции с примерами решения значит, функция убывает.

Комментарий:

Для обоснования возрастания или убывания функции полезно помнить, что для доказательства неравенства Тригонометрические функции с примерами решения достаточ­но найти знак разности Тригонометрические функции с примерами решения

Функция а(х ) = kx + b будет воз­растающей, если из неравенства Тригонометрические функции с примерами решения, будет следовать неравенство Тригонометрические функции с примерами решения а для доказательства последнего неравенства достаточно найти знак разности Тригонометрические функции с примерами решения(ана­логично рассуждаем и для доказа­тельства убывания функции).

Пример №5

Докажите, что: 1) сумма двух возрастающих на множестве Р функций все­гда является возрастающей функцией на этом множестве; 2) сумма двух убывающих на множестве Р функций всегда является убывающей функцией на этом множестве.

Доказательство:

  1. Пусть функции f(х) и g(x) яв­ляются возрастающими на одном и том же множестве Р. ЕслиТригонометрические функции с примерами решенияТригонометрические функции с примерами решения Складывая почленно эти неравен­ства, получаемТригонометрические функции с примерами решенияЭто и означает, что сумма функций f (х) и g (х) является возрастаю­щей функцией на множестве Р .
  2. Пусть функции f(х) и g(x) явля­ются убывающими на множестве Р. Тогда из неравенства Тригонометрические функции с примерами решенияимеем Тригонометрические функции с примерами решения После почленного сложения этих неравенств получаем: Тригонометрические функции с примерами решенияа это и означает, что сумма функ­ций f (х) и g (х) является убывающей функцией на множестве Р .

Комментарий:

Для доказательства того, что сумма двух возрастающих функций f(х) и g (х) является возрастающей функ­цией, достаточно доказать, что на множестве Р из неравенства Тригонометрические функции с примерами решения следует неравенство Тригонометрические функции с примерами решения Аналогично для доказательства того, что сумма двух убывающих функций является убывающей функцией, достаточно доказать, что если Тригонометрические функции с примерами решения , то Тригонометрические функции с примерами решения

Пример №6

Докажите, что возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее обла­сти определения.

Доказательство:

Пусть функция f(x) является возрастающей иТригонометрические функции с примерами решения (1) Допустим, что Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения Учитывая возрастание f(х), в случае Тригонометрические функции с примерами решенияимеем Тригонометрические функции с примерами решения что противоречит равенству (1). В случае Тригонометрические функции с примерами решенияимеем Тригонометрические функции с примерами решения что также противоречит равенству (1).

Таким образом, наше предположение неверно, и равенство Тригонометрические функции с примерами решениявозможно только при Тригонометрические функции с примерами решения То есть возрастающая функция принимает каждое свое значение только в одной точке ее области определения. Аналогично доказывается утверждение и для убывающей функции.

Комментарий:

Докажем это утверждение мето­дом от противного. Для этого достаточно допустить, что выполняется противоположное утверждение (фун­кция может принимать одно и то же значение хотя бы в двух точках), и получить противоречие. Это будет означать, что наше предположение неверно, а верно данное утверждение.

Пример №7

Исследуйте, какие из данных функций являются четными, какие нечетными, а какие — ни четными, ни нечетными:

Тригонометрические функции с примерами решения

Решение:

Область определения функции Тригонометрические функции с примерами решения то есть она не симметрична относительно точки О (точка х = 1 принадлежит облас­ти определения, а х = -1 — нет). Тригонометрические функции с примерами решения Таким образом, заданная функ­ция не является ни четной, ни нечетной.

Область определения функции Тригонометрические функции с примерами решения D (у) = R, то есть она сим­метрична относительно точки О. Тригонометрические функции с примерами решения следова­тельно, функция четная.

Область определения функции Тригонометрические функции с примерами решения D (у) = R, то есть она сим­метрична относительно точки О. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решениязначит, функ­ция нечетная.

Комментарий:

Для исследования функции у = f(х) на четность или нечетность достаточно, во-первых, убедиться, что область определения этой функ­ции симметрична относительно точки О (вместе с каждой точкой х содер­жит и точку —х), и, во-вторых, сравнить значения f (-х) и f (х).

Построение графиков функций с помощью геоафики основных видов функций

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Линейная функция у = kx + b

Линейной функцией называется функция вида y = kx + b, где k и b — некоторые числа.

Обоснуем основные характеристики этой функции: область определения, область значений, четность или нечетность, возрастание и убывание.

Область определения — множество всех действительных чисел: D (y) = R, поскольку формула kx + b имеет смысл при всех действительных значениях х (то есть для любого действительного х мы можем вычислить значение kx + b). Область значений линейной функции будет разной в зависимости от значения коэффициента k.

Если k = 0, то функция имеет вид у = b, то есть ее область значений состоит из одного числа b. В таком случае графиком линейной функции у = b является прямая, параллельная оси Тригонометрические функции с примерами решения которая пересекает ось Тригонометрические функции с примерами решенияв точке b (рис. 13). Если Тригонометрические функции с примерами решения то Е (у) = R (обоснование приведено в примере 3 нас. 13).

Тригонометрические функции с примерами решения

Четность и нечетность линейной функции существенно зависит от значений коэффициентов b и k.

При b = 0 и Тригонометрические функции с примерами решения функция у = kx + b превращается в функцию у = kx, которая является нечетной, поскольку для всех х из ее области определенияТригонометрические функции с примерами решения

Таким образом, график функции у = kx (рис. 14) симметричен относитель­но точки О.

Тригонометрические функции с примерами решения

При k = 0 получаем функцию у = b, которая является четной, поскольку для всех х из ее области определения f (-x) = b = f (х). То есть график функции у = b симметричен относительно оси Тригонометрические функции с примерами решения(см. рис. 13).

В общем случае приТригонометрические функции с примерами решения функция у = kx + b не является ни четной, ни нечетной, поскольку f(-х) = k(-x) + b = -kx + b Тригонометрические функции с примерами решения и также f(-х) = -kx + b = -(kx – b)Тригонометрические функции с примерами решения

Возрастание и убывание линейной функции зависит от значения коэффициента k.

При k = 0 получаем функцию у = b — постоянную.

При k > 0 функция y = kx + b возрастает, а при Тригонометрические функции с примерами решения — убывает (обоснова­ние приведено в примере 4 на с. 13).

В курсах алгебры и геометрии было обосновано, что графиком линейной функции у=kx + b всегда является прямая линия.

Поскольку при х=0 функция принимает значение у=b, то эта прямая всегда пересекает ось Тригонометрические функции с примерами решенияв точке b. Графики линейных функций приведены в таблице 2.

Функция y=k/x(k≠0)

Эта функция Тригонометрические функции с примерами решения выражает обратно пропорциональ­ную зависимость. Область определения: Тригонометрические функции с примерами решения Это можно записать также так: Тригонометрические функции с примерами решения

Область значений: Тригонометрические функции с примерами решения Это можно записать также так: Тригонометрические функции с примерами решения

Для обоснования области значений функции Тригонометрические функции с примерами решенияобозначим Тригонометрические функции с примерами решения Тогда из этого равенства получим Тригонометрические функции с примерами решения для всех Тригонометрические функции с примерами решения То есть для всех Тригонометрические функции с примерами решения существует значение Тригонометрические функции с примерами решения при котором Тригонометрические функции с примерами решения Таким образом, у принимает все действительные значения, не равные нулю.

Функция нечетная, поскольку ее областью определения является множе­ство, симметричное относительно точки О , и Тригонометрические функции с примерами решенияТаким образом, ее график симметричен относительно начала координат (рис. 15).

Возрастание и убывание функции зависит от знака коэффициента k.

Если Тригонометрические функции с примерами решения то для сравнения значений Тригонометрические функции с примерами решениярассмотрим их разность: Тригонометрические функции с примерами решения (1) На промежутке Тригонометрические функции с примерами решения значение Тригонометрические функции с примерами решения следовательно, Тригонометрические функции с примерами решения На промежутке Тригонометрические функции с примерами решения значение Тригонометрические функции с примерами решения значит, Тригонометрические функции с примерами решения Учитывая, что Тригонометрические функции с примерами решения на каждом из промежутков Тригонометрические функции с примерами решения при k > 0 из равенства (1) получаем Тригонометрические функции с примерами решения а при k Тригонометрические функции с примерами решения 0 получаемТригонометрические функции с примерами решения При k > 0 на каждом из промежутков Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения таким образом, функция убывает на каждом из этих проме­жутков. При Тригонометрические функции с примерами решения на каждом из промежутков Тригонометрические функции с примерами решения еслиТригонометрические функции с примерами решения то Тригонометрические функции с примерами решения следовательно, функция возрастает на каждом из этих промежутков.

Из курса алгебры известно, что график функции Тригонометрические функции с примерами решения называется гиперболой (она состоит из двух ветвей). При k > 0 ветви гиперболы находятся в I и III координатных четвертях, а при Тригонометрические функции с примерами решения — во II и IV четвертях (рис. 15).

Тригонометрические функции с примерами решения

Замечание. Характеризуя возрастание или убывание функции Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения следует помнить, что, например, функция Тригонометрические функции с примерами решения (рис. 16) убывает на каждом из промежутков Тригонометрические функции с примерами решения но на всей области определения Тригонометрические функции с примерами решения эта функция не является убывающей (и не является возрастающей). Действительно, если взять Тригонометрические функции с примерами решенияаТригонометрические функции с примерами решения то есть большему значению аргумента не соответствует меньшее значение функции, и на всей ее области определения функция Тригонометрические функции с примерами решения не является убывающей.

Тригонометрические функции с примерами решения

Поэтому же нельзя сказать, что функция Тригонометрические функции с примерами решения убывает при Тригонометрические функции с примерами решения

Функция y=ax2(a≠0)

Как известно из курса алгебры, графиком этой Тригонометрические функции с примерами решения функции является парабола, ветви которой направлены вверх при Тригонометрические функции с примерами решения (рис. 17, а) и вниз при Тригонометрические функции с примерами решения (рис. 17, б). Поскольку при х=0 значение у=0, то график всегда проходит через начало координат.

Тригонометрические функции с примерами решения

Область определения: Тригонометрические функции с примерами решенияпоскольку значение Тригонометрические функции с примерами решения можно вычис­лить при любых значениях х.

Функция четная, поскольку Тригонометрические функции с примерами решенияТаким образом, ее график симметричен относительно оси Тригонометрические функции с примерами решения

Для описания других свойств воспользуемся графиком функции Тригонометрические функции с примерами решения (рис. 17). Эти свойства можно обосновать, опираясь на свойства функции Тригонометрические функции с примерами решения и на геометрические преобразования ее графика, которые будут рассмот­рены далее в п. 1.3.

Область значений. При а>0 график проходит через начало координат, а все остальные его точки находятся выше оси Тригонометрические функции с примерами решения Если значение х увеличи­вается до бесконечности, то и значение у также увеличивается до бесконечности Тригонометрические функции с примерами решения таким образом, Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения

Аналогично при Тригонометрические функции с примерами решения график также проходит через начало координат, но все остальные его точки находятся ниже оси Тригонометрические функции с примерами решения Если значение х увеличивается до бесконечности, то значение у уменьшается до минус бесконечности Тригонометрические функции с примерами решениятаким образом, Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения

Возрастание и убывание. При а > 0 на промежутке Тригонометрические функции с примерами решения функция убывает, а на промежутке Тригонометрические функции с примерами решения — возрастает.

При Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения функция возрастает, а на промежутке Тригонометрические функции с примерами решения — убывает.

Соответствующие графики приведены также в таблице 2.

Квадратичная функция y=ax2+bx+c(a≠0)

Из курса алгебры 9 класса известно, что функция вида Тригонометрические функции с примерами решения где а, b, с — действительные числа, причем Тригонометрические функции с примерами решения называется квадратичной. Ее графиком является пара­бола, ветви которой направлены вверх при Тригонометрические функции с примерами решения и вниз при Тригонометрические функции с примерами решения.

Абсцисса вершины этой параболы Тригонометрические функции с примерами решения Для обоснования этого достаточно в заданном квадратном трехчлене выделить полный квадрат:Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения (Тригонометрические функции с примерами решения — дискриминант квадратного трехчлена Тригонометрические функции с примерами решения). Напомним, что в зависимости от знака дискриминанта D парабола или пересекает Тригонометрические функции с примерами решения ось функция принимает все значения, или не пересекает Тригонометрические функции с примерами решения, или касается ее (D = 0). Основные варианты расположения графика функции Тригонометрические функции с примерами решенияпредставлены в таблице 3.

Тригонометрические функции с примерами решения

Охарактеризуем свойства функции Тригонометрические функции с примерами решения, опираясь на эти известные нам графики.

Область определения: D(у) = R, поскольку значение Тригонометрические функции с примерами решения можно вычислить при любых значениях х.

Область значений: При Тригонометрические функции с примерами решения функция принимает все значения Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения При Тригонометрические функции с примерами решения функция принимает все значения Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения

Четность и нечетность. При b = 0 получаем четную квадратичную функцию Тригонометрические функции с примерами решения Действительно, Тригонометрические функции с примерами решения В общем случае (если Тригонометрические функции с примерами решения) функция Тригонометрические функции с примерами решения не является ни четной, ни нечетной, поскольку Тригонометрические функции с примерами решения (и не равно -f(х)).

Возрастание и убывание. При Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения функция убы­вает, а на промежутке Тригонометрические функции с примерами решения — возрастает.

При Тригонометрические функции с примерами решения на промежутке Тригонометрические функции с примерами решения функция возрастает, а на промежутке Тригонометрические функции с примерами решения — убывает.

Поскольку при х = 0 значение у = с, то график всегда пересекает ось Тригонометрические функции с примерами решения в точке с. Соответствующие графики при D > 0 приведены также в таблице 2.

Пример №8

Постройте график функции: 1)у = 2х + 1 ; 2)у = -3х-1 ; 3)у = 4.

Решение:

1) График функции у = 2х + 1 — прямая Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

2) График функции у =-Зх-1 — прямая Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

3) График функции у = 4 — прямая, параллельная оси Тригонометрические функции с примерами решения которая проходит через точку 4 на оси Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Комментарий:

Все данные функции линейные, поэтому их графиками являются прямые. Чтобы построить прямые в заданиях 1 и 2, достаточно построить две точки этих прямых. Например, можно взять х=0 и х=1 и найти соответствующие значения у. Оформлять эти вычисления удобно в виде таблички: Тригонометрические функции с примерами решения

В задании 3 рассматривается частный случай линейной функции (у=b). Для построения этого графи­ка полезно помнить, что прямая у=4 — это прямая, параллельная оси Тригонометрические функции с примерами решения(при любом значении х значе­ние у равно 4).

Пример №9

По приведенному графику функции у = kx + b укажите знаки k и b Тригонометрические функции с примерами решения

Решение:

При х=0 значение у = b. Посколь­ку изображен график убывающей ли­нейной функции, то Тригонометрические функции с примерами решения.

Ответ: Тригонометрические функции с примерами решения, Тригонометрические функции с примерами решения.

Комментарий:

График функции у = kx+b — прямая, пересекающая ось Тригонометрические функции с примерами решенияв точке b. На рисунке эта точка лежит выше нуля, таким образом, b > 0. Линейная функция у = kx+b при Тригонометрические функции с примерами решения возрастающая, а при Тригонометрические функции с примерами решения — убывающая. На рисунке изображен график убывающей функции, следовательно, Тригонометрические функции с примерами решения.

Пример №10

Постройте график функции Тригонометрические функции с примерами решения

Решение:

График заданной функции — парабола (вида Тригонометрические функции с примерами решения), ветви которой на­правлены вверх.

Абсцисса вершины: Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решенияи график имеет вид:

Тригонометрические функции с примерами решения

Комментарий:

Функция Тригонометрические функции с примерами решения— квадратичная (имеет вид Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения Таким образом, ее графиком будет парабола (вида Тригонометрические функции с примерами решения ветви которой направлены вверх (а=1>0). Абсцисса вершины параболы вычисляется по формуле Тригонометрические функции с примерами решения а ордината Тригонометрические функции с примерами решения — это соответствующее зна­чение заданной функции при Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Если необходимо уточнить, как проходит график, то можно найти координаты нескольких дополни­тельных точек, например, при х=0 получаем у=с=3.

Построение графиков функций с помощью геометри­ческих преобразований известных графиков функций

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Построение графика функции y=-f(х)

Сравним графики функций Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения (см. первую строку табл. 4). Очевидно, что график функции Тригонометрические функции с примерами решения можно получить из графика функции Тригонометрические функции с примерами решениясимметричным отображением его относительно оси Тригонометрические функции с примерами решения Покажем, что всегда график функции y=-f(х) можно получить из графика функции у=f(х) симметричным отображением относительно оси Тригонометрические функции с примерами решения

Действительно, по определению график функции у=f(х) состоит из всех точек Тригонометрические функции с примерами решения координатной плоскости, которые имеют координаты (х; у) = (х; f(х)). Тогда график функции y=-f(х) состоит из всех точек Тригонометрические функции с примерами решения координатной плоскости, имеющих координаты (х; у) = (х; -f(х)).

Точки Тригонометрические функции с примерами решения(х; f(x)) и Тригонометрические функции с примерами решения (х; -f(х)) расположены на координатной плоскости симметрично относительно оси Тригонометрические функции с примерами решения (рис. 20). Таким образом, каждая точка Тригонометрические функции с примерами решенияграфика функции у=-f(х) получается симметричным отображением относительно оси Тригонометрические функции с примерами решения некоторой точки Тригонометрические функции с примерами решенияграфика у = f (х). Поэтому график функции у = —f(x) можно получить из графика функции y = f(х) его симметричным отображением относительно оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Это свойство позволяет легко обосновать построение графика функции Тригонометрические функции с примерами решения Имеем: Тригонометрические функции с примерами решения

Следовательно, график функции Тригонометрические функции с примерами решения может быть построен так: часть графи­ка функции у=f(х), лежащая выше оси Тригонометрические функции с примерами решения (и на самой оси), остает­ся без изменений, а часть, лежащая ниже оси Тригонометрические функции с примерами решения, отображается сим метрично относительно этой оси.

Например, на рисунке 21 и в таблице 4 с использованием этого правила изображен график функции у = |2х – 1|.

Тригонометрические функции с примерами решения

Построение графика функции y = f (—х)

Для построения графика функции у = f (-х) учтем, что в определении графика функции первая координата для точек графика выбирается произ­вольно из области определения функции. Если выбрать как первую координату значение (-х), то график функции у= f(-х) будет состоять из всех точек Тригонометрические функции с примерами решения координатной плоскости с координатами (-х; у) = (-х; f (х)). Напомним, что график функции у=f(х) состоит из всех точек Тригонометрические функции с примерами решения (х; f (х)).

Точки Тригонометрические функции с примерами решения (х; f (х))и Тригонометрические функции с примерами решения (-х; f (х)) расположены на координатной плоскости симметрично относительно оси Тригонометрические функции с примерами решения (рис. 22). Таким образом, каждая точка Тригонометрические функции с примерами решения графика функции у=f(-х) получается симметричным отображением относительно оси Тригонометрические функции с примерами решения некоторой точки Тригонометрические функции с примерами решения графика функции у=f(х). Поэтому график функции у = f (-х) можно получить из графика функции у — f(x) его симметричным отображением относительно оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Эта свойство позволяет легко обосновать построение графика функции у = f (|х|). Имеем: Тригонометрические функции с примерами решения

Следовательно, для того чтобы получить график функции у = f(|х|) при Тригонометрические функции с примерами решения (то есть слева от оси Тригонометрические функции с примерами решения), необходимо отобразить симметрично относительно оси Тригонометрические функции с примерами решения ту часть графика функции у = f (х), которая лежит справа от оси Тригонометрические функции с примерами решения. То есть часть графика функции y = f (х), лежащая слева от оси Тригонометрические функции с примерами решения, вообще не ис­пользуется в построении графика функции у = f (|х|)). Таким образом, график функции у = f (|х|) строится так: часть графика функции у=f(х), лежащая справа от оси Тригонометрические функции с примерами решения (и на самой оси), остается без изменений, и эта же часть графика отображается симметрично относительно оси Тригонометрические функции с примерами решения. Например, на рисунке 23 и в таблице 4 с использованием этого правила изображен график функции у = 2|х| – 1.

Тригонометрические функции с примерами решения

Построение графика функции у = f (х-а)

Для построения графика функции у = f(x – а) выберем как первую координату точки Тригонометрические функции с примерами решения этого графика значение х + а. Тогда график функции у = f (х – а) будет состоять из всех точек Тригонометрические функции с примерами решения координатной плоскости с координатами Тригонометрические функции с примерами решения в то время как график функции у = f (х) состоит из всех точек Тригонометрические функции с примерами решенияс координатами (х; f(х)).

Если точка Тригонометрические функции с примерами решенияимеет координаты (х; у), а точка Тригонометрические функции с примерами решения— координаты (х + а; у), то преобразование точек Тригонометрические функции с примерами решения — это параллельный перенос точки Тригонометрические функции с примерами решения вдоль оси Тригонометрические функции с примерами решения на а единиц (то есть на вектор Тригонометрические функции с примерами решения).

Поскольку каждая точка Тригонометрические функции с примерами решения графика функции у = f (х-а) получается параллельным переносом некоторой точки Тригонометрические функции с примерами решенияграфика у = f (х) вдоль оси Тригонометрические функции с примерами решения на а единиц (рис. 24), то график функции у = f (х – а) можно получить параллельным пере­носом графика функции y — f (х) вдоль оси Тригонометрические функции с примерами решения на а единиц.

Тригонометрические функции с примерами решения

Например, в третьей строке таблицы 4 изображен график функции Тригонометрические функции с примерами решения(выполнен параллельный перенос графика Тригонометрические функции с примерами решения на +2 единицы вдоль оси Тригонометрические функции с примерами решения) и график функции Тригонометрические функции с примерами решения (выполнен параллельный перенос графика Тригонометрические функции с примерами решения на (-3) единицы вдоль оси Ох).

Построение графика функции y = f (х) + b

График функции у = f (х) + b состоит из всех точек Тригонометрические функции с примерами решения координатной плоско­сти с координатами (х; у) = (х; f(х) + b), а график функции у=f(х) состоит из всех точек Тригонометрические функции с примерами решения(х; f(х)). Но если точка Тригонометрические функции с примерами решения имеет координаты (х; у), а точка Тригонометрические функции с примерами решения — координаты (х; у + b), то преобразование точек Тригонометрические функции с примерами решения — это параллельный перенос точки Тригонометрические функции с примерами решения вдоль оси Тригонометрические функции с примерами решения на b единиц (то есть на вектор Тригонометрические функции с примерами решения). Поскольку каждая точка Тригонометрические функции с примерами решения графика функции y=f(х) + b получается параллельным переносом некоторой точки Тригонометрические функции с примерами решения графика у = f (х) вдоль оси Тригонометрические функции с примерами решения на b единиц (рис. 25), то график функции y= f(x) + b можно получить параллельным переносом графика функции у = f (х) вдоль оси Тригонометрические функции с примерами решения на b единиц. Например, в четвертой строке таблицы 4 изображен график функции Тригонометрические функции с примерами решения (выполнен параллельный перенос графика Тригонометрические функции с примерами решения на +2 единицы вдоль оси Тригонометрические функции с примерами решения) и график функции Тригонометрические функции с примерами решения (выполнен параллельный перенос графика Тригонометрические функции с примерами решения на (-1) вдоль оси Тригонометрические функции с примерами решения).

Тригонометрические функции с примерами решения

Построение графика функции у = kf(x)

График функции у=kf (х) (k > 0) состоит из всех точек В (х; kf (х)), а гра­фик функции у=f(х) состоит из всех точек М (х; f (х)) (рис. 26).

Тригонометрические функции с примерами решения

Назовем преобразованием растяжения вдоль оси Тригонометрические функции с примерами решения с коэффициентом k (где k > 0) такое преобразование фигуры F, при котором каждая ее точка (х; у) переходит в точку (х; ky).

Преобразование растяжения вдоль оси Тригонометрические функции с примерами решения задается формулами: х’ = х; у’ = ky. Эти формулы выражают координаты (х’; у’) точки М’, в которую переходит точка М (х; у) при преобразовании растяжения вдоль оси Тригонометрические функции с примерами решения (рис. 27). При этом преобразовании происходит растяжение отрезка AM в k раз, и в результате точка М переходит в точку М’. (Заметим, что иногда указанное преобразование называют растяжением только при Тригонометрические функции с примерами решения, а при Тригонометрические функции с примерами решенияего называют сжатием вдоль оси Тригонометрические функции с примерами решения в Тригонометрические функции с примерами решения раз.) Как видим, каждая точка В графика функции у = kf (х) получается из точки М преобразованием растяжения вдоль оси Тригонометрические функции с примерами решения. При этом общая фор­ма графика не изменяется: он растягивается или сжимается вдоль оси Тригонометрические функции с примерами решения.

Например, если графиком функции у = f (х) была парабола, то после рас­тяжения или сжатия график остается параболой. Поэтому график функции у = k f(x) (k>0) получается из графика функции у = f(x) его растяжением (при k> 1 растяжение в k раз) или сжа­тием (при Тригонометрические функции с примерами решения сжатие в Тригонометрические функции с примерами решения раз) вдоль оси Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

Построение графика функции y=f(ax)

Для построения графика функции Тригонометрические функции с примерами решения выберем как первую координату точки С этого графика значение Тригонометрические функции с примерами решения Тогда график функции Тригонометрические функции с примерами решения будет состоять из всех точек С с координатами Тригонометрические функции с примерами решения а график функции у = f(х) — из всех точек М (х; f(х)) (рис. 28).Тригонометрические функции с примерами решения

Назовем преобразованием растяжения вдоль оси Тригонометрические функции с примерами решения с коэффициентом Тригонометрические функции с примерами решения (где Тригонометрические функции с примерами решения > 0) такое преобразование фигуры F, при котором каждая ее точка (х; у) переходит в точку Тригонометрические функции с примерами решения

Преобразование растяжения вдоль оси Тригонометрические функции с примерами решения задается формулами: Тригонометрические функции с примерами решения у’ = у. Эти формулы выражают координаты (х’; у’) точки М’, в которую переходит точка М (х; у) при преобразовании растяжения вдоль оси Тригонометрические функции с примерами решения (рис. 29). Тригонометрические функции с примерами решения

При этом преобразовании происходит растягивание отрезка ВМ в Тригонометрические функции с примерами решения раз, и в результате точка М переходит в точку М’. (Заметим, что иногда указанное преобразование называют растяжением Тригонометрические функции с примерами решения только при Тригонометрические функции с примерами решенияа при Тригонометрические функции с примерами решения его называют сжатием вдоль оси Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Как видим, каждая точка С графика функции Тригонометрические функции с примерами решения получается из точки М графика функции у = f (х) преобразованием растяжения вдоль оси Тригонометрические функции с примерами решения (при этом общая форма графика не изменяется). Поэтому график функции Тригонометрические функции с примерами решенияполучается из графика функции Тригонометрические функции с примерами решенияего растяжением Тригонометрические функции с примерами решения растяжение в Тригонометрические функции с примерами решения раз) или сжатием (при Тригонометрические функции с примерами решения> 1 сжатие в Тригонометрические функции с примерами решения раз) вдоль оси Тригонометрические функции с примерами решения

Пример №11

Постройте график функции Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения

Комментарий:

Мы можем построить график функции Тригонометрические функции с примерами решения Тогда график функции Тригонометрические функции с примерами решения можно получить параллельным переносом графика функции у= f (х) вдоль оси Тригонометрические функции с примерами решения на (-3) единицы (то есть влево).

Пример №12

Постройте график функции Тригонометрические функции с примерами решения

Решение:

Последовательно строим графики:

1. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

2. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

3. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Комментарий:

Составим план последовательного построения графика заданной функции.

  1. Мы можем построить график функции y = f (х) = 2х – 2 (прямая).
  2. Затем можно построить график функции Тригонометрические функции с примерами решения(выше оси Тригонометрические функции с примерами решенияграфик у = 2х – 2 остается без изменений, а часть графика ниже оси Тригонометрические функции с примерами решения отобража-­ ется симметрично относительно оси Тригонометрические функции с примерами решения).
  3. После этого можно построить график функции Тригонометрические функции с примерами решения (симметрия графика функции Тригонометрические функции с примерами решения относительно оси Тригонометрические функции с примерами решения ).
Пример №13

Постройте график функции Тригонометрические функции с примерами решения

Решение:

Запишем уравнение заданной функции так: Тригонометрические функции с примерами решения

Последовательно строим графики:

1. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Комментарий:

Составим план последовательного построения графика заданной функции. Для этого ее подкоренное выражение запишем так, чтобы можно было использовать преобразования графиков, представленные в таблице 4: Тригонометрические функции с примерами решения

  1. Мы можем построить график фун­кции Тригонометрические функции с примерами решения
  2. Затем можно построить график функции Тригонометрические функции с примерами решения(симметрия графика функции f (х) относительно оси Тригонометрические функции с примерами решения
  3. После этого можно построить гра­фик функции Тригонометрические функции с примерами решения(параллельный перенос графика функции Тригонометрические функции с примерами решения вдоль оси Тригонометрические функции с примерами решения на 4 единицы).
  4. Затем уже можно построить график заданной функцииТригонометрические функции с примерами решения(справа от оси Тригонометрические функции с примерами решения соответствующая часть графика функцииТригонометрические функции с примерами решения остается без изменений, и эта же часть отображается симметрично относительно осиТригонометрические функции с примерами решения).

Радианная мера углов

Понятие угла:

В геометрии:

Угол — геометрическая фигура, об­разованная двумя лучами, которые выходят из одной точки. Тригонометрические функции с примерами решения

В тригонометрии:

Угол — фигура, образованная при повороте луча на плоскости около начальной точки. Тригонометрические функции с примерами решения

Измерение углов:

В геометрии:

Каждому углу ставится в соответствие градусная мера Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

В тригонометрии:

Каждому углу как фигуре ставится в соответствие угол поворота, с помощью которого образован этот угол.Угол поворота Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Радианная мера угла:

1 радиан — центральный угол, соответствующий дуге, длина которой равна радиусу окружности.

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Понятие угла

В курсе геометрии угол определяется как геометрическая фигура, образованная двумя лучами, которые выходят из одной точки. На­- пример, угол АОВ, изображенный в первом пункте таблицы 5, — это угол, образованный лучами ОА и ОВ.

Угол можно рассматривать также как результат поворота луча на плоскости около начальной точки. Например, поворачивая луч ОА около точки О от начального положения ОА до конечного положения ОВ, также получим угол АОВ. Заметим, что достичь конечного положения ОВ можно при повороте луча ОА как по часовой стрелке, так и против нее.

Измерение углов

Данные выше различные определения угла приводят к различному пониманию измерения углов. В курсе геометрии каждом углу соответствует его градусная мера, которая может находиться только в пределах от Тригонометрические функции с примерами решения доТригонометрические функции с примерами решения и поэтому, например, для прямого угла АОВ (см. пункт 2 табл. 5) его мера записывается однозначно: Тригонометрические функции с примерами решения При измерении углов поворота договорились, что направление поворота против часовой стрелки считается положительным, а по часовой стрелке — отрицательным.

Поэтому при измерении углов, образованных при повороте луча около начальной точки, мы можем получить как положительные, так и отрицательные значения углов поворота. Например, если угол АОВ, в котором лучи ОА и ОВ являются взаимно перпендикулярными, получен при повороте луча ОА на угол Тригонометрические функции с примерами решенияпротив часовой стрелки, то значение угла поворотаТригонометрические функции с примерами решения (см. соответствующий рисунок в пункте 2 табл. 5) равно +Тригонометрические функции с примерами решения (или просто Тригонометрические функции с примерами решения ). Если тот же угол АОВ получен при повороте луча ОА на угол Тригонометрические функции с примерами решения по часовой стрелке (понятно, что полный оборот — это Тригонометрические функции с примерами решения то значение угла поворота Тригонометрические функции с примерами решения равноТригонометрические функции с примерами решения Этот же угол АОВ можно получить также при повороте луча ОА против часовой стрелки наТригонометрические функции с примерами решения и еще на полный оборот; в этом случае значение угла поворота Тригонометрические функции с примерами решения равно Тригонометрические функции с примерами решения+Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решенияи т. д.

Выбрав как значение угла поворота произвольное отрицательное или положи-­тельное число (градусов), мы всегда можем повернуть луч ОА (по часовой стрелке или против нее) и получить соответствующий угол АОВ. Таким образом, величина угла поворота (в градусах) может принимать все действи­тельные значения от Тригонометрические функции с примерами решения

Для измерения углов принимают определенный угол за единицу измерения и с ее помощью измеряют другие углы. За единицу измерения можно принять любой угол, например, один градус Тригонометрические функции с примерами решения

В технике за единицу измерения уг­лов принимают полный оборот (заметим, что 1 градус — это Тригонометрические функции с примерами решения часть полного оборота).

В мореходстве за единицу измерения углов принимают румб, равный Тригонометрические функции с примерами решения части полного оборота.

В математике и физике, кроме гра­дусной меры углов, используется так­же радианная мера углов.

Если рассмотреть некоторую окружность, то 1 радиан — это центральный угол, соответствующий дуге, длина которой равна радиусу окружности.

Таким образом, если угол АОВ равен одном радиану (рис. 31), то это озна­чает, что Тригонометрические функции с примерами решенияAB = OA=R.

Тригонометрические функции с примерами решения

Установим связь между радианной и градусной мерами углов. Центральному развернутому углу АОС (рис. 31), равному Тригонометрические функции с примерами решения соответ­ствует полуокружность, то есть дуга, длина которой равна Тригонометрические функции с примерами решения а углу в один радиан — дуга длиной R. Итак, радианная мера угла 180° равна Тригонометрические функции с примерами решения Та­ким образом, Тригонометрические функции с примерами решения Из этого равенства получаем: Тригонометрические функции с примерами решения

Пример №14

Выразите в радианах величины углов: 30°; 45°; 60°; 90°; 270° ; 360°.

Решение:

Поскольку 30° — этоТригонометрические функции с примерами решения часть угла 180°, то из равенства 180° = Тригонометрические функции с примерами решения(рад) получаем, что 30° = Тригонометрические функции с примерами решения (рад). Аналогично можно вычислить и величины других углов. В общем случае учитываем, что 1° = Тригонометрические функции с примерами решения радиан, тогда: 45 ° = Тригонометрические функции с примерами решения ( рад ); 60 ° = Тригонометрические функции с примерами решения (рад); 90°= Тригонометрические функции с примерами решения (рад); 270°= Тригонометрические функции с примерами решения (рад); 360° = Тригонометрические функции с примерами решения (рад).

Поскольку радианными мерами рассмотренных углов приходится пользоваться достаточно часто, запишем полученные результаты в виде справочной таблицы:

Тригонометрические функции с примерами решения

Замечание:

Чаще всего при записи радианной меры углов наименование единицы измерения «радиан» (или сокращенно рад) не пишут. Например, вместо равенства 90° = Тригонометрические функции с примерами решения радиан пишут Тригонометрические функции с примерами решения

Пример №15

Выразите в градусах величины углов: Тригонометрические функции с примерами решения

Решение:

Поскольку Тригонометрические функции с примерами решения это Тригонометрические функции с примерами решения часть угла Тригонометрические функции с примерами решения то из равенства Тригонометрические функции с примерами решения получаем, что Тригонометрические функции с примерами решения Аналогично можно вычислить и величины углов Тригонометрические функции с примерами решения В общем случае учитываем, что 1 радиан = Тригонометрические функции с примерами решения тогда: Тригонометрические функции с примерами решения

Тригонометрические функции угла и числового аргумента

Определение тригонометрических функций:

Через единичную окружность (R = 1)

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Через произвольную окружность (R — радиус окружности)

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Через прямоугольный треугольник (для острых углов)

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Тригонометрические функции числового аргумента:

Линии тангенсов и котангесов:

Тригонометрические функции с примерами решения — линия тангенсов Тригонометрические функции с примерами решения; Тригонометрические функции с примерами решения – ордината соответствующей точки линии тангенсов

Тригонометрические функции с примерами решения

СВ — линия котангенсов Тригонометрические функции с примерами решения; Тригонометрические функции с примерами решения — абсцисса соответствующей точки линии котангенсов

Тригонометрические функции с примерами решения

Определение тригонометрических функций

Из курса геометрии вам известно определение тригонометрических функций острого угла в прямоугольном треугольнике. Напомним их. Синусом острого угла Тригонометрические функции с примерами решения в прямоугольном треугольнике называется отно­шение противолежащего катета к гипотенузе: Тригонометрические функции с примерами решения (рис. 33).

Тригонометрические функции с примерами решения

Косинусом острого угла Тригонометрические функции с примерами решения в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе: Тригонометрические функции с примерами решения

Тангенсом острого угла Тригонометрические функции с примерами решения в прямоугольном треугольнике называется от­ошение противолежащего катета к прилежащему: Тригонометрические функции с примерами решения

Котангенсом острого угла Тригонометрические функции с примерами решения в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему: Тригонометрические функции с примерами решения

В курсе геометрии было обосновано, что синус и косинус острого угла зависят только от величины угла и не зависят от длин сторон треугольника и его расположения, то есть синус и косинус (а таким образом, и тангенс, и котангенс) являются функциями угла, которые называются тригонометриче­скими функциями.

Также в курсе геометрии с использованием окружности с центром в начале координат было введено определение тригонометрических функций для углов от 0° до 180°. Эти определения можно применить для нахождения триго­нометрических функций любых углов. Напомним их (но теперь будем рас- сматривать любые углы Тригонометрические функции с примерами решения

Возьмем окружность радиуса R c центром в начале координат. Обозначим точку окружности на положительной полуоси абсцисс через Тригонометрические функции с примерами решения (рис. 34).

Тригонометрические функции с примерами решения

Необходимые нам углы будем образовывать поворотом радиуса Тригонометрические функции с примерами решения около точки Тригонометрические функции с примерами решения

Пусть в результате поворота на угол Тригонометрические функции с примерами решения около точки Тригонометрические функции с примерами решения радиус Тригонометрические функции с примерами решения займет положение Тригонометрические функции с примерами решения (говорят, что при повороте на угол Тригонометрические функции с примерами решения радиус Тригонометрические функции с примерами решения переходит в радиус Тригонометрические функции с примерами решения, а точка Тригонометрические функции с примерами решения переходит в точку Тригонометрические функции с примерами решения Напомним, что при Тригонометрические функции с примерами решения>0 радиус Тригонометрические функции с примерами решения поворачивается против часовой стрелки, а при Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения0 — по часовой стрелке. Пусть точка Тригонометрические функции с примерами решения имеет координаты (х; у). Тогда:

Как и для тригонометрических функций острых углов, значения sin Тригонометрические функции с примерами решения, cos Тригонометрические функции с примерами решения, tg Тригонометрические функции с примерами решения, ctg Тригонометрические функции с примерами решения зависят только от величины угла Тригонометрические функции с примерами решения и не зависят от радиуса R.

Удобно взять R = 1, что позволит несколько упростить приведенные определе­ния тригонометрических функций.

Окружность радиуса 1 с центром в начале координат будем называть еди­ничной окружностью.

Пусть при повороте на угол Тригонометрические функции с примерами решения точка Тригонометрические функции с примерами решения (1; 0) переходит в точку Тригонометрические функции с примерами решения (х; у) (то есть при повороте на угол Тригонометрические функции с примерами решения радиус Тригонометрические функции с примерами решения переходит в радиус Тригонометрические функции с примерами решения (рис. 35).

Тригонометрические функции с примерами решения

Синусом угла Тригонометрические функции с примерами решения называется ордината точки Тригонометрические функции с примерами решения (х; у) единичной окружности: Тригонометрические функции с примерами решения

Косинусом угла Тригонометрические функции с примерами решения называется абсцисса точки Тригонометрические функции с примерами решения (х; у) единичной окружности: Тригонометрические функции с примерами решения

Тангенсом угла Тригонометрические функции с примерами решения называется отношение ординаты точки Тригонометрические функции с примерами решения (х; у) единичной окружности к ее абсциссе, то есть отношение Тригонометрические функции с примерами решенияТаким образом, Тригонометрические функции с примерами решения

Котангенсом угла Тригонометрические функции с примерами решения называется отношение абсциссы точки Тригонометрические функции с примерами решения (х; у) единичной окружности к ее ординате, то есть отношение Тригонометрические функции с примерами решенияТаким образом, Тригонометрические функции с примерами решения

Пример №16

Пользуясь этими определениями, найдем синус, косинус, тангенс и котангенс угла Тригонометрические функции с примерами решения радиан.

Рассмотрим единичную окружность (рис. 36).

Тригонометрические функции с примерами решения

Решение:

При повороте на угол Тригонометрические функции с примерами решения радиус Тригонометрические функции с примерами решения переходит в радиус Тригонометрические функции с примерами решения (а точка Тригонометрические функции с примерами решения переходит в точку Тригонометрические функции с примерами решения). Координаты точки Тригонометрические функции с примерами решения можно найти, используя свойства прямоугольного треугольника Тригонометрические функции с примерами решения (с углами 60° и 30° и гипотенузой 1): х =-ОА = Тригонометрические функции с примерами решения у= Тригонометрические функции с примерами решения

Тогда: Тригонометрические функции с примерами решения Аналогично находятся значения синуса, косинуса, тангенса и котангенса углов, указанных в верхней строке таблицы 8.

Тригонометрические функции с примерами решения Укажем, что таким образом можно найти тригонометрические функции только некоторых углов. Тригонометрические функции произвольного угла обычно находят с помощью калькуля­тора или таблиц.

Тригонометрические функции числового аргумента

Введенные определения позволяют рассматривать не толь­ко тригонометрические функции углов, а и тригонометрические функции числовых аргументов, если рассматривать тригонометрические функции числа а как соответствующие тригонометрические функции угла в а радиан.

То есть:

Например: Тригонометрические функции с примерами решения (см. также пункт 2 табл. 7).

Линии тангенсов и котангенсов

Для решения некоторых задач полезно иметь представление о линиях тангенсов и котангенсов.

Проведем через точку Тригонометрические функции с примерами решения единичной окружности прямую Тригонометрические функции с примерами решения параллельную оси Тригонометрические функции с примерами решения (рис. 37).

Тригонометрические функции с примерами решения

Эта прямая называется линией тангенсов.

Пусть Тригонометрические функции с примерами решения — произвольное число (или угол), для которого Тригонометрические функции с примерами решения Тогда точка Тригонометрические функции с примерами решения не лежит на оси Тригонометрические функции с примерами решения и прямая Тригонометрические функции с примерами решения пересекает линию тангенсов в точке А. Поскольку прямая Тригонометрические функции с примерами решения проходит через начало координат, то ее уравнение имеет вид у = kx. Но эта прямая проходит через точку Тригонометрические функции с примерами решения с коор­динатами Тригонометрические функции с примерами решениязначит, координаты точки Тригонометрические функции с примерами решения удовлетворяют уравнению прямой у = kx, то есть Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Следовательно, прямая Тригонометрические функции с примерами решения имеет уравнение Тригонометрические функции с примерами решения Прямая Тригонометрические функции с примерами решения имеет уравнение х=1. Чтобы найти ординату точки А, достаточно в уравнение прямой Тригонометрические функции с примерами решения подставить х=1.

Получаем Тригонометрические функции с примерами решения Таким образом, тангенс угла (числа) Тригонометрические функции с примерами решения — это ордината соответствующей точки на линии тангенсов.

Аналогично вводится и понятие ли­нии котангенсов: это прямая СВ (рис. 38), которая проходит через точку С (О; 1) единичной окружности параллельно оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения — произвольное число (или угол), для которого Тригонометрические функции с примерами решения (то есть точка Тригонометрические функции с примерами решенияне лежит на оси Тригонометрические функции с примерами решения), то прямая Тригонометрические функции с примерами решения пересекает линию котангенсов в некоторой точке В Тригонометрические функции с примерами решения

Аналогично вышеизложенному обосновывается, что Тригонометрические функции с примерами решения таким образом, котангенс угла (числа) Тригонометрические функции с примерами решения — ото абсцисса соответствующей точки на линии котангенсов.

Свойства тригонометрических функций

Знаки тригонометрических функций

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Четность и нечетность

Косинус — четная функция Тригонометрические функции с примерами решения

Синус, тангенс и котангенс — нечетные функции

Тригонометрические функции с примерами решения

Периодичность

Функция f(х) называется периодической с периодом Тригонометрические функции с примерами решения если для любых х из области определения функции числа (х+Т) и (х-Т) также принадлежат области определения и выполняется равенство f(x+T) = f (x-T) = f(x).

у = Тригонометрические функции с примерами решения – дробная часть числа х

Тригонометрические функции с примерами решения

Через промежутки длиной Т (на оси Тригонометрические функции с примерами решения вид графика периодической функции повторяется. Если Т — период функции, то ± Т,± 2Т, ± ЗТ, …, ± kT — также периоды этой функции Тригонометрические функции с примерами решения

Функции sin х и cos х имеют период Т = Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Функции tg х и ctg x имеют период Т = Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Т=Тригонометрические функции с примерами решения — общий период для всех функций: sin х, cos х, tg х, ctg x

Знаки тригонометрических функций

Знаки тригонометрических функций легко определить, исходя из определения этих функций.

Например, sin Тригонометрические функции с примерами решения — это ордината соответствующей точки Тригонометрические функции с примерами решения единичной окружности. Поэтому значение sin Тригонометрические функции с примерами решения будет положительным, если точка Тригонометрические функции с примерами решения имеет положительную ординату, а это будет тогда, когда точка Тригонометрические функции с примерами решения находится в I или II четверти (рис. 39).

Тригонометрические функции с примерами решения

Если точка Тригонометрические функции с примерами решения находится в III или IV четвер­ти, то ее ордината отрицательна, и поэтому sin Тригонометрические функции с примерами решения тоже отрицателен.

Аналогично, учитывая, что cos Тригонометрические функции с примерами решения — это абсцисса соответствующей точки Тригонометрические функции с примерами решения, получаем, что cos Тригонометрические функции с примерами решения>0 в I и IV четвертях (абсцисса точки Тригонометрические функции с примерами решения положительна) и cosТригонометрические функции с примерами решения во II и III четвертях (абсцисса точки Тригонометрические функции с примерами решения отрицательна) (рис. 40).

Тригонометрические функции с примерами решения

Поскольку Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения там, где sin Тригонометрические функции с примерами решения и cos Тригонометрические функции с примерами решения имеют одинаковые знаки, то есть в I и III четвертях, tg Тригонометрические функции с примерами решения и ctg Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения0 там, где sin Тригонометрические функции с примерами решенияи cos Тригонометрические функции с примерами решения имеют разные знаки, то есть во II и IV четвертях (рис. 41).

Тригонометрические функции с примерами решения

Четность и нечетность тригонометрических функций

Чтобы исследовать тригонометрические функции на четность и нечетность, заметим, что на единичной окружности точки Тригонометрические функции с примерами решения расположены симметрично относительно оси Тригонометрические функции с примерами решения (рис. 42).

Тригонометрические функции с примерами решения

Следовательно, эти точки имеют одинаковые абсциссы и противоположные ординаты.

Тогда Тригонометрические функции с примерами решения

Таким образом, cos х — четная функция, a sin х — нечетная.

Тогда Тригонометрические функции с примерами решения Поэтому tg x и ctg x — нечетные функции.

Четность и нечетность тригонометрических функций можно применять для вычисления значений тригонометрических функций отрицательных углов (чисел).

Например, Тригонометрические функции с примерами решения

Периодичность тригонометрических функций

Множество процессов и явлений, которые происходят в природе и технике, имеют повторяющийся характер (например, движение Земли вокруг Солнца, движение маховика). Для описания процессов такого рода используют так называемые периодические функции.

Функция у = f (х) называется периодической с периодом Тригонометрические функции с примерами решения если для любого х из области определения функции числа (х + Т) и (х – Т) также принадлежат области определения и выполняется равенство f ( x + T) = f ( x – T ) = f(x).

Учитывая, что на единичной окружности числам (углам) Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решениясоответствует одна и та же точка (рис. 43), получаем Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения является периодом функций sin x и cos x.

Тригонометрические функции с примерами решения

ПриТригонометрические функции с примерами решения получаем, что Тригонометрические функции с примерами решения — это период функций sin х и cos х. Докажем, что эти функции не могут иметь меньший положительный период. Чтобы доказать, что Тригонометрические функции с примерами решения — наименьший положительный период косинуса, допустим, что Т > 0 — период функции cos х. Тогда для любого значениях выполняется равенство cos (х + Т) = cos х. Взяв х = 0, получаем cos Т = 1. Но это означает, что на единичной окружности при повороте на угол Т точка Тригонометрические функции с примерами решения снова попадает в точку Тригонометрические функции с примерами решения, то есть Тригонометрические функции с примерами решения Таким образом, любой период косинуса должен быть кратным Тригонометрические функции с примерами решения, а значит, Тригонометрические функции с примерами решениянаименьший положительный период косинуса.

Чтобы обосновать, чтоТригонометрические функции с примерами решения— наименьший положительный период функции sin х, достаточно в равенстве sin (х + Т) = sin х, которое выполняется для любых значений х, взятьТригонометрические функции с примерами решения Получаем Тригонометрические функции с примерами решения Но это означает, что при повороте на угол Тригонометрические функции с примерами решения точка Тригонометрические функции с примерами решенияпопадает в точку Тригонометрические функции с примерами решения (рис. 43), то есть Тригонометрические функции с примерами решения таким образом, Тригонометрические функции с примерами решения Следовательно, любой период синуса должен быть кратным Тригонометрические функции с примерами решения а значит, Тригонометрические функции с примерами решениянаименьший положительный период синуса.

Если учесть, что на единичной окружности точки Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения являются диаметрально противоположными, то этим точкам соответствует одна и та же точка на линии тангенсов (рис. 44) или на линии котангенсов (рис. 45). Тригонометрические функции с примерами решения также Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения То есть периодом функцийТригонометрические функции с примерами решения и Тригонометрические функции с примерами решения является Тригонометрические функции с примерами решения Наименьшим положительным периодом для функций Тригонометрические функции с примерами решения к Тригонометрические функции с примерами решения является Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тогда

Чтобы доказать это, достаточно в равенствеТригонометрические функции с примерами решения взять Тригонометрические функции с примерами решения Тогда получим Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения Итак, любой период тангенса должен быть кратным Тригонометрические функции с примерами решения, а значит ,Тригонометрические функции с примерами решения — наименьший положительный период тангенса. Аналогично в соответствующем равенстве для Тригонометрические функции с примерами решения достаточно взять Тригонометрические функции с примерами решения

Чтобы иметь представление поведении графика периодической функции Тригонометрические функции с примерами решения напомним, что по определению график функции Тригонометрические функции с примерами решения состоит из всех точек М координатной плоскости, которые имеют координаты Тригонометрические функции с примерами решения Первая координата для точек графика выбирается произвольно из области определения функции. Выберем как первую координату значение х + Т (или в обобщенном виде — значение Тригонометрические функции с примерами решения при целом значении Тригонометрические функции с примерами решения) и учтем, что для периодической функции Тригонометрические функции с примерами решения (в общем случае Тригонометрические функции с примерами решенияТогда графику функцииТригонометрические функции с примерами решения будет принадлежать также точка Тригонометрические функции с примерами решения, координатной плоскости с координатами: Тригонометрические функции с примерами решения

Точку Тригонометрические функции с примерами решения можно получить из точки Тригонометрические функции с примерами решенияпараллельным переносом вдоль оси Тригонометрические функции с примерами решения на Т единиц (рис. 46). В общем случае точку Тригонометрические функции с примерами решенияможно получить из точки Тригонометрические функции с примерами решенияпараллельным переносом вдоль оси Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения единиц. Таким образом, через промежуток Твид графика периодической функции будет повторяться. Поэтому для построения графика периодической функции с периодом Т достаточно построить график на любом промежутке длиной Т (например, на промежутке Тригонометрические функции с примерами решения а потом полученную линию параллельно перенести вправо и вле­во вдоль оси Тригонометрические функции с примерами решения на расстояние Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения — любое натуральное число.

Тригонометрические функции с примерами решения

  • Заказать решение задач по высшей математике
Пример №17

Пользуясь периодичностью, четностью и нечетностью тригонометрических функций, найдите:

Тригонометрические функции с примерами решения

Решение:

1. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

2. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

3. Тригонометрические функции с примерами решения

4. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Комментарий:

  1. Учитывая, что значение функции sin х повторяется через период Тригонометрические функции с примерами решения выделим в заданном аргументе число, кратное периоду (то есть Тригонометрические функции с примерами решения а потом воспользуемся равенством Тригонометрические функции с примерами решения
  2. Сначала учитываем четность косинуса: Тригонометрические функции с примерами решения а потом его периодичность с периодом Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  3. Функция тангенс периодическая c периодом Тригонометрические функции с примерами решения поэтому выделяем в заданном аргументе число, кратное периоду (то есть Тригонометрические функции с примерами решения а потом исполь­зуем равенствоТригонометрические функции с примерами решения
  4. Сначала учитываем нечетность котангенса: Тригонометрические функции с примерами решения а потом его периодичность с периодом Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
Пример №18

Докажите утверждение: если функция Тригонометрические функции с примерами решенияпериодическая с периодом Т, то функция Тригонометрические функции с примерами решения также периодическая с периодом Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения некоторые числа и Тригонометрические функции с примерами решения

Доказательство:

Пусть Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

а это и означает, что функция Тригонометрические функции с примерами решения имеет период Тригонометрические функции с примерами решения

Комментарий:

По определению функция Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения будет периодической с пе­риодом

Тригонометрические функции с примерами решения если для любого значения Тригонометрические функции с примерами решения из области определения Тригонометрические функции с примерами решения значения этой функции в точках Тригонометрические функции с примерами решения иТригонометрические функции с примерами решения равны, то есть Тригонометрические функции с примерами решения В ходе обоснования учитывается, что Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения равно Тригонометрические функции с примерами решения а при Тригонометрические функции с примерами решения равно Тригонометрические функции с примерами решения

Также учтено, что функция Тригонометрические функции с примерами решения по условию периодическая с периодом Т, и поэтому Тригонометрические функции с примерами решения

Используем утверждение, доказанное в задаче 2, для нахождения периодов функций.

Например,

  1. если функция Тригонометрические функции с примерами решения имеет период Тригонометрические функции с примерами решения то функция Тригонометрические функции с примерами решения имеет периодТригонометрические функции с примерами решения
  2. если функция Тригонометрические функции с примерами решения имеет период Тригонометрические функции с примерами решения то функция Тригонометрические функции с примерами решения имеет периодТригонометрические функции с примерами решения

Свойства функций синуса, косинуса, тангенса и котангенса и их графики

График функции y=sin x (синусоида)

Тригонометрические функции с примерами решения

Свойства функции у=sin х

  1. Область определения: Тригонометрические функции с примерами решения (x — любое действительное число) Тригонометрические функции с примерами решения
  2. Область значений: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  3. Функция нечетная: sin(-х)=-sin х (график симметричен относительно начала координат).
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения
  5. Точки пересечения с осями координат: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  6. Промежутки знакопостоянства: sin х > 0 при Тригонометрические функции с примерами решенияsin Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения
  7. Промежутки возрастания и убывания: функция sin х возрастает на каждом из промежутков Тригонометрические функции с примерами решения и убывает на каждом из промежутков Тригонометрические функции с примерами решения
  8. Наибольшее значение функции равно 1 при Тригонометрические функции с примерами решения
  9. Наименьшее значение функции равно -1 при Тригонометрические функции с примерами решения

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3)четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания; 8) наибольшее и наименьшее значения функции.

Замечание. Абсциссы точек пересечения графика функции с осью Тригонометрические функции с примерами решения (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 51).

Тригонометрические функции с примерами решения

Поскольку ординату можно найти для любой точки единичной окружности, то область определения функции у = sin х — все действительные числа. Это можно записать так: Тригонометрические функции с примерами решения

Для точек единичной окружности ординаты принимают все значения от -1 до 1, таким образом, для функции у = sin х область значений: Тригонометрические функции с примерами решения Это можно записать так: Тригонометрические функции с примерами решения

Как видим, наибольшее значение функции sin х равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка А, то есть при Тригонометрические функции с примерами решения

Наименьшее значение функции sin х равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка В, то есть при Тригонометрические функции с примерами решения

Как было сказано, синус — нечетная функция: sin (-х) = -sin х, поэтому ее график симметричен относительно начала координат.

Синус — периодическая функция с наименьшим положительным периодом Тригонометрические функции с примерами решения таким образом, через промежутки длиной Тригонометрические функции с примерами решения вид графика функции sin х повторяется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной Тригонометрические функции с примерами решения, а потом полученную линию параллельно перенести вправо и влево вдоль оси Тригонометрические функции с примерами решения на расстояние Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Тригонометрические функции с примерами решения значение х = 0. Тогда соответствующее значение Тригонометрические функции с примерами решениято есть график функции у = sin х проходит через начало координат.

На оси Тригонометрические функции с примерами решения значение Тригонометрические функции с примерами решения Поэтому необходимо найти такие значения Тригонометрические функции с примерами решения при которых sin х, то есть ордината соответствующей точки единичной окружности, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки С и Тригонометрические функции с примерами решения то есть при Тригонометрические функции с примерами решения(см. рис. 51).

Промежутки знакопостоянства:

Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 52). Таким образом, sin х>0 при Тригонометрические функции с примерами решения а также, учитывая период, при всех Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Значения функции синус отрицательны (то есть ордината соответствую­щей точки единичной окружности отрицательна) в III и IV четвертях, поэто­му sin Тригонометрические функции с примерами решенияпри Тригонометрические функции с примерами решения

Промежутки возрастания и убывания:

Учитывая периодичность функции sin х с периодом Тригонометрические функции с примерами решения достаточно исследовать ее на возрастание и убывание на любом промежутке длиной Тригонометрические функции с примерами решениянапример на промежутке Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения (рис. 53,а),то при увеличении аргумента х Тригонометрические функции с примерами решения ордината соответствующей точки единичной окружности увеличивается (то есть Тригонометрические функции с примерами решения следовательно, на этом промежутке функция sin х возрастает. Учитывая периодичность функции sin х, делаем вывод, что она так­же возрастает на каждом из промежутков Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения (рис. 53,6), то при увеличении аргумента х Тригонометрические функции с примерами решения орди­ната соответствующей точки единичной окружности уменьшается (то есть Тригонометрические функции с примерами решения таким образом, на этом промежутке функция sin х убывает. Учитывая периодичность функции sin х, делаем вывод, что она также убы­вает на каждом из промежутков Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Проведенное исследование позволяет обоснованно построить график фун­кции у = sin х. Учитывая периодичность этой функции (с периодом Тригонометрические функции с примерами решения достаточно сначала построить график на любом промежутке длиной Тригонометрические функции с примерами решения напри­мер на промежутке Тригонометрические функции с примерами решения Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината соответствующей точки единичной окружности. На рисунке 54 показано построение графика функции у = sin х на промежутке Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Учитывая нечетность функции sin х (ее график симметричен относительно начала координат), для построения графика на промежутке Тригонометрические функции с примерами решения отображаем полученную кривую симметрично относительно начала координат (рис. 55).

Тригонометрические функции с примерами решения

Поскольку мы построили график на промежутке длиной Тригонометрические функции с примерами решения, то, учитывая периодичность синуса (с периодом Тригонометрические функции с примерами решения повторяем вид графика на каждом промежутке длиной Тригонометрические функции с примерами решения (то есть переносим параллельно график вдоль оси Тригонометрические функции с примерами решенияна Тригонометрические функции с примерами решения где k — целое число).

Получаем график, который называется синусоидой (рис. 56).

Тригонометрические функции с примерами решения Замечание. Тригонометрические функции широко применяются в ма­тематике, физике и технике. Например, множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п., описываются функцией, которая задается формулой Тригонометрические функции с примерами решения Такие процессы называют гармоническими колебаниями.

График функции Тригонометрические функции с примерами решения можно получить из синусоиды у = sin х сжатием или растяжением ее вдоль координатных осей и параллельным переносом вдоль оси Тригонометрические функции с примерами решения Чаще всего гармоническое колебание является функцией времени t. Тогда оно задается формулой Тригонометрические функции с примерами решения где А — амплитуда колебания, Тригонометрические функции с примерами решения — частота, Тригонометрические функции с примерами решения — начальная фаза, Тригонометрические функции с примерами решения период колебания.

Свойства функции у = cos х и её график

График функции у = cos х (косинусоида):

Тригонометрические функции с примерами решения

Свойства функции у = cos х:

  1. Область определения: Тригонометрические функции с примерами решения (х — любое действительное число). Тригонометрические функции с примерами решения
  2. Область значений: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  3. Функция четная: cos (-x) = cos x (график симметричен относительно оси Тригонометрические функции с примерами решения
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  5. Точки пересечения с осями координат: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  6. Промежутки знакопостоянства: cos х>0 при Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Промежутки возрастания и убывания:

функция cos х возрастает на каждом из промежутков Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияи убывает на каждом из промежутков Тригонометрические функции с примерами решения

Наибольшее значение функции равно 1 при Тригонометрические функции с примерами решения Наименьшее значение функции равно -1 при Тригонометрические функции с примерами решенияcos Тригонометрические функции с примерами решения при

Напомним, что значение косинуса — это абсцисса соответствующей точ­ки единичной окружности (рис. 57). Поскольку абсциссу можно найти для любой точки единичной окружности, то область определения функции у = соs х — все действительные числа. Это можно записать так: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Для точек единичной окружности абсциссы принимают все значения от -1 до 1, следовательно, область значений функции у = cos х: Тригонометрические функции с примерами решения Это можно записать так: Тригонометрические функции с примерами решения

Как видим, наибольшее значение функции cos х равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка А, то есть при Тригонометрические функции с примерами решения

Наименьшее значение функции cos х равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка В, то есть при Тригонометрические функции с примерами решения Косинус — четная функция: cos (-х) = cos х, поэтому ее график симметричен относительно оси Тригонометрические функции с примерами решения

Было обосновано также, что косинус — периодическая функция с наименьшим положительным периодом Тригонометрические функции с примерами решения Таким образом, через промежутки длиной Тригонометрические функции с примерами решения вид графика функции соs х повторяется. Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Тригонометрические функции с примерами решения значение х = 0. Тогда соответствующее значение у = соs 0 = 1. На оси Тригонометрические функции с примерами решения значение у = 0. Поэтому необходимо найти такие значения х, при которых cos х, то есть абсцисса соответствующей точки еди­ничной окружности будет равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки С или D, то есть при Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Промежутки знакопостоянства:

Как было обосновано ранее, значения функции косинус положительны (то есть абсцисса соответствующей точ­ки единичной окружности положительна) в I и IV четвертях (рис. 58). Следовательно, cos х>0 при Тригонометрические функции с примерами решения а также, учитывая период, при всех Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Значения функции косинус отрицательны (то есть абсцисса соответствую щей точки единичной окружности отрицательна) во II и III четвертях, поэто­му cos Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения

Промежутки возрастания и убывания:

Учитывая периодичность функции cos x Тригонометрические функции с примерами решения достаточно исследовать ее на возрастание и убывание на любом промежутке длиной Тригонометрические функции с примерами решения например на промежутке Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения (рис. 59, а), то при увеличении аргумента х Тригонометрические функции с примерами решения абсцисса соответствующей точки единичной окружности уменьшается (то есть Тригонометрические функции с примерами решения следовательно, на этом промежутке функция cos х убывает. Учитывая периодичность функции cos х, делаем вывод, что она также убывает на каждом из промежутков Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения (рис. 59, б), то при увеличении аргументах Тригонометрические функции с примерами решения абсцис­са соответствующей точки единичной окружности увеличивается (то есть Тригонометрические функции с примерами решения таким образом, на этом промежутке функция cos х возрастает. Учитывая периодичность функции cos х, делаем вывод, что она возрастает также на каждом из промежутков Тригонометрические функции с примерами решения

Проведенное исследование позволяет построить график функции у = cos х аналогично тому, как был построен график функции у = sin х. Но график функции у = cos х можно также получить с помощью геометрических преобразований графика функции у = sin х, используя формулу Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Эту формулу можно обосновать, например, так. Рассмотрим единичную окружность (рис. 60), отмстим ни ней точки Тригонометрические функции с примерами решения а также абсциссы и ординаты этих точек.

Тригонометрические функции с примерами решения

Так как Тригонометрические функции с примерами решения то при повороте пря­моугольника Тригонометрические функции с примерами решения около точки О на угол Тригонометрические функции с примерами решения против часовой стрелки он перейдет в прямоугольник Тригонометрические функции с примерами решения Но тогда Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения Сле­довательно, Тригонометрические функции с примерами решения Укажем также формулы, которые нам понадобятся далее: Тригонометрические функции с примерами решения

Тогда, Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения

Учитывая, что Тригонометрические функции с примерами решения график функции у = cos х можно получить из графика функции у = sin х его параллельным переносом вдоль оси Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения(рис. 61).

Тригонометрические функции с примерами решения

Полученный график называется косинусоидой (рис. 62).

Тригонометрические функции с примерами решения

Свойства функции y=tg x и её график

График функции у=tg х (тангенсоида):

Тригонометрические функции с примерами решения

Свойства функции у = tg х:

  1. Область определения: Тригонометрические функции с примерами решения
  2. Область значений: Тригонометрические функции с примерами решения
  3. Функция нечетная: tg (-x) = – tg x (график симметричен относительно начала координат).
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения
  5. Точки пересечения с осями координат: Тригонометрические функции с примерами решения
  6. Промежутки знакопостоянства: tg х>0 при Тригонометрические функции с примерами решения и tg Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения
  7. Промежутки возрастания и убывания: функция tg х возрастает на каждом из промежутков своей области оп­ределения, то есть на каждом из промежутков Тригонометрические функции с примерами решения
  8. Наибольшего и наименьшего значений функция не имеет.

Напомним, что Тригонометрические функции с примерами решения Таким образом, областью определения функции у = tg х будут все значения аргумента, при которых Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Получаем Тригонометрические функции с примерами решения Этот результат можно получить и геометрически. Значение тангенса — это ордината соответствующей точки Тригонометрические функции с примерами решения на линии тангенсов (рис. 63).

Тригонометрические функции с примерами решения

Поскольку точки А и В единичной окружности лежат на прямых ОА и ОВ, параллельных линии тангенсов, мы не сможем найти значение тангенса для Тригонометрические функции с примерами решения Для всех других значений аргумента мы можем найти соответствующую точку на линии тангенсов и ее ординату — тангенс. Следовательно, все значения Тригонометрические функции с примерами решения входят в область определения функции y = tg x .

Для точек единичной окружности (которые не совпадают с точками А и В) ординаты соответствующих точек на линии тангенсов принимают все значения от Тригонометрические функции с примерами решения Поэтому область значений функции у = tg x — все действительные числа, то есть Тригонометрические функции с примерами решения Это можно записать так: Е (tg х) = R. Отсюда следует, что наибольшего и наименьшего значений функция tg x не имеет.

Как было показано тангенс — нечетная функция: tg (-х) = -tg х, следовательно, ее график симметричен относительно начала координат.

Тангенс — периодическая функция с наименьшим положительным периодом Тригонометрические функции с примерами решения. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной Тригонометрические функции с примерами решения а по­том полученную линию перенести параллельно вправо и влево вдоль оси Тригонометрические функции с примерами решения на расстояния Тригонометрические функции с примерами решения где k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Тригонометрические функции с примерами решения значение х = 0. Тогда соответствующее значение у = tg 0 = 0, то есть график функции у=tg x проходит через начало координат. На оси Тригонометрические функции с примерами решения значение у = 0. Поэтому необходимо найти такие значения х, при которых tg х, то есть ордината соответствующей точки линии тангенсов, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки С или D, то есть при Тригонометрические функции с примерами решения

Промежутки знакопостоянства:

Значения функции тангенс положительны (то есть ордината соответствующей точки линии тангенсов положительна) в I и III четвертях. Следовательно, tg х>0 при Тригонометрические функции с примерами решенияа также, учитывая период, при всех Тригонометрические функции с примерами решения Значения функции тангенс отрица­тельны (то есть ордината соответствую­щей точки линии тангенсов отрицательна) во II и IV четвертях. Таким образом, tg Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения

Промежутки возрастания и убывания:

Учитывая периодичность функции tg х (период Тригонометрические функции с примерами решения достаточно исследовать ее на возрастание и убывание на любом промежутке длиной Тригонометрические функции с примерами решения например на промежутке Тригонометрические функции с примерами решения Если Тригонометрические функции с примерами решения (рис. 64), то при увеличении аргумента Тригонометрические функции с примерами решения ордината соответствующей точки линии тангенсов увеличивается (то есть Тригонометрические функции с примерами решения Таким образом, на этом промежутке функция tg х возрастает. Учитывая периодичность функции tg х, де­лаем вывод, что она возрастает также на каждом из промежутков Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Проведенное исследования позволяет обоснованно построить график функции у = tg х. Учитывая периодичность этой функции (с периодом Тригонометрические функции с примерами решения сначала построим график на любом промежутке длиной Тригонометрические функции с примерами решения например на промежутке Тригонометрические функции с примерами решения Для более точного построения точек графика воспользуемся также тем, что значение тангенса — это ордината соответствующей точки линии тангенсов. На рисунке 65 показано построение графика функции у = tg х на промежутке Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Далее, учитывая периодичность тангенса (с периодом Тригонометрические функции с примерами решения повторяем вид графика на каждом промежутке длиной Тригонометрические функции с примерами решения (то есть параллельно переносим график вдоль оси Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения — целое число). Получаем график, приведенный на рисунке 66, который называется тангенсоидой.

Тригонометрические функции с примерами решения

Свойства функции у = ctg х и ее график

График функции у = ctg х (котангенсоида)

Тригонометрические функции с примерами решения

Свойства функции у = ctg х:

  1. Область определения: Тригонометрические функции с примерами решения
  2. Область значений: Тригонометрические функции с примерами решения
  3. Функция четная: ctg (-х) = -ctg х (график симметричен относительно начала координат).
  4. Функция периодическая с периодом Тригонометрические функции с примерами решения
  5. Точки пересечения с осями координат: Тригонометрические функции с примерами решения
  6. Промежутки знакопостоянства: ctg х>0 при Тригонометрические функции с примерами решения и ctg хТригонометрические функции с примерами решения0 при Тригонометрические функции с примерами решения
  7. Промежутки возрастания и убывания: функция ctg х убывает на каждом из промежутков своей области определения, то есть на каждом из промежутков Тригонометрические функции с примерами решения
  8. Наибольшего и наименьшего значений функция не имеет.

Так как Тригонометрические функции с примерами решения то областью определения котангенса будут все значения аргумента, при которых Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения

Тот же результат можно получить, используя геометрическую иллюстрацию. Значение котангенса — это абсцисса соответствующей точки на линии котангенсов (рис. 67). Поскольку точки А и В единичной окружности лежат на прямых ОА и ОВ, параллельных линии котангенсов, мы не можем найти значение котангенса для Тригонометрические функции с примерами решения Для других значений аргумента мы можем найти соответствующую точку на линии котангенсов и ее абсциссу — котангенс. Поэтому все значения Тригонометрические функции с примерами решения входят в область определения функции у = ctg х.

Тригонометрические функции с примерами решения

Для точек единичной окружности (которые не совпадают с точками А и В) абсциссы соответствующих точек на линии котангенсов принимают все значения от Тригонометрические функции с примерами решения до Тригонометрические функции с примерами решения, таким образом, область значений функции Тригонометрические функции с примерами решения — все действительные числа, то есть Тригонометрические функции с примерами решения Это можно записать так: Тригонометрические функции с примерами решения Из приведенных рассуждений также вытекает, что наибольшего и наименьшего значений функция ctg х не имеет.

Котангенс — нечетная функция: ctg (-х) = -ctg х, поэтому ее график симметричен относительно начала координат.

Там же было обосновано, что котангенс — периодическая функция с наименьшим положительным периодом Тригонометрические функции с примерами решения поэтому через промежутки длиной Тригонометрические функции с примерами решения вид графика функции ctg х повторяется.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Тригонометрические функции с примерами решения значение х = О. Но ctg 0 не существует, значит, график функции у = ctg х не пересекает ось Тригонометрические функции с примерами решения.

На оси Тригонометрические функции с примерами решения значение у = О. Поэтому необходимо найти такие значения х, при которых ctg х, то есть абсцисса соответствующей точки линии котангенсов, равна нулю. Это будет тогда и только тогда, когда на единичной окруж­ности будут выбраны точки С или D, то есть при Тригонометрические функции с примерами решения

Промежутки знакопостоянства:

Значения функции котангенс положительны (то есть абсцисса соответствующей точки линии котангенсов положительна) в I и III четвертях (рис. 68). Тогда Тригонометрические функции с примерами решенияпри Тригонометрические функции с примерами решения Учитывая период, получаем, что Тригонометрические функции с примерами решения при всех Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Значения функции котангенс отрицательны (то есть абсцисса соответствующей точки линии котангенсов отрицательна) во II и IV четвертях, таким образом, Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Промежутки возрастания и убывания:

Учитывая периодичность функции ctg х (наименьший положительный период Тригонометрические функции с примерами решения достаточно исследовать ее на возрастание и убывание на любом промежутке длиной Тригонометрические функции с примерами решения например на промежутке Тригонометрические функции с примерами решения Если Тригонометрические функции с примерами решения ( рис. 69), то при увеличении аргумента Тригонометрические функции с примерами решения абсцисса соответствующей точки линии котангенсов уменьшается (то есть Тригонометрические функции с примерами решения следовательно, на этом промежутке функция Тригонометрические функции с примерами решения убывает.

Тригонометрические функции с примерами решения

Учитывая периодичность функции Тригонометрические функции с примерами решения делаем вывод, что она также убывает на каждом из промежутковТригонометрические функции с примерами решения

Проведенное исследование позволяет построить график функции Тригонометрические функции с примерами решенияаналогично тому, как был построен график функции Тригонометрические функции с примерами решения Но график функции Тригонометрические функции с примерами решения можно получить также с помощью геометрических преобразований графика функции Тригонометрические функции с примерами решения По формуле, приведенной на с. 63, Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Поэтому график функции Тригонометрические функции с примерами решенияможно получить из графика функции Тригонометрические функции с примерами решения параллельным переносом вдоль оси Тригонометрические функции с примерами решения на и симметричным отображением полученного графика относительно оси Тригонометрические функции с примерами решения. Получаем график, который называется котангенсоидой (рис. 70).

Тригонометрические функции с примерами решения

Пример №19

Постройте график функции и укажите нули функции и про­межутки знакопостоянства: 1) у = 2sin х; 2) у = sin 2х.

Комментарий:

Графики всех данных функций можно получить с помощью геометриче­ских преобразований графика функции f(x) = sin х (табл. 4). Таким образом, графиком каждой из этих функций будет синусоида, полученная для:

  1. у = 2sin х = 2f (х) растяжением графика у = sin х вдвое вдоль оси Тригонометрические функции с примерами решения
  2. у = sin 2х = f (2х) сжатием графика у = sin х вдвое вдоль оси Тригонометрические функции с примерами решения Нули функции — это абсциссы точек пересечения графика с осью Тригонометрические функции с примерами решения Чтобы записать промежутки знакопостоянства функции, заметим, что функция у = 2sin х периодическая с периодом Тригонометрические функции с примерами решения а функция у = sin 2х периодическая с периодом Тригонометрические функции с примерами решения Поэтому для каждой функции достаточ­но выяснить на одном периоде, где значения функции положительны (гра­фик находится выше оси Тригонометрические функции с примерами решения и где отрицательны (график находится ниже оси Тригонометрические функции с примерами решения, а потом полученные промежутки повторить через период.

Решение:

График функции у= 2sin х получаем из графика функции у= sin х растяжением его вдвое вдоль оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Нули функции: Тригонометрические функции с примерами решения

Промежутки знакопостоянства: 2sin х>0 при Тригонометрические функции с примерами решения 2sin хТригонометрические функции с примерами решения0 при Тригонометрические функции с примерами решения

График функции у = sin 2х получаем из графика функции у = sin х сжатием его вдвое вдоль оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Нули функции: Тригонометрические функции с примерами решения

Промежутки знакопостоянства: sin 2х>0 при Тригонометрические функции с примерами решения

sin 2 Тригонометрические функции с примерами решения при Тригонометрические функции с примерами решения

Пример №20

Расположите в порядке возрастания числа: sin 1,9; sin 3; sin (- l) ; sin (-1 ,5).

Комментарий:

Для расположения данных чисел в порядке их возрастания выясним, ка­кие из них положительны, а какие отрицательны, а затем сравним между собой отдельно положительные числа и отдельно отрицательные, учитывая известные промежутки возрастания и убывания функции sin х.

Решение:

Числа sin 1,9 и sin 3 положительны, так как точки Тригонометрические функции с примерами решения находятся во II четверти. Числа sin (-1) и sin (-1,5) отрицательны ,так как точки Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решениянаходятся в IV четверти. Учитывая, что Тригонометрические функции с примерами решения и что функция sin х на промежутке Тригонометрические функции с примерами решенияубывает, из неравенства 1,9 Тригонометрические функции с примерами решения 3 получаем sin 1,9 > sin 3. Также Тригонометрические функции с примерами решения Функция sin х на промежутке Тригонометрические функции с примерами решениявозрастает. Учитывая, что -1 > -1 ,5 , получаем sin (-1) > sin (-1,5). Таким образом, в порядке возрастания эти числа располагаются так: sin (-1 ,5), sin (-1), sin 3, sin 1,9.

Пример №21

Постройте график функции: 1) у = | sin x |; 2) y = sin | х |.

Комментарий:

Графики данных функций можно получить с помощью геометрических преобразований графика функции f (х) = sin х. Напомним соответствующие преобразования:

  1. у = | sin х | = | f (х) | — выше оси Тригонометрические функции с примерами решения (и на самой оси) график функции у = sin х остается без изменений, часть графика, расположенная ниже оси Тригонометрические функции с примерами решения, отображается симметрично относительно оси Тригонометрические функции с примерами решения;
  2. у = sin | х | = f (| х |) — справа от оси Тригонометрические функции с примерами решения (и на самой оси) график функции у = sin х остается без изменений, и эта же часть графика отображается сим­метрично относительно оси Тригонометрические функции с примерами решения.

Решение:

Построим сначала график функции у = f (х) = sin х:

Тригонометрические функции с примерами решения

1) у = | sin х | = | f (х) |

Тригонометрические функции с примерами решения

2) у = sin | х | = f (| х |)

Тригонометрические функции с примерами решения

Пример №22

Постройте график функции и укажите промежутки ее убывания и возрастания:

1) Тригонометрические функции с примерами решения 2) y= -tg x

Комментарий:

Графики данных функций можно получить с помощью геометрических преобразований графиков функций:

  1. f (х) = cos х;
  2. Тригонометрические функции с примерами решения

Тогда получаем графики функций:

  1. Тригонометрические функции с примерами решения — параллельным переносом графика функции f (х) вдоль оси Тригонометрические функции с примерами решения единиц;
  2. у = -tg х = Тригонометрические функции с примерами решения — симметрией графика функции Тригонометрические функции с примерами решения относительно оси Тригонометрические функции с примерами решения Чтобы записать промежутки убывания и возрастания функций, отметим, что функция Тригонометрические функции с примерами решения периодическая с периодом Тригонометрические функции с примерами решения а функция у = – tg х периодическая с периодом Тригонометрические функции с примерами решения Поэтому для каждой из функций достаточно выяснить на одном периоде, где она убывает и где возрастает, а затем полученные промежутки повторить через период.

Решение:

1) График функции Тригонометрические функции с примерами решения получаем из графика функции у = cos х параллельным переносом вдоль оси Тригонометрические функции с примерами решения единиц.

Тригонометрические функции с примерами решения

Функция убывает на каждом из промежутков Тригонометрические функции с примерами решения и возрастает на каждом из промежутков Тригонометрические функции с примерами решения

2) График функции у = -tg х получаем симметричным отображением графика функции у = tg х относительно оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Функция убывает на каждом из промежутков Тригонометрические функции с примерами решения

Соотношения между тригонометрическими функциями одного аргумента

Основное тригонометрическое тождество

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

На рисунке изображена единичная окружность, то есть окружность радиуса 1 с центром в начале координат. Уравнение этой окружно­сти имеет вид Тригонометрические функции с примерами решения Пусть при повороте на угол Тригонометрические функции с примерами решения точка Тригонометрические функции с примерами решения (1; 0) единичной окружности переходит в точку Тригонометрические функции с примерами решения (х; у) (то есть при повороте на угол Тригонометрические функции с примерами решения радиус Тригонометрические функции с примерами решения переходит в радиус Тригонометрические функции с примерами решения Напомним, что синусом Тригонометрические функции с примерами решения называется ордината точки Тригонометрические функции с примерами решения (х; у) единичной окружности, то есть sin Тригонометрические функции с примерами решения = у, а косинусом Тригонометрические функции с примерами решения называется абсцисса этой точки, то есть cos Тригонометрические функции с примерами решения = х. Координаты точки Тригонометрические функции с примерами решения удовлетворяют уравнению окружности, тогда Тригонометрические функции с примерами решения следовательно, Тригонометрические функции с примерами решения Это соотношение называют основным тригонометрическим тождеством. Напомним также, что: Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения С помощью этих соотношений и основного тригонометрического тождества получаем: Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения

Аналогично получаем: Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения

Пример №23

Зная значение одной из тригонометрических функций и интервал, в котором находится а, найдите значение трех осталь­ных тригонометрических функций: 1) Тригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решения

Решение:

  1. Из равенства Тригонометрические функции с примерами решения получаем: Тригонометрические функции с примерами решения Отсю­да Тригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решения а значит, Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  2. Из равенства Тригонометрические функции с примерами решения получаем Тригонометрические функции с примерами решения Подставляем в равенство Тригонометрические функции с примерами решения значение Тригонометрические функции с примерами решения и получаем: Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решения тогда Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Комментарий:

  1. Равенство Тригонометрические функции с примерами решения связывает Тригонометрические функции с примерами решения и позволяет выразить одну из этих функций через другую. Например, Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения Учитывая, в какой четверти находится Тригонометрические функции с примерами решения мы мо­жем определить знак, который необходимо взять в правой части формулы (это знак косинуса во II четверти). Зная Тригонометрические функции с примерами решения находим Тригонометрические функции с примерами решения Укажем, что после нахождения tg Тригонометрические функции с примерами решения значение ctg Тригонометрические функции с примерами решенияможно также найти из соотношения Тригонометрические функции с примерами решения
  2. Равенство Тригонометрические функции с примерами решения связы­вает tg Тригонометрические функции с примерами решения и ctg Тригонометрические функции с примерами решения и позволяет выразить одну из этих функций через другую как обратную величину. Равенство Тригонометрические функции с примерами решения связывает tg Тригонометрические функции с примерами решения и cos Тригонометрические функции с примерами решения и позволяет выразить одну из этих функций через другую. Например, Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения Зная, в какой четверти находится Тригонометрические функции с примерами решения мы можем определить знак, который необходимо взять в правой части формулы (это знак ко­синуса в III четверти). Для нахождения sin Тригонометрические функции с примерами решения можно вос­пользоваться соотношением Тригонометрические функции с примерами решения
Пример №24

Упростите выражение Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения

Комментарий:

Для преобразования числителя данной дроби из основного тригонометрического тождества Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения находим: Тригонометрические функции с примерами решения Затем, используя определение тангенса: Тригонометрические функции с примерами решения упрощаем полученную дробь.

Пример №25

Упростите выражение Тригонометрические функции с примерами решения

Комментарий:

Для преобразования тригонометрических выражений наряду с тригонометрическими формулами используют также алгебраические формулы, в час­тности, формулы сокращенного умножения. Так, выражение Тригонометрические функции с примерами решения можно рассматривать как разность квадратов: Тригонометрические функции с примерами решения Тогда его можно разложить на множители (на произведение суммы и разности Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения а затем применить основное тригонометрическое тождество Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Пример №26

Упростите выражение Тригонометрические функции с примерами решения

Комментарий:

Сначала используем определение тангенса и котангенса: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияа после преобразования знаменателя дроби — основное тригонометрическое тождество Тригонометрические функции с примерами решения далее упрощаем полученную дробь. В конце учитываем, что Тригонометрические функции с примерами решения Для раскрытия знака модуля находим знак косинуса в заданном промежутке и учитываем, что при Тригонометрические функции с примерами решения значение |а| = -а.

Решение:

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тригонометрические функции с примерами решения

поскольку во II четверти Тригонометрические функции с примерами решения cos Тригонометрические функции с примерами решения.

Пример №27

Докажите тождество Тригонометрические функции с примерами решения

Комментарий:

Докажем, что левая часть равенства равна правой. Для этого в знаменате­ле используем формулу Тригонометрические функции с примерами решения а в числителе возведем выражение в скобках в квадрат и используем формулу Тригонометрические функции с примерами решения Напомним, что тождеством называется равенство, верное при всех допустимых значениях букв, входящих в него. Поэтому данное равенство является тождеством только при условии Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения

2 = 2. Таким образом, данное равенство является тождеством.

Замечание. При доказательстве тождеств чаще всего используют такие приемы: 1) с помощью тождественных преобразований доказывают, что одна часть равенства равна другой;

2) рассматривают разность левой и правой частей тождества и доказывают, что эта разность равна нулю (этот прием используют в тех случаях, когда планируется преобразовывать обе части тождества).

Формулы сложения и их следствия

Формулы сложения

  1. Косинус разности и суммыТригонометрические функции с примерами решения
  2. Синус суммы и разностиТригонометрические функции с примерами решения
  3. Тангенс суммы и разностиТригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Косинус разности и суммы

Чтобы получить формулу для Тригонометрические функции с примерами решения сначала рассмотрим случай, ког­да Тригонометрические функции с примерами решения находятся в промежутке Тригонометрические функции с примерами решения На единичной окружности обозначим точки Тригонометрические функции с примерами решения и изобразим векторы Тригонометрические функции с примерами решения (рис. 71).

Тригонометрические функции с примерами решения

Эти векторы имеют те же координаты, что и точки Тригонометрические функции с примерами решения то есть: Тригонометрические функции с примерами решения Длины (модули) этих векторов рав ны единице: Тригонометрические функции с примерами решения а угол между ними равен Тригонометрические функции с примерами решения (то есть Тригонометрические функции с примерами решения Найдем скалярное произведение векторов Тригонометрические функции с примерами решения двумя способами:

  1. как сумму произведений одноименных координат: Тригонометрические функции с примерами решения
  2. как произведение длин (модулей) векторов на косинус угла между ними: Тригонометрические функции с примерами решения

Таким образом, Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Полученное равенство называют формулой косинуса разности. Словесно ее можно сформулировать так: косинус разности двух углов ( чисел) равен произведению косинуса первого угла ( числа) на косинус второго плюс произведение синуса первого на синус второго.

Чтобы обосновать эту формулу в общем случае, напомним, что по определению угол между векторами Тригонометрические функции с примерами решения может быть только в пределах от 0 до Тригонометрические функции с примерами решения Поэтому при Тригонометрические функции с примерами решения угол между векторами Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения может равняться Тригонометрические функции с примерами решения (рис. 71), или Тригонометрические функции с примерами решения (рис. 72), или принимать значения, отличные от этих значений на целое число оборотов (то есть на Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Учитывая периодичность (с периодом Тригонометрические функции с примерами решения и четность функции косинус, получаем, что в любом случае Тригонометрические функции с примерами решения таким образом, приведенное обоснование остается верным для любых значений Тригонометрические функции с примерами решения

С помощью формулы (1) легко вывести формулу косинуса суммы: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Косинус суммы двух углов (чисел) равен произведению косинуса пер­вого угла (числа) на косинус второго минус произведение синуса пер­вого на синус второго.

Синус суммы и разности

Выведем теперь формулы синуса суммы и синуса разности. Сначала по формуле (1) получим два полезных соотношения. А именно: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Перепишем полученную формулу справа налево: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Если подставить в формулу (3) Тригонометрические функции с примерами решения то получим: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Применяя формулы (3), (1) и (4), имеем: Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Синус суммы двух углов (чисел) равен произведению синуса первого угла (числа) на косинус второго плюс произведение косинуса пер­вого на синус второго.

Для синуса разности имеем: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения

Синус разности двух углов равен произведению синуса первого угла (числа) на косинус второго минус произведение косинуса первого на синус второго.

Тангенс суммы и разности

С помощью формул сложения для синуса (5) и косинуса (2) легко получить формулы сложения для тангенса или котангенса. Например, Тригонометрические функции с примерами решения Разделим числитель и знаменатель последней дроби на произведение Тригонометрические функции с примерами решения (при условии, что Тригонометрические функции с примерами решения и получим:

Тригонометрические функции с примерами решения

Таким образом, Тригонометрические функции с примерами решения Для тангенса разности имеем:Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения

Пример №28

Вычислите: 1) sin 15°; 2) cos l5°; 3) tg 15°.

Решение:

  1. sin 15° = sin (45°-30°) = sin 45°cos 30° – cos 45°sin 30° Тригонометрические функции с примерами решения
  2. cos 15° = cos (45°-30°) = cos 45° cos 30° + sin 45° sin 30° = Тригонометрические функции с примерами решения
  3. tg 15° = tg (45°-30°) = Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения =Тригонометрические функции с примерами решения

Комментарий:

Представим 15° как разность: 15° = 45°- 30°, а значения тригонометрических функций углов 45° и 30° мы знаем. Поэто­му, записав синус 15° как синус разности, получим значение sin 15°. Ана­логично найдем cos 15° и tg 15°. Заметим, что для нахождения tg 15° можно применить также фор­мулу Тригонометрические функции с примерами решения В задании 3 после подстановки тангенса в данное выражение Тригонометрические функции с примерами решения удобно избавиться от иррационально­сти в знаменателе дроби, что значительно упрощает ответ.

Пример №29

Упростите выражение Тригонометрические функции с примерами решения

Комментарий:

Для преобразования числителя и знаменателя дроби применим формулы косинуса суммы и косинуса разности и приведем подобные члены.

Решение:

Тригонометрические функции с примерами решения

Пример №30

Найдите значение выражения cos 37°cos 23° – sin 37°sin 23°.

Решение:

cos 37°cos 23° – sin 37°cos 23° = cos (37° + 23°) = cos 60° = Тригонометрические функции с примерами решения

Комментарий:

Используем формулу косинуса суммы справа налево: Тригонометрические функции с примерами решения

Пример №31

Докажите тождество: Тригонометрические функции с примерами решения

Комментарий:

Для обоснования этих тождеств докажем, что их правые части равны ле­вым, применяя формулы синуса суммы и синуса разности: Тригонометрические функции с примерами решения

Доказательства:

  1. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения
  2. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Формулы двойного аргумента

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Чтобы получить формулы двойного аргумента, достаточно в формулах сложения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

взять Тригонометрические функции с примерами решения

Получим тождества :

Из формулы Тригонометрические функции с примерами решения используя основное тригонометричное тождество Тригонометрические функции с примерами решения можно получить формулы, которые позволяют выразить Тригонометрические функции с примерами решения только через Тригонометрические функции с примерами решения или только через Тригонометрические функции с примерами решения

Действительно, из основного тригонометрического тождества получаем

Из формул (1) и (2) можно получить следствия, которые полезно запомнить:

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Эти формулы называют формулами понижения степени.

Если в последних формулах обозначить Тригонометрические функции с примерами решениято есть Тригонометрические функции с примерами решения то можно записать такие формулы : Тригонометрические функции с примерами решения (3)

Заметим, что формулы синуса и косинуса двойного аргумента справедливы для любых значений аргумента, тогда как формула тангенса двойного аргумента справедлива только для тех значений аргумента Тригонометрические функции с примерами решения для которых определены tg Тригонометрические функции с примерами решения и tg 2Тригонометрические функции с примерами решения то есть только приТригонометрические функции с примерами решения и Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения

Необходимо отметить, что, полученные формулы можно применить как слева направо, так и справа налево. Например, вместо выражения Тригонометрические функции с примерами решенияможно записать Тригонометрические функции с примерами решения а вместо выражения Тригонометрические функции с примерами решениязаписать Тригонометрические функции с примерами решения

Пример №32

Вычислите: Тригонометрические функции с примерами решения

Решение:

  1. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения
  2. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Комментарий:

В первом задании достаточно «узнать» правую часть формулы косинуса двойного аргумента и записать результат. Во втором задании следует обратить внимание на то, что заданное выражение отличается от правой части формулы синуса двойного аргумента только отсутствием двойки.

Поэтому, если это выражение умно­жить и разделить на 2, то оно не изме­нится, и тогда по формуле получим: 2sin 15°cos 15° = sin(2*15°) = sin 30° Тригонометрические функции с примерами решения

Пример №33

Докажите тождество Тригонометрические функции с примерами решения

Комментарий:

Докажем, что левая часть тождества равна правой. Заметим, что в числи­теле дроби находится выражение, которое можно непосредственно преобразовать по формуле (3). Но применение этой формулы уменьшает аргумент вдвое:Тригонометрические функции с примерами решения Желательно и в знаменателе дроби перейти к то­му же аргументу Тригонометрические функции с примерами решения Для этого рассмотрим Тригонометрические функции с примерами решения как синус двойного аргумен­та (относительно аргумента Тригонометрические функции с примерами решения

Доказательство:

Тригонометрические функции с примерами решения

Пример №34

Сократите дробь Тригонометрические функции с примерами решения

Комментарий:

Преобразовывая тригонометрические выражения, следует помнить не толь­ко тригонометрические, но и алгебраические формулы. В частности, если в знаменателе дроби применить формулу косинуса двойного аргумента: Тригонометрические функции с примерами решения то получим выражение, которое является разностью квадратов cos Тригонометрические функции с примерами решения и sin Тригонометрические функции с примерами решения. Его можно разложить на множители как произведение суммы и разности cos Тригонометрические функции с примерами решения и sin Тригонометрические функции с примерами решения. Учитывая вид выражения, полученного в знаменателе, в числителе представим выражение Тригонометрические функции с примерами решения как удвоенное произведение sin Тригонометрические функции с примерами решения на cos Тригонометрические функции с примерами решения. Тогда для получения квадрата суммы этих выражений нам необходима еще сумма Тригонометрические функции с примерами решения которую по основному тригонометрическому тождеству дает единица, стоящая в числителе.

Решение:

Тригонометрические функции с примерами решения

Пример №35

Зная, что Тригонометрические функции с примерами решения вычислите: Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения Учитывая, что Тригонометрические функции с примерами решения получаем Тригонометрические функции с примерами решения Тогда:

1) Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения 2) Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

3) Тригонометрические функции с примерами решения 4) Тригонометрические функции с примерами решения

Комментарий:

Чтобы найти значение sin Тригонометрические функции с примерами решения по формуле синуса двойного аргумента Тригонометрические функции с примерами решения необходимо, кро­ме данного значения cos Тригонометрические функции с примерами решения иметь еще и значение sin Тригонометрические функции с примерами решения которое легко находится с использованием основного тригонометрического тождества: Тригонометрические функции с примерами решения

Напомним, что для нахождения sin Тригонометрические функции с примерами решения следует также учесть знак синуса в заданном промежутке (по условию Тригонометрические функции с примерами решения находится в IV четверти, где синус отрицателен).

Заметим, что cos Тригонометрические функции с примерами решения можно найти также по формуле Тригонометрические функции с примерами решения не вычисляя sin Тригонометрические функции с примерами решения, a ctg Тригонометрические функции с примерами решения — по формуле ctg Тригонометрические функции с примерами решения = Тригонометрические функции с примерами решения подставив найденное значение tg Тригонометрические функции с примерами решения.

Формулы приведения

Формулами приведения называют формулы, с помощью которых тригонометрические функции от аргументов вида Тригонометрические функции с примерами решенияприводят к тригонометрическим функциям от аргумента Тригонометрические функции с примерами решения

1. Алгоритм

  1. Если к числу Тригонометрические функции с примерами решения прибавляется число Тригонометрические функции с примерами решения (то есть число, которое изображается на горизонтальном диаметре единичной окружности), то название заданной функции не меняется, а если прибавляется число Тригонометрические функции с примерами решения (то есть число, которое изображается на вертикальном диа­метре единичной окружно­сти), то название заданной функции меняется на соот­ветствующее (синус на коси­нус, косинус на синус, тангенс на котангенс и котангенс на тангенс).
  2. Знак полученного выра­жения определяется знаком исходного выражения, если условно считать угол Тригонометрические функции с примерами решения ост­рым.

2. Примеры

1) Упростите по формулам приведения Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Комментарий:

Название заданной функции не меняется, поскольку число Тригонометрические функции с примерами решения изображается на горизонтальном диаметре (слева) единичной окружности. Если угол Тригонометрические функции с примерами решения острый, то угол Тригонометрические функции с примерами решения находится во II четверти, где тан­генс отрицателен, поэтому в правой части формулы ставится знак «-» .

2) Упростите Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Комментарий:

Название заданной функции меняется, по­скольку число Тригонометрические функции с примерами решения изображается на верти­кальном диаметре (внизу) единичной ок­ружности. Если угол Тригонометрические функции с примерами решения острый, то угол Тригонометрические функции с примерами решения находится в IV четверти, где косинус положителен, поэтому в правой части формулы ставится знак « + ».

Формулы сложения позволяют обосновать формулы приведения, по которым тригонометрические функции от аргументов вида Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения приводят к тригонометрическим функциям от аргумента Тригонометрические функции с примерами решения

Рассмотрим несколько примеров. Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

(конечно, в последнем случае тот же результат можно получить, используя периодичность и нечетность функции котангенс);

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Для анализа полученных результатов составим такую таблицу:

Тригонометрические функции с примерами решения

Аналогично можно обосновать, что во всех случаях тригонометрические функции от аргументов вида Тригонометрические функции с примерами решения можно привести к тригонометрическим функциям от аргумента Тригонометрические функции с примерами решения по такому алгоритму: если к числу Тригонометрические функции с примерами решения прибавляется число Тригонометрические функции с примерами решения (то есть число, которое изображается на горизонтальном диаметре единичной окружно­сти), то название заданной функции не меняется, а если прибавля­ется число Тригонометрические функции с примерами решения(то есть число, которое изображается на вер­тикальном диаметре единичной окружности), то название задан­ной функции меняется на соответствующее (синус на косинус, коси­нус на синус, тангенс на котангенс и котангенс на тангенс).

Знак полученного выражения определяется знаком исходного вы­ражения, если условно считать угол Тригонометрические функции с примерами решения острым.

В таблице 19 приведены основные формулы приведения. Все другие случаи могут быть приведены к ним с помощью использования периодичности соответствующих тригонометрических функций.

Тригонометрические функции с примерами решения

Укажем, что по формулам приведения Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Если последние формулы записать справа налево, то получим полезные соотношения, которые часто называют формулами дополнительных аргументов (аргументы Тригонометрические функции с примерами решения дополняют друг друга до Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Например, sin 60° = cos (90°-60°) = cos 30°; cos 89° = sin (90°-89°) = sin 1°.

Пример №36

Вычислите с помощью формул приведения: 1) cos 210°; 2) Тригонометрические функции с примерами решения

Решение:

  1. Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения
  2. Тригонометрические функции с примерами решения

Комментарий:

Представим заданные аргументы так, чтобы можно было применить формулы приведения (то есть выделим в аргументе такие части, которые изоб­ражаются на горизонтальном или вер­тикальном диаметре единичной окружности). Например, 210° = 180° + 30°. Конечно, можно представить аргумент и так: 210° = 270°- 60° и также применить формулы приведения.

Пример №37

Докажите тождество Тригонометрические функции с примерами решения

Комментарий:

Докажем, что левая часть тождества равна правой. Сначала используем формулы приведения, а потом упростим полученные выражения, применяя формулы: Тригонометрические функции с примерами решения При упрощении выражений cosТригонометрические функции с примерами решения и tg Тригонометрические функции с примерами решения можно использовать как непосредственно формулы приведения, так и периодичность соответствующих функций. Например, учитывая, что периодом функции cos х является Тригонометрические функции с примерами решения получаем: Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Формулы суммы и разности одноименных тригонометрических функций. Формулы преобразования произведения тригонометрических функций в сумму

1. Формулы суммы и разности тригонометрических функций

Тригонометрические функции с примерами решения

2. Преобразование произведения тригонометрических функций в сумму

Тригонометрические функции с примерами решения

Формулы суммы и разности тригонометрических функций

По формулам сложения Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Складывая почленно эти равенства, получаем Тригонометрические функции с примерами решения (1)

Если обозначить Тригонометрические функции с примерами решения (2); Тригонометрические функции с примерами решения (3), то, складывая и вычитая равенства (2) и (3), имеем: Тригонометрические функции с примерами решения Тогда из равенства (1) получаем формулу преобразования суммы синусов в произведение: Тригонометрические функции с примерами решения (4)

Словесно ее можно сформулировать так:

Сумма синусов двух аргументов равна удвоенному произведению синуса полусуммы этих аргументов на косинус их полуразности.

Если заменить в формуле (4) Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения и учесть нечетность синуса: Тригонометрические функции с примерами решения то получим формулу: Тригонометрические функции с примерами решения

Разность синусов двух аргументов равна удвоенному произведению синуса полуразности этих аргументов на косинус их полусуммы.

Аналогично, складывая почленно равенств Тригонометрические функции с примерами решения (5); Тригонометрические функции с примерами решения (6), получаем Тригонометрические функции с примерами решения (7), и, выполняя замены (2) и (3), имеем: Тригонометрические функции с примерами решения

Сумма косинусов двух аргументов равна удвоенному произведению косинуса полусуммы этих аргументов на косинус их полуразности.

Если вычесть почленно из равенства (5) равенство (6), то получим Тригонометрические функции с примерами решения (8); Тогда Тригонометрические функции с примерами решения

Разность косинусов двух аргументов равна: минус двойное произведе­ние синуса полусуммы этих аргументов на синус их полуразности.

Для обоснования формулы преобразования суммы (разности) тангенсов достаточно применить определение тангенса и формулы сложения:

Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения (9)

Если в формуле (9) заменить Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения и учесть нечетность тангенса Тригонометрические функции с примерами решения и четность косинуса Тригонометрические функции с примерами решения то получим Тригонометрические функции с примерами решения (10)

Отметим, что формулы (9) и (10) справедливы только тогда, когда Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения

Преобразование произведения тригонометрических функций в сумму

Укажем, что в процессе обоснования формул преобразования суммы и разности синусов и косинусов в произведение мы фактически получили и фор­мулы преобразования произведений тригонометрических функций в сум­му. Действительно, если разделить обе части равенства (1) на 2 и записать полученное равенство справа налево, то получим:

Тригонометрические функции с примерами решения (11)

Аналогично из формулы (7) получим Тригонометрические функции с примерами решения (12)

а из формулы (8) (после деления на -2 ) формулу Тригонометрические функции с примерами решения (13); Заменяя в формулах (11-13) значение Тригонометрические функции с примерами решения получаем запись этих формул, приведенную в таблице 20.

Пример №38

Преобразуйте заданную сумму или разность в произведение и, если возможно, упростите: l) sin 75° + sin 15°; 2) Тригонометрические функции с примерами решения

Комментарий:

  1. В первом задании можно непосредственно применить формулу Тригонометрические функции с примерами решения а потом использовать табличные значения sin 45° и cos 30°.
  2. Во втором задании выражение Тригонометрические функции с примерами решения можно рассмотреть как разность квадратов и разложить его на множители, а затем к каждому из полученных выражений применить формулы преобразования разности или суммы косинусов в произведение. Для дальнейшего упрощения получен­ного выражения используем формулу синуса двойного аргумента: Тригонометрические функции с примерами решения

Решение:

1) sin 75° + sin 15°= Тригонометрические функции с примерами решения

2) Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Пример №39

Преобразуйте в произведение Тригонометрические функции с примерами решения

Комментарий:

Мы умеем преобразовывать в произведение сумму синусов или косинусов. Для перехода к таким выражениям достаточно вспомнить, что Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решения

Пример №40

Упростите выражение Тригонометрические функции с примерами решения

Комментарий:

Для упрощения заданной дроби можно попытаться сократить ее: для этого представим числитель и знаменатель в виде произведений, которые содержат одинаковые выражения. В числителе используем формулы преобразования разности синусов и косинусов в произведение (а также нечетность синуса: Тригонометрические функции с примерами решенияа в знаменателе воспользуемся формулой Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Пример №41

Докажите тождество Тригонометрические функции с примерами решения

Комментарий:

Докажем, что левая часть тождества равна правой. После приведения к общему знаменателю преобразуем произведение синусов в разность косинусов, а потом учтем, что cos 60° = Тригонометрические функции с примерами решения a cos 80° = sin 10° (поскольку 80°+10° = 90°).

Решение:

Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Пример №42

Докажите, что если А, В, С — углы треугольника, то sin А + sin В + sin C =Тригонометрические функции с примерами решения

Комментарий:

Если А, В, С — углы треугольника, то А + В + С = Тригонометрические функции с примерами решения Тогда С = Тригонометрические функции с примерами решения – (А + В), и по формулам приведения sin (Тригонометрические функции с примерами решения – (А + В)) = sin (А + В). После преобразования суммы синусов sin А + sin В в произведение замечаем, что аргумент (А + В) вдвое больше, чем аргумент Тригонометрические функции с примерами решения Это позволяет записать sin (А + В) по формуле синуса двойного аргумента и в полученной сумме вынести за скобки 2 sin Тригонометрические функции с примерами решения а затем в скобках преобразовать сумму косинусов в произведение. Далее следует учесть, что Тригонометрические функции с примерами решения и применить формулы приведения.

Решение:

Учитывая, что для углов треугольника С = Тригонометрические функции с примерами решения – (А + В), получаем sin А + sin В + sin С = sin А + sin В + sin (Тригонометрические функции с примерами решения – (А + В)) = Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Графики уравнений и неравенств с двумя переменными

Построение графиков функции вида y = f(x) + g(x)

Если нам известны графики функций у = f (x) и у = g(x), то эскиз графика функции y = f (х) + g (х) можно построить так: изобразить в од­ной системе координат графики функций f (x) и g (х), а потом построить искомый график по точкам, выполняя для каждого значения х (из области определения функции f (х) – g(x)) необходимые операции с от­резками, изображающими соответствующие ординаты f (х) и g (х).

Аналогично можно построить и схематические графики функций Тригонометрические функции с примерами решения

Пример:

Постройте график функции Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Комментарий:

Построим водной системе коор­динат графики функций-слагаемых: Тригонометрические функции с примерами решения (на рисунке они показаны штриховыми линиями).

Для каждого значения х (кроме х = 0, которое не принадлежит об­ласти определения заданной функции) справа от оси Тригонометрические функции с примерами решения прибавляем соответствующие отрезки — значения функций f (х) и g (х) (обе функции имеют одинаковые знаки), слева от оси Тригонометрические функции с примерами решения — вычитаем (функ­ции имеют противоположные зна­ки). На рисунке синей линией изоб­ражен график функции Тригонометрические функции с примерами решения

Определение. Графиком уравнения (неравенства) с двумя переменными х и у называется множество всех точек координатной плоскости с координатами (х; у), где пара чисел (х; у) является решением соответ­ствующего уравнения.

Графики некоторых уравнений и неравенств

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Геометрические преобразования графика уравнения F (х; у) = 0

Преобразование:

Тригонометрические функции с примерами решения Параллельный перенос графика уравнения F (х; у) = на вектор Тригонометрические функции с примерами решения

Пример:

Тригонометрические функции с примерами решения

Преобразование:

Тригонометрические функции с примерами решения Часть графика уравнения F (х; у) = 0 справа от оси Тригонометрические функции с примерами решения (и на самой оси) остается без изменений, и эта же часть графика отображается симметрично относи­тельно оси Тригонометрические функции с примерами решения.

Пример:

Тригонометрические функции с примерами решения

Преобразование:

Тригонометрические функции с примерами решения Часть графика уравнения F (х; у) = 0 выше оси Тригонометрические функции с примерами решения (и на самой оси) остается без изменений, и эта же часть графика отображается симметрично относитель­но оси Тригонометрические функции с примерами решения. Пример

Пример:

Тригонометрические функции с примерами решения

Построение графиков функций вида y = f (х) + g (х)

Если известны графики функций у = f (х) и у = g (х), то можно построить ориентировочный вид графика функции у = f (х) + g (х), или у = f (х) • g (х), или Тригонометрические функции с примерами решения Для этого достаточно изобразить в одной системе координат графики функций f (х) и g (х), а потом построить искомый график по точкам, выполняя для каждого значения х (из области определения заданной функции) необходимые опера­ции над отрезками (или над длинами этих отрезков), которые изображают соответствующие ординаты функций f (х) и g (х).

Пример построения графика функции вида y = f (х) + g (х) приведен в таблице 21, а графика функции вида Тригонометрические функции с примерами решения (в последнем случае удобно строить графики функций у = f (х) и Тригонометрические функции с примерами решения не в одной системе коор­динат, а в разных, расположенных так, чтобы их оси ординат находились на одной прямой). Заметим, что такой способ построения графика функции не всегда дает возможность определить все характерные особенности поведения графика (часто это можно сделать только в результате специального исследования функции, которое будет рассмотрено в учебнике для 11 класса), но во многих случаях приведенный способ позволяет получить определенное представление о виде графика заданной функции.

Графики уравнений и неравенств с двумя переменными:

С понятием графика уравнения с двумя переменными вы ознакомились в курсе алгебры. Ана­логично вводится и понятие графика неравенства с двумя переменными. По­этому можно дать общее определение этих графиков: Графиком уравнения (неравенства) с двумя переменными x и у назы­вается множество всех точек координатной плоскости с координатами (х; у), где пара чисел (x; у) является решением соответствующего уравнения (неравенства).

Для построения графика неравенства Тригонометрические функции с примерами решения достаточно иметь график функции у = f (х). Действительно, по определению график функции у = f (х) состоит из всех точек М координатной плоскости с координатами (х; у) = (х; f(х)). Тогда для каждого значения х точки, координаты которых удовлетворяют неравенству Тригонометрические функции с примерами решения будут находиться выше точ­ки М (рис. 73, а), а точки, координаты которых удовлетворяют неравенству Тригонометрические функции с примерами решения будут находиться ниже точки М (рис. 73, б). Тригонометрические функции с примерами решения

Таким образом, график неравенстваТригонометрические функции с примерами решения состоит из всех точек координатной плоско­сти, находящихся выше графика функции у =-f (х), а график неравенства Тригонометрические функции с примерами решениясостоит из всех точек координатной плоскости, находящихся ниже графика функции у = f (х).

Например, на рисунке 74 изображен график неравенства Тригонометрические функции с примерами решения а на рисун­ке 75 — график неравенства Тригонометрические функции с примерами решения Поскольку точки графика Тригонометрические функции с примерами решения не принадлежит графику неравенства Тригонометрические функции с примерами решения то на первом графике парабола Тригонометрические функции с примерами решения изображена штриховой линией; а так как точки графика Тригонометрические функции с примерами решения принадлежат графику неравенства Тригонометрические функции с примерами решения то на втором графике парабола Тригонометрические функции с примерами решения изображена сплошной линией.

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Аналогично, если на координатной плоскости есть прямая x=а, то графиком неравенства Тригонометрические функции с примерами решения будут все точки координатной плоскости, находящиеся справа от этой прямой, а графиком неравенства Тригонометрические функции с примерами решения будут все точки координатной плоскости, находящиеся слева от этой прямой.

Например, на рисунке 76 изображен график неравенства х>2, а на рисун­ке 77 — график неравенства Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Отметим, что в том случае, когда на координатной плоскости есть изобра­жение окружности Тригонометрические функции с примерами решения то графиком неравенства Тригонометрические функции с примерами решения будут все точки координатной плоско­сти, находящиеся внутри окружности, а графиком неравенства Тригонометрические функции с примерами решениябудут все точки координатной плоскости, находящиеся вне окружности.

Действительно, если на координатной плоскости рассмотреть точку М (х, у), то Тригонометрические функции с примерами решения (О — начало координат). Если Тригонометрические функции с примерами решения (где R>0), то Тригонометрические функции с примерами решения таким образом, ОМ = R — точка М лежит на окружности радиуса Тригонометрические функции с примерами решения с центром в начале координат (рис. 78, а)

Если Тригонометрические функции с примерами решения таким образом, ОМТригонометрические функции с примерами решенияR. То есть неравенству Тригонометрические функции с примерами решения удовлетворяют координаты всех точек (и только этих точек), которые находятся внутри круга, ограниченного окружностью радиуса R с центром в начале координат (рис. 78, б).

Если Тригонометрические функции с примерами решения таким образом, ОМТригонометрические функции с примерами решенияу>f (х) или уТригонометрические функции с примерами решенияf(х)R . То есть неравенству Тригонометрические функции с примерами решения удовлетворяют координаты всех точек (и только этих точек), которые находятся вне круга, ограниченного окружностью радиуса R (рис. 78, в).

Тригонометрические функции с примерами решения

Аналогично, если на плоскости есть изображение окружности Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения то графиком неравенства Тригонометрические функции с примерами решения будут все точки координатной плоскости, находящиеся внутри этой окружности, а графиком неравенства Тригонометрические функции с примерами решения будут все точки координатной плоскости, находящиеся вне окружности. Например, на рисунке 79 изображен график неравенства Тригонометрические функции с примерами решения а на рисунке 80 — график неравенства Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Геометрические преобразования графика уравнения F (х; у) =0

По определению график уравнения F (x; y) = 0 (1) состоит из всех точек М Тригонометрические функции с примерами решения координатной плоскости, координаты Тригонометрические функции с примерами решения которых являются решениями этого уравнения. Это означает, что при под­становке пары чисел Тригонометрические функции с примерами решения в данное уравнение оно обращается в верное числовое равенство, таким образом, F Тригонометрические функции с примерами решения = 0 — верное равенство.

Рассмотрим точку Тригонометрические функции с примерами решения Если координаты этой точки подста­вить в уравнение F (х-а; y-b) = 0, (2) то получим верное равенство F Тригонометрические функции с примерами решения = 0. Поэтому координаты точки Тригонометрические функции с примерами решения являются решениями уравнения (2), значит, точка Тригонометрические функции с примерами решенияпринадлежит графику уравнения F (х-а; у-b) = 0.

Точку Тригонометрические функции с примерами решения можно полу­чить из точки М Тригонометрические функции с примерами решения параллельным переносом ее на вектор Тригонометрические функции с примерами решения Поскольку каждая точка Тригонометрические функции с примерами решения(графика уравнения F (x-а; у-b) = 0 получается из точки М графика уравнения F (х; у)= 0 параллельным переносом ее на вектор Тригонометрические функции с примерами решения (рис. 81), то и весь график уравнения F (х-а; у-b)=0 можно получить из графика уравнения F (х; у) = 0 параллельным переносом его на вектор Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Для обоснования связи между графиками F (х; у) = 0 и F (|х|; у) = 0 достаточно заметить, что при Тригонометрические функции с примерами решения уравнение F (|x|; у) = 0 совпадает с уравнением F (x; у) = 0, таким образом, совпадают и их графики справа от оси Тригонометрические функции с примерами решения и на самой оси. Пусть точка М Тригонометрические функции с примерами решения — одна из общих точек этих графиков. Тог­да F Тригонометрические функции с примерами решения = 0 — верное равенство.

Рассмотрим точку Тригонометрические функции с примерами решения Если ко­ординаты этой точки подставить в уравнение F (|х|; у) = 0 и учесть, что Тригонометрические функции с примерами решения то получим равенство F Тригонометрические функции с примерами решения) = 0. Поэтому координаты точки Тригонометрические функции с примерами решения являются решениями уравнения F (|х|; у) = 0, значит, точка Тригонометрические функции с примерами решения принадлежит графику этого уравнения. Учитывая, что точки М и Тригонометрические функции с примерами решения симметричны относительно оси Тригонометрические функции с примерами решения (рис. 82): график у равнения F (|х|; у)=0 можно получить из графика уравнения F (х; у)=0 следующим образом: часть графика уравнения F (х; у) = 0 справа от оси Тригонометрические функции с примерами решения (и на самой оси) остается без изменений, и эта же часть графика отображается симметрично относительно оси Тригонометрические функции с примерами решения.

Аналогично обосновывается, что для построения графика уравнения F (х;|у|)=0 часть графика уравнения F (х; у)=0 выше оси Тригонометрические функции с примерами решения (и на самой оси) остается без измене­ний, и эта же часть графика отображается симметрично относительно оси Тригонометрические функции с примерами решения.

Тригонометрические функции с примерами решения

В таблице 21 приведены простейшие примеры использования геометри­ческих преобразований графиков уравнений. Указанные соотношения приходится применять в заданиях типа: построить график уравнения или нера­венства или изобразить на координатной плоскости множество точек, коор­динаты которых удовлетворяют заданному уравнению (неравенству).

Пример №43

Постройте график функции Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения Поэтому область определения заданной фун­кции: Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Комментарий:

Построим две системы координат так, чтобы оси ординат были у них на одной прямой. В тех точках, где функция f (х) = Тригонометрические функции с примерами решения равна нулю (х = ± 3), не существует графика функции Тригонометрические функции с примерами решения Поэтому проведем через эти точки вертикальные прямые, которые не пересекают график функции Тригонометрические функции с примерами решения Затем для каждого значения х разделим 1 на соответствующее значение ординаты f (х) (используя то, что ординаты f (х) отмечены на верхнем графике). На рисунке синей линией изображен результат — график функции Тригонометрические функции с примерами решения (Для построения этого гра­фика масштаб по осям Тригонометрические функции с примерами решения выбран разный.)

Пример №44

Покажите штриховкой на координатной плоскости множество точек, координаты которых удовлетворяют системе Тригонометрические функции с примерами решения

Решение:

Заданная система равносильна системе Тригонометрические функции с примерами решения Изобразим штриховкой графики неравенств системы (первого — вер­тикальной штриховкой, второго — горизонтальной):

Тригонометрические функции с примерами решения

Тогда множество точек, координаты которых удовлетворяют системе, будет таким:

Тригонометрические функции с примерами решения

Комментарий:

Перепишем заданную систему так, чтобы было удобно изображать графики данных неравенств (то есть за­пишем неравенства в виде у>f (х) или уТригонометрические функции с примерами решенияf(х)). Множество точек, координа­ты которых удовлетворяют неравен­ству Тригонометрические функции с примерами решения является объединением точек параболы Тригонометрические функции с примерами решения и точек координатной плоскости, находящихся ниже параболы (на рисунке это множество обозначено вертикальной штриховкой). Множество точек, координа­ты которых удовлетворяют неравен­ству у > х-2, состоит из точек координатной плоскости, находящихся выше прямой у = х-2 (на рисунке это мно­жество обозначено горизонтальной штриховкой).

Системе неравенств удовлетворя­ют координаты тех и только тех точек, которые принадлежат пересечению множеств точек, заданных каждым из неравенств данной системы (на рисунке пересечению множеств соот­ветствует та область, где штриховки наложились одна на другую).

Заметим, что в подобных задани­ях можно не выполнять промежуточ­ных рисунков, а сразу штриховать ис­комое множество точек координатной плоскости (выше прямой у = х-2 и ниже параболы Тригонометрические функции с примерами решения вместе с той частью параболы, которая лежит выше прямой).

Пример №45

Постройте график уравнения Тригонометрические функции с примерами решения

Ориентир: Для упрощения выражения с несколькими модулями с двумя переменны­ми можно найти нули под модульных выражений (то есть приравнять их к нулю ) и разбить область определения рассматриваемого выражения на несколько частей, в каждой из которых знак каждого модуля раскрывается однозначно.

Используя этот ориентир, получаем план решения примера. Приравняем к нулю подмодульные выражения х-у = 0 (отсюда у = х) и х + у = О (отсюда у = -х). Прямые у = х и у =-х разбивают координатную плоскость на четыре области. В каждой из этих областей знак каждого модуля раскрывается однозначно, после преобразования полученного равенства строим соответствующую часть графика заданного уравнения.

Решение:

  1. Область определения: Тригонометрические функции с примерами решения
  2. x-у = 0 при у = х; х+у = 0 при у = -х .
  3. Прямые у = х и у =-х разбивают координатную плоскость на четыре части, в каждой из которых обозначены знаки первого и второго подмодульных выражений (рис. 83, а). (Будем считать, что каждая область берется вмес­те с лучами, которые ее ограничивают.)

Действительно, если точки нахо­дятся в области I или на ее границе, то их координаты удовлетворяют системе неравенств Тригонометрические функции с примерами решения которую можно записать так: Тригонометрические функции с примерами решения Тогда в области I первое подмодульное выражение отрицательно, а второе — по­ложительно, поэтому данное уравнение имеет вид -(х-у) + 2(х + у) = х + 6. Отсюда у = 2. Строим ту часть графика этой функции, которая находится в области I (рис. 83, б).

Аналогично для точек области II: Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Таким образом, в области II данное уравнение имеет вид -(х-у) – 2(х+у) = х + 6. Отсюда у = -4х-6. Строим ту часть графика этой функции, кото­рая находится в области II. Если точки находятся в области III, то Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения из данного уравнения получаем (х-у) – 2(х+у) = х+6. Отсюда Тригонометрические функции с примерами решения Если точки находятся в области IV, то Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения из данного уравнения имеем (х-у) + 2(х+у) = х+6. Отсюда у = -2х+6. Окончательный вид графика уравнения приведен на рисунке 83, б.

Тригонометрические функции с примерами решения

Метод математической индукции

При решении математических задач иногда возникает потребность обосно­вать, что определенное свойство выполняется для произвольного натураль­ного числа Тригонометрические функции с примерами решения

Проверить данное свойство для каждого натурального числа мы не мо­жем — их количество бесконечно. Приходится рассуждать так: 1) я могу про­верить, что это свойство выполняется при Тригонометрические функции с примерами решения 2) я могу показать, что для каждого следующего значения Тригонометрические функции с примерами решения оно тоже выполняется, таким образом, свойство будет выполняться для каждого следующего числа, начиная с единицы, то есть для всех натуральных чисел.

Такой способ рассуждений при доказательстве математических утвержде­ний называется методом математической индукции. Он является одним из универсальных методов доказательства математических утверждений, в которых содержатся слова «для любого натурального Тригонометрические функции с примерами решения» (возможно, не сформулированные явно). Доказательство с помощью этого метода всегда состоит из двух этапов:

  1. начало индукции: проверяется, выполняется ли рассматриваемое утверждение при Тригонометрические функции с примерами решения = 1;
  2. индуктивный переход: доказывается, что если данное утверждение выполняется для k, то оно выполняется и для k + 1.

Таким образом, начав с Тригонометрические функции с примерами решения = 1, мы на основании доказанного индуктивного перехода получаем, что сформулированное утверждение справедливо и для Тригонометрические функции с примерами решения = 2, 3, …, то есть для любого натурального Тригонометрические функции с примерами решения.

Схема доказательства утверждений с помощью метода математической индукции

На практике этот метод удобно применять по схеме.

Схема доказательства утверждений с помощью метода математической индукции:

  1. Проверяем, выполняет­ся ли данное утверждение при Тригонометрические функции с примерами решения = 1 (иногда начина­ют с Тригонометрические функции с примерами решения
  2. Предполагаем , что заданное утверждение справедливо при Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения(другой вариант при Тригонометрические функции с примерами решения
  3. Доказываем (опираясь на предположение) справедливость нашего утверждения и при Тригонометрические функции с примерами решения
  4. Делаем вывод, что данное утверждение справедливо для любого натурального числа Тригонометрические функции с примерами решения (для любого Тригонометрические функции с примерами решения

Пример:

Докажите, что для любого натурального Тригонометрические функции с примерами решенияТригонометрические функции с примерами решенияДля удобства записи обозначим Тригонометрические функции с примерами решения

  1. При Тригонометрические функции с примерами решения = 1 равенство выполняется: Тригонометрические функции с примерами решения то есть 2 = 2.
  2. Предполагаем, что заданное равенство верно при Тригонометрические функции с примерами решения то есть
  3. Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения (1) Докажем, что равенство выполняется и при Тригонометрические функции с примерами решения то есть докажем, что Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Учитывая, что Тригонометрические функции с примерами решения и подставляя Тригонометрические функции с примерами решения из равенства (1), получаем Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения что и требовалось доказать.
  4. Итак, заданное равенство верно для любого натурального Тригонометрические функции с примерами решения
Пример №46

Докажите, что Тригонометрические функции с примерами решения делится на 81 при любом нату­ральном Тригонометрические функции с примерами решения

Комментарий:

Поскольку утверждение необходимо доказать для любого натурального Тригонометрические функции с примерами решения то используем метод математической индукции по схеме, приведенной в табли­це 22. При выполнении индуктивного перехода Тригонометрические функции с примерами решения представим выражение, полученное при Тригонометрические функции с примерами решения как сумму двух выражений: того, что получили при Тригонометрические функции с примерами решения и еще одного выражения, которое делится на 81.

Доказательство:

  1. Проверяем, выполняется ли данное утверждение при Тригонометрические функции с примерами решения. Если Тригонометрические функции с примерами решения, данное выражение равно 0, то есть делится на 81. Таким образом, данное свойство выполняется при Тригонометрические функции с примерами решения.
  2. Предполагаем, что данное утверждение выполняется при Тригонометрические функции с примерами решения то есть что Тригонометрические функции с примерами решения делится на 81.
  3. Докажем, что данное утверждение выполняется и при Тригонометрические функции с примерами решения то есть что Тригонометрические функции с примерами решения делится на 81. Тригонометрические функции с примерами решения Выражение в скобках — это значение заданного выражения при Тригонометрические функции с примерами решения которое по предположению индукции делится на 81. Следовательно, каждое слагаемое последней суммы делится на 81, тогда и вся сумма, то есть Тригонометрические функции с примерами решения делится на 81. Таким образом, данное утверждение выполняется и при Тригонометрические функции с примерами решения
  4. Следовательно, Тригонометрические функции с примерами решения делится на 81 при любом натуральном Тригонометрические функции с примерами решения
Пример №47

Докажите, что Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения

Комментарий:

Поскольку утверждение должно выполняться, начиная с Тригонометрические функции с примерами решения то провер­ку проводим именно для этого числа. Записывая предположение индукции, удобно воспользоваться тем, что по определению понятия «больше» а>b тогда и только тогда, когда а-b> 0. Доказывая неравенство при Тригонометрические функции с примерами решения снова используем то же определение и доказываем, что разность между его левой и правой частями положительна.

Доказательство:

  1. При Тригонометрические функции с примерами решения получаем Тригонометрические функции с примерами решениято есть 8 > 7 — верное неравенство. Таким образом, при Тригонометрические функции с примерами решения данное неравенство выполняется.
  2. Предполагаем, что данное неравенство выполняется при Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения
  3. Докажем, что данное неравенство выполняется и при Тригонометрические функции с примерами решения то есть докажем, что Тригонометрические функции с примерами решения Рассмотрим разность: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения (поскольку выражение в скобках по неравенству (1) положительно и при Тригонометрические функции с примерами решения выражение 2k – 1 также положительно). Следовательно, Тригонометрические функции с примерами решенияТригонометрические функции с примерами решениято есть данное неравенство выполняется и при Тригонометрические функции с примерами решения
  4. Итак, данное неравенство выполняется при всех натуральных Тригонометрические функции с примерами решения

Многочлены от одной переменной и действия над ними

Определение многочленов от одной переменной
и их тождественное равенство

Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной х.

По определению одночлена числа и буквы (в нашем случае одна буква — х) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида Тригонометрические функции с примерами решения где а — некоторое число. Поэтому одночлен от одной переменной х — это выражение вида Тригонометрические функции с примерами решения где а — некото­рое число, Тригонометрические функции с примерами решения — целое неотрицательное число. Если Тригонометрические функции с примерами решения то показатель сте­пени Тригонометрические функции с примерами решенияпеременной х называется степенью одночлена. Например, Тригонометрические функции с примерами решения — одночлен шестой степени, Тригонометрические функции с примерами решения — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку Тригонометрические функции с примерами решения

По определению многочлен от одной переменной х — это сумма одночле­нов от одной переменной х. Поэтому многочленом от одной переменной х называется выражение вида Тригонометрические функции с примерами решения (1) где коэффициенты Тригонометрические функции с примерами решения — некоторые числа.

Если Тригонометрические функции с примерами решения то этот многочлен называют многочленом Тригонометрические функции с примерами решения степени от переменной х. При этом член Тригонометрические функции с примерами решения называют старшим членом многочлена f(x), число Тригонометрические функции с примерами решениякоэффициентом при старшем члене, а член Тригонометрические функции с примерами решениясвободным чле­ном. Например, Тригонометрические функции с примерами решения — многочлен третьей степени, у которого свобод­ный член равен 1, а коэффициент при старшем члене равен 5.

Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена f (х) записывают так: Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения — некоторые числа.

Теорема 1. Одночлены Тригонометрические функции с примерами решения тождественно равны тогда и только тогда, когда а = b и Тригонометрические функции с примерами решения Одночлен Тригонометрические функции с примерами решениятождественно равен нулю тогда и только тогда, ког­да а = 0.

Поскольку равенство одночленов Тригонометрические функции с примерами решения (2) выполняется при всех значениях х (по условию эти одночлены тождественно равны), то, подставляя в это равенство х = 1, получаем, что а = b. Сокращая обе части равенства (2) на а (где Тригонометрические функции с примерами решения по условию), получаем Тригонометрические функции с примерами решения При х = 2 из этого равенства имеем: Тригонометрические функции с примерами решения. Поскольку Тригонометрические функции с примерами решения то равенство Тригонометрические функции с примерами решения возможно только тогда, когда Тригонометрические функции с примерами решения Таким образом, из тождественного равенства Тригонометрические функции с примерами решения получаем, что а = b и Тригонометрические функции с примерами решения

Если известно, что Тригонометрические функции с примерами решения для всех х, то при х = 1 получаем а = 0. Поэтому одночлен Тригонометрические функции с примерами решения тождественно равен нулю при а = 0 (тогда Тригонометрические функции с примерами решения).

(Тригонометрические функции с примерами решения) Далее любой одночлен вида Тригонометрические функции с примерами решения будем заменять на 0.

Теорема 2. Если многочлен f (х) тождественно равен нулю (то есть принимает нулевые значения при всех значениях х), то все его коэф­фициенты равны нулю.

Для доказательства используем метод математической индукции. Пусть f (х) = Тригонометрические функции с примерами решения При Тригонометрические функции с примерами решения имеем Тригонометрические функции с примерами решения поэтому Тригонометрические функции с примерами решения То есть в этом случае утверждение теоремы выполняется.

Предположим, что при Тригонометрические функции с примерами решения это утверждение также выполняется: если многочлен Тригонометрические функции с примерами решения тождественно равен 0, то Тригонометрические функции с примерами решения

Докажем, что данное утверждение выполняется и при Тригонометрические функции с примерами решения Пусть Тригонометрические функции с примерами решения (3) Поскольку равенство (3) выполняется при всех значениях х, то, подставляя в это равенство х = 0, получаем, что Тригонометрические функции с примерами решения Тогда равенство (3) обраща­ется в следующее равенство: Тригонометрические функции с примерами решения Вынесем х в левой части этого равенства за скобки и получим Тригонометрические функции с примерами решения (4) Равенство(4) должно выполняться при всех значениях х. Для того чтобы оно выполнялось при Тригонометрические функции с примерами решения должно выполняться тождествоТригонометрические функции с примерами решения

В левой части этого тождества стоит многочлен со степенями переменной от Тригонометрические функции с примерами решения Тогда по предположению индукции все его коэффициенты равны нулю: Тригонометрические функции с примерами решения Но мы также доказали, чтоТригонометрические функции с примерами решения поэтому наше утверждение выполняется и при Тригонометрические функции с примерами решения Таким образом, утвержде­ние теоремы справедливо для любого целого неотрицательного Тригонометрические функции с примерами решения то есть для всех многочленов.

Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают 0(х) или прос­то 0 (поскольку 0 (х) = 0).

Теорема 3. Если два многочлена f (х) и g (х) тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны)

Пусть многочлен Тригонометрические функции с примерами решения а многочлен Тригонометрические функции с примерами решения Рассмотрим многочлен f(х)-g(х). Поскольку многочлены f (х) и g (х) по условию тождественно равны, то многочлен f (x) – g (х) тождественно равен 0. Таким образом, все его коэффициенты равны нулю. Ho Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения Отсюда Тригонометрические функции с примерами решения

Как видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, Тригонометрические функции с примерами решения больше Тригонометрические функции с примерами решения), то коэффициенты разности будут равны нулю. Поэтому, начиная с Тригонометрические функции с примерами решенияномера, все коэффициенты Тригонометрические функции с примерами решения также будут равны нулю. То есть действитель­но, многочлены f (х) и g (х) имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.

Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.

Пример №48

Докажите, что выражение (х+2)(х+4)(х+6)(х+8) +16 является полным квадратом.

Данное выражение может быть записано в виде многочлена четвертой сте­пени, поэтому оно может быть полным квадратом только многочлена второй степени вида Тригонометрические функции с примерами решения

Получаем тождество: (х+2)(х+4)(х+6)(х+8) + 16 = Тригонометрические функции с примерами решения (5) Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях х, получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:

Тригонометрические функции с примерами решения

Из первого равенства получаем а = 1 или а = -1 . При а = 1 из второго равенства имеем b = 10, а из третьего — с = 20. Как видим, при этих значениях а, b к с последние два равенства также выполня­ются.

Следовательно, тождество (5) выполняется при а = 1, и = 10, с = 20 (аналогично можно также получить а=-1, b=-10, с=-20). Таким образом, (х+2)(х+4)(х+6)(х+8) + 16 = Тригонометрические функции с примерами решения

Действия над многочленами. Деление многочлена на многочлен с остатком

Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.

Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.

При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, Тригонометрические функции с примерами решения

При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.

Например, Тригонометрические функции с примерами решения Деление многочлена на многочлен определяется аналогично делению це­лых чисел. Напомним, что число a делится на число b Тригонометрические функции с примерами решения если существует такое число q, что Тригонометрические функции с примерами решения

Определение. Многочлен А (х) делится на многочлен В (х) (где В (х) — не нулевой многочлен), если существует такой многочлен Q (х), что Тригонометрические функции с примерами решения

Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что многочлен А (х) делится на многочлен В (х) (где В (х) — не нулевой мно­гочлен) с остатком, если существует такая пара многочленов Q (х) и R (х), что А (х) = В (х) • Q (х) + R (х), причем степень остатка R (х) меньше сте­пени делителя В (х) (в этом случае многочлен Q (х) называется непол­ным частным.)

Например, поскольку Тригонометрические функции с примерами решения то при делении многочленаТригонометрические функции с примерами решения на многочлен Тригонометрические функции с примерами решенияполучаем неполное частное х и остаток 2. Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом:

При делении многочленов от одной переменной переменные в делимом и в делителе размещают по убыванию степеней и делят старший член делимого на старший член делителя. Потом полученный результат ум­ножается на делитель, и это произведение вычитается из делимого. С полученной разностью выполняют а нелогичную операцию: делят ее стар­ший член на старший член делителя и полученный результат снова умножают на делитель и т. д. Этот процесс продолжают до тех пор, пока не получат еле остатке 0 ( если один многочлен делится на другой), или пока в остатке не получится многочлен, степень которого меньше сте­пени делителя.

Пример №49

Разделим многочлен А (х) = Тригонометрические функции с примерами решения на многочлен В(х) = Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Докажем, что полученный результат действительно является результа­том деления А (х) на В (х) с остатком.

Если обозначить результат выполнения первого шага алгоритма черезТригонометрические функции с примерами решения(х), второго шага — черезТригонометрические функции с примерами решения(х), третьего — черезТригонометрические функции с примерами решения(х), то операцию деления, выполненную выше, можно записать в виде системы равенств:

Тригонометрические функции с примерами решения (1)

Тригонометрические функции с примерами решения (2)

Тригонометрические функции с примерами решения (3)

Сложим почленно равенства (1), (2), (3) и получим

Тригонометрические функции с примерами решения (4)

Учитывая, что степень многочлена Тригонометрические функции с примерами решения (х) = х + 4 меньше степени делителя В (х) = Тригонометрические функции с примерами решения обозначим Тригонометрические функции с примерами решения (х) = R (х) (остаток), а Тригонометрические функции с примерами решения – Зх – 8 = Q (х) (неполное частное). Тогда из равенства (4) имеем: А (х) = В (х) • Q (х) + R (х), то естьТригонометрические функции с примерами решения+ 8х – 20 = (Тригонометрические функции с примерами решения– 2х + 3)(Тригонометрические функции с примерами решения – Зх – 8) + х + 4, а это и означает, что мы разделили А (х) на В (х) с остатком.

Очевидно, что приведенное обоснование можно провести для любой пары многочленов А (х) и В (х) в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого А (х) и делителя В (х) (где В (х) — не нулевой многочлен) найти неполное частное Q (х) и остаток R (х). Отметим, что в случае, когда степень делимого А (х) меньше степени делителя В (х), считают, что неполное частное Q (х) = 0, а остаток R (х) = А (х).

Теорема Безу. Корни многочлена. Формулы Виета

Рассмотрим деление многочлена Тригонометрические функции с примерами решения на двучлен Тригонометрические функции с примерами решения Поскольку сте­пень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Та­ким образом, если разделить многочлен Тригонометрические функции с примерами решения на двучлен Тригонометрические функции с примерами решения то получим

Тригонометрические функции с примерами решения

Это равенство выполняется тождественно, то есть при любом значении х. При Тригонометрические функции с примерами решения имеем Тригонометрические функции с примерами решения Полученный результат называется теоремой Безу.Тригонометрические функции с примерами решения

Теорема 1 (теорема Безу). Остаток от деления многочлена Тригонометрические функции с примерами решения на двучлен Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения (то есть значению многочлена при Тригонометрические функции с примерами решения

Пример №50

Докажите, что Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения без остатка.

Подставив в Тригонометрические функции с примерами решения вместо Тригонометрические функции с примерами решения значение 1, получаем: Тригонометрические функции с примерами решения Таким образом, остаток от деления Тригонометрические функции с примерами решения равен 0, то есть Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения без остатка. 

Определение. Число Тригонометрические функции с примерами решения называется корнем многочлена Тригонометрические функции с примерами решения если

Тригонометрические функции с примерами решения

Если многочлен Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения то Тригонометрические функции с примерами решения — корень этого многочлена. Действительно, если Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения и поэтому Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения — корень многочлена Тригонометрические функции с примерами решения Справедливо и обратное утверждение. Оно является следствием теоремы Безу.

Теорема 2. Если число Тригонометрические функции с примерами решения является корнем многочлена Тригонометрические функции с примерами решения то этот многочлен делится на двучлен Тригонометрические функции с примерами решения без остатка.

• По теореме Безу остаток от деления Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения Но по условию Тригонометрические функции с примерами решения — корень Тригонометрические функции с примерами решения таким образом, Тригонометрические функции с примерами решения

Обобщением теоремы 2 является следующее утверждение.

Теорема 3. Если многочлен Тригонометрические функции с примерами решения имеет попарно разные корни Тригонометрические функции с примерами решения то он делится без остатка на произведение

Тригонометрические функции с примерами решения

Для доказательства используем метод математической индукции.

При Тригонометрические функции с примерами решения утверждение доказано в теореме 2.

Допустим, что утверждение справедливо при Тригонометрические функции с примерами решения То есть если Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения — попарно разные корни многочлена Тригонометрические функции с примерами решения то он делится на произведение (Тригонометрические функции с примерами решения Тогда

Тригонометрические функции с примерами решения

Докажем, что утверждение теоремы справедливо и при Тригонометрические функции с примерами решения Пусть Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения — попарно разные корни многочлена Тригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решения — корень Тригонометрические функции с примерами решения Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:

Тригонометрические функции с примерами решения

По условию все корни Тригонометрические функции с примерами решения разные, поэтому ни одно из чисел Тригонометрические функции с примерами решения не равно нулю. Тогда Тригонометрические функции с примерами решения Таким

образом, Тригонометрические функции с примерами решения — корень многочлена Тригонометрические функции с примерами решения Тогда по теореме 2 Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения и из равенства (1) имеем

Тригонометрические функции с примерами решения

Это означает, что Тригонометрические функции с примерами решения делится на произведение

Тригонометрические функции с примерами решения

то есть теорема доказана и при Тригонометрические функции с примерами решения

Таким образом, теорема справедлива для любого натурального Тригонометрические функции с примерами решения

Следствие. Многочлен степени Тригонометрические функции с примерами решения имеет не больше Тригонометрические функции с примерами решения разных корней.

Допустим, что многочлен Тригонометрические функции с примерами решения степени имеет Тригонометрические функции с примерами решения разных корней: Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения делится на произведение Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения — многочлен степени Тригонометрические функции с примерами решения но это невозможно. Поэтому многочлен Тригонометрические функции с примерами решения степени не может иметь больше, чем Тригонометрические функции с примерами решения корней.

Пусть теперь многочлен Тригонометрические функции с примерами решения степени Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения имеет Тригонометрические функции с примерами решения разных корней Тригонометрические функции с примерами решения Тогда этот многочлен делится без остатка на произведение Тригонометрические функции с примерами решения Это произведение является многочленом той же Тригонометрические функции с примерами решения степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,

Тригонометрические функции с примерами решения

Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что Тригонометрические функции с примерами решения то есть

Тригонометрические функции с примерами решения

Сравнивая коэффициенты при одинаковых степенях Тригонометрические функции с примерами решения в левой и правой частях тождества (3), получаем соотношение между коэффициентами уравнения и его корнями, которые называются формулами Виета: Тригонометрические функции с примерами решения

Например, при Тригонометрические функции с примерами решения имеем:

Тригонометрические функции с примерами решения

а при Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения

Выполнение таких равенств является необходимым и достаточным условием того, чтобы числа Тригонометрические функции с примерами решения были корнями многочлена

Тригонометрические функции с примерами решения

Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена Тригонометрические функции с примерами решения разные. Введем понятие кратного корня многочлена.

Если многочлен Тригонометрические функции с примерами решения делится без остатка на Тригонометрические функции с примерами решения но не делится без остатка на Тригонометрические функции с примерами решения то говорят, что число Тригонометрические функции с примерами решения является корнем кратности Тригонометрические функции с примерами решения многочлена Тригонометрические функции с примерами решения

Например, если произведение Тригонометрические функции с примерами решения записать в виде многочлена, то для этого многочлена число (-2) является корнем кратности 3, число 1 — корнем кратности 2, а число (-3) — корнем кратности 1.

При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.

Пример №51

Проверьте справедливость формул Виета для многочлена

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Поэтому Тригонометрические функции с примерами решения имеет корни: Тригонометрические функции с примерами решения (поскольку (-2) — корень кратности 2).

Проверим справедливость формулы (5). В нашем случае: Тригонометрические функции с примерами решения Тогда

Тригонометрические функции с примерами решения

Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.

Пример №52

Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения Тригонометрические функции с примерами решения

Обозначим корни уравнения Тригонометрические функции с примерами решения через Тригонометрические функции с примерами решения Тогда корнями искомого уравнения должны быть числа Тригонометрические функции с примерами решения Поэтому искомое уравнение имеет вид Тригонометрические функции с примерами решения

где Тригонометрические функции с примерами решения По формулам Виета имеем Тригонометрические функции с примерами решения Отсюда находим, что

Тригонометрические функции с примерами решения

Таким образом, искомое уравнение имеет вид Тригонометрические функции с примерами решения

Схема Горнера

Делить многочлен Тригонометрические функции с примерами решения на двучлен Тригонометрические функции с примерами решения иногда удобно с помощью специальной схемы, которую называют схемой Горнера.

Пусть многочлен Тригонометрические функции с примерами решения необходимо разделить на двучлен Тригонометрические функции с примерами решения В результате деления многочлена Тригонометрические функции с примерами решения степени на многочлен первой степени получим некоторый многочлен Тригонометрические функции с примерами решения степени (то есть Тригонометрические функции с примерами решения где Тригонометрические функции с примерами решения и остаток Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения то есть

Тригонометрические функции с примерами решения

Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Найдем из этих равенств коэффициенты Тригонометрические функции с примерами решения и остаток Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент Тригонометрические функции с примерами решениянеполного частного, достаточно предыдущий найденный коэффициент Тригонометрические функции с примерами решения умножить на Тригонометрические функции с примерами решения и добавить Тригонометрические функции с примерами решения коэффициент делимого. Эту процедуру целесоб-разно оформлять в виде специальной схемы-таблицы, которая называется схемой Горнера.

Тригонометрические функции с примерами решения

Пример №53

Разделите по схеме Горнера многочлен Тригонометрические функции с примерами решения на двучлен Тригонометрические функции с примерами решения

Запишем сначала все коэффициенты многочлена Тригонометрические функции с примерами решения (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:

Тригонометрические функции с примерами решения

Таким образом, Тригонометрические функции с примерами решения

Пример №54

Проверьте, является ли Тригонометрические функции с примерами решения корнем многочлена

Тригонометрические функции с примерами решения

По теореме Безу остаток от деления многочлена Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения равен Тригонометрические функции с примерами решения поэтому найдем с помощью схемы Горнера остаток от деления Тригонометрические функции с примерами решения на Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Поскольку Тригонометрические функции с примерами решения корень многочлена Тригонометрические функции с примерами решения

Нахождение рациональных корней многочлена с целыми коэффициентами

Теорема 4. Если многочлен с целыми коэффициентами Тригонометрические функции с примерами решения имеет рациональный корень Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения то Тригонометрические функции с примерами решения является делителем свободного члена Тригонометрические функции с примерами решения — делителем коэффициента при старшем члене Тригонометрические функции с примерами решения

Если Тригонометрические функции с примерами решения является корнем многочлена Тригонометрические функции с примерами решения Подставляем Тригонометрические функции с примерами решения вместо Тригонометрические функции с примерами решения и из последнего равенства имеем

Тригонометрические функции с примерами решения

Умножим обе части равенства (1) на Тригонометрические функции с примерами решения Получаем

Тригонометрические функции с примерами решения

В равенстве (2) все слагаемые, кроме последнего, делятся на Тригонометрические функции с примерами решения Поэтому Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения

Но когда мы записываем рациональное число в виде Тригонометрические функции с примерами решения то эта дробь считается несократимой, то есть Тригонометрические функции с примерами решения не имеют общих делителей. Произведение Тригонометрические функции с примерами решения может делится на Тригонометрические функции с примерами решения (если Тригонометрические функции с примерами решения — взаимно простые числа) только тогда, когда Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения — делитель свободного члена Тригонометрические функции с примерами решения Аналогично все слагаемые равенства (2), кроме первого, делятся на Тригонометрические функции с примерами решения Тогда Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения Поскольку Тригонометрические функции с примерами решения взаимно простые числа, то Тригонометрические функции с примерами решения делится на Тригонометрические функции с примерами решения следовательно, Тригонометрические функции с примерами решения — делитель коэффициента при старшем члене.

Отметим два следствия из этой теоремы. Если взять Тригонометрические функции с примерами решения то корнем многочлена будет целое число Тригонометрические функции с примерами решения — делитель Тригонометрические функции с примерами решения Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.

Если в заданном многочлене Тригонометрические функции с примерами решения коэффициент Тригонометрические функции с примерами решения то делителями Тригонометрические функции с примерами решения могут быть только числа Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1 ,то все рациональные корни этого уравнения (если они существуют) — целые числа.

Пример №55

Найдите рациональные корни многочлена Тригонометрические функции с примерами решения

Пусть несократимая дробь Тригонометрические функции с примерами решения является корнем многочлена. Тогда Тригонометрические функции с примерами решения необходимо искать среди делителей свободного члена, то есть среди чисел Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения — среди делителей старшего коэффициента: Тригонометрические функции с примерами решения Таким образом, рациональные корни многочлена необходимо искать среди чисел Тригонометрические функции с примерами решения Проверять, является ли данное число корнем многочлена, целесобразно с помощью схемы Горнера. При Тригонометрические функции с примерами решения

Кроме того, по схеме Горнера можно записать, что

Тригонометрические функции с примерами решения

Многочлен Тригонометрические функции с примерами решения не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень Тригонометрические функции с примерами решения

Пример №56

Разложите многочлен Тригонометрические функции с примерами решения на множители.

Ищем целые корни многочлена среди делителей свободного члена: Тригонометрические функции с примерами решения Подходит 1. Делим Тригонометрические функции с примерами решения с помощью схемы Горнера.

Тогда Тригонометрические функции с примерами решения Ищем целые корни кубического многочлена Тригонометрические функции с примерами решения среди делителей его свободного члена: Тригонометрические функции с примерами решения Подходит (-2). Делим на Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Имеем

Тригонометрические функции с примерами решения

Квадратный трехчлен Тригонометрические функции с примерами решения не имеет действительных корней и на линейные множители не раскладывается.

Ответ: Тригонометрические функции с примерами решения

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен Тригонометрические функции с примерами решения не имеет действительных корней). Таким образом, многочлен Тригонометрические функции с примерами решения степени не всегда можно разложить на линейные множители. В курсах высшей алгебры доказывается, что многочлен нечетной степени всегда можно разложить на линейные и квадратные множители, а многочлен четной степени представить в виде произведения квадратных трехчленов.

Например, многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.

Пример №57

Разложите на множители многочлен Тригонометрические функции с примерами решения

Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен в произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

Тригонометрические функции с примерами решения

где Тригонометрические функции с примерами решения — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях Тригонометрические функции с примерами решения у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

Тригонометрические функции с примерами решения

Получаем систему Тригонометрические функции с примерами решения

Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что Тригонометрические функции с примерами решения могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.

Тригонометрические функции с примерами решения

Коэффициенты Тригонометрические функции с примерами решения в равенстве (3) равноправны, поэтому мы не рассматриваем случаи Тригонометрические функции с примерами решения или Тригонометрические функции с примерами решения и т. д.

Для каждой пары значений Тригонометрические функции с примерами решения из третьего равенства системы (4) найдем Тригонометрические функции с примерами решения а из второго равенства имеем Тригонометрические функции с примерами решения

Зная Тригонометрические функции с примерами решения по теореме, обратной теореме Виета, находим Тригонометрические функции с примерами решения как корни квадратного уравнения. Найденные таким образом значения Тригонометрические функции с примерами решения подставим в четвертое равенство системы (4) Тригонометрические функции с примерами решения чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Тригонометрические функции с примерами решения

Как видим, системе (4) удовлетворяет набор целых чисел Тригонометрические функции с примерами решенияТригонометрические функции с примерами решения Тогда равенство (3) имеет вид

Тригонометрические функции с примерами решения

Поскольку квадратные трехчлены Тригонометрические функции с примерами решения не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Дополнительные формулы тригонометрии

1. Формулы тройного аргумента:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

2. Формулы понижения степени:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

3. Формулы половинного аргумента:

(Знак перед корнем выбирается в зависимости от знака тригонометрической функции, стоящей в левой части равенства.) Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

4. Выражение тригонометрических функций через тангенс половинного аргумента:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Объяснение и обоснование:

Формулы тройного аргумента

Используя формулы сложения, формулы двойного аргумента, основное тригонометрическое тождество и формулу Тригонометрические функции с примерами решения получаем следующие формулы:

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Таким образом,

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Следовательно,

Тригонометрические функции с примерами решения

Следовательно, Тригонометрические функции с примерами решения

Замечание:

Функции Тригонометрические функции с примерами решения существуют при любых значениях Тригонометрические функции с примерами решения а функция Тригонометрические функции с примерами решения существует только тогда, когда Тригонометрические функции с примерами решения Отсюда

Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения Аналогично функция Тригонометрические функции с примерами решения существует только тогда, когда Тригонометрические функции с примерами решения то есть при Тригонометрические функции с примерами решения

Формулы понижения степени

Из формул Тригонометрические функции с примерами решения и Тригонометрические функции с примерами решения получаем формулы понижения степени: Тригонометрические функции с примерами решения

Формулы половинного аргумента

Если в формулах (1) и (2) вместо Тригонометрические функции с примерами решениявзять аргумент Тригонометрические функции с примерами решения то получим:

Тригонометрические функции с примерами решения

Из формул (3) и (4) получаем формулы половинного аргумента для синуса и косинуса: Тригонометрические функции с примерами решения

В этих формулах знак перед корнем выбирается в зависимости от знака тригонометрической функции, стоящей в левой части равенства.

Если почленно разделить формулы (5) и (6) и учесть, что Тригонометрические функции с примерами решения то получим:Тригонометрические функции с примерами решения В формулах (7) и (8) знак перед корнем также выбирается в зависимости от знака тригонометрической функции, стоящей в левой части равенства.

Отметим, что формулы (5) и (6) можно применять при любых значениях а, а формулы (7) и (8) только тогда, когда существуют значения Тригонометрические функции с примерами решениясоответственно. Таким образом, формулу (7) можно применять, если Тригонометрические функции с примерами решения

то есть если Тригонометрические функции с примерами решения а формулу (8) — если Тригонометрические функции с примерами решения то есть Тригонометрические функции с примерами решения

Заметим, что для тангенса и котангенса половинного аргумента можно получить формулы, которые не содержат квадратных корней. Например,

Тригонометрические функции с примерами решения

Действительно, если учесть, что аргумент а вдвое больше аргумента Тригонометрические функции с примерами решения то Тригонометрические функции с примерами решения Естественно, формулу (9) можно применять

только при Тригонометрические функции с примерами решения то есть при Тригонометрические функции с примерами решения

Аналогично обосновывается формула

Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения если Тригонометрические функции с примерами решения то есть формулу (10) можно применять при Тригонометрические функции с примерами решения

Учитывая, что Тригонометрические функции с примерами решения получаем формулы:

Тригонометрические функции с примерами решения

Выражение тригонометрических функций через тангенс половинного аргумента

Чтобы получить соответствующие формулы для Тригонометрические функции с примерами решения запишем каждое из этих выражений по формулам двойного аргумента и разделим на Тригонометрические функции с примерами решения Затем, чтобы перейти к тангенсам, разделим числитель и знаменатель полученной дроби на Тригонометрические функции с примерами решения (разумеется, при условии, что Тригонометрические функции с примерами решения то есть при Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения Таким образом, Тригонометрические функции с примерами решения Тригонометрические функции с примерами решения Поэтому

Тригонометрические функции с примерами решения

Если почленно разделить равенства (11) и (12), то получим формулы:

Тригонометрические функции с примерами решения

что формулу (13) можно получить и по формуле тангенса двойного аргумента, поскольку Тригонометрические функции с примерами решения

Пример №58

Вычислите, не пользуясь таблицами и калькулятором: Тригонометрические функции с примерами решения

Комментарий:

Поскольку аргумент Тригонометрические функции с примерами решения равен половине аргумента Тригонометрические функции с примерами решения, а косинус Тригонометрические функции с примерами решения известен, то можно найти искомые значения по формулам половинного аргумента. Учитывая, что аргумент Тригонометрические функции с примерами решения находится в I четверти (где значения всех тригонометрических функций положительны), в формулах (5) и (6) перед знаком квадратного корня ставится знак « + ». Для нахождения тангенса Тригонометрические функции с примерами решения можно применить любую из формул (7), (9) или (10), но удобнее применить формулы (9) или (10), запись которых не содержит квадратных корней. После нахождения Тригонометрические функции с примерами решения можно использовать также формулу

Решение:

Тригонометрические функции с примерами решения

Замечание. Записи ответов для Тригонометрические функции с примерами решения можно несколько упростить, выделяя под знаком внешнего квадратного корня квадрат двучлена. Чтобы представить, например, Тригонометрические функции с примерами решения в виде квадрата двучлена, умножим и разделим это выражение на 2 (и рассмотрим выражение Тригонометрические функции с примерами решения как удвоенное произведение чисел Тригонометрические функции с примерами решения и 1).

Получаем:

Тригонометрические функции с примерами решения

Тогда: Тригонометрические функции с примерами решения

Выполняя аналогичные преобразования, получаем Тригонометрические функции с примерами решения

Формула преобразования выражения a sin a+b cos a

Тригонометрические функции с примерами решения

где аргумент Тригонометрические функции с примерами решения определяется из соотношений

Тригонометрические функции с примерами решения

Объяснение и обоснование:

Сначала докажем следующее утверждение: если для чисел тип выполняется соотношение Тригонометрические функции с примерами решения то одно из этих чисел можно считать синусом, а другое косинусом некоторого аргумента Тригонометрические функции с примерами решения

Рассмотрим точку Тригонометрические функции с примерами решения координатной плоскости с координатами Тригонометрические функции с примерами решения Координаты точки Тригонометрические функции с примерами решения удовлетворяют уравнению единичной окружности Тригонометрические функции с примерами решения (поскольку по условию Тригонометрические функции с примерами решения Итак, точка Тригонометрические функции с примерами решения находится на единичной окружности, и ее абсцисса является косинусом угла Тригонометрические функции с примерами решения который радиус Тригонометрические функции с примерами решения образует с положительным направлением оси Тригонометрические функции с примерами решения а ордината — синусом этого угла Тригонометрические функции с примерами решения То есть Тригонометрические функции с примерами решения

Если взять Тригонометрические функции с примерами решения Тогда для некоторого угла Тригонометрические функции с примерами решения

Теперь мы можем доказать, что правая часть формулы

Тригонометрические функции с примерами решения равна левой:

Тригонометрические функции с примерами решения

что и требовалось доказать. Таким образом,

Тригонометрические функции с примерами решения

где аргумент Тригонометрические функции с примерами решения определяется из соотношений

Тригонометрические функции с примерами решения

Замечание. В полученной формуле аргумент ф определяется с точностью до Тригонометрические функции с примерами решения но чаще всего выбирают значение, наименьшее по модулю.

Например, для выражения Тригонометрические функции с примерами решения Тогда

Тригонометрические функции с примерами решения

Таким образом, аргумент Тригонометрические функции с примерами решения находится в I четверти и как значение Тригонометрические функции с примерами решения можно взять Тригонометрические функции с примерами решения Тогда

Тригонометрические функции с примерами решения

Пример №59

Найдите наибольшее и наименьшее значения выражения Тригонометрические функции с примерами решения

Решение:

По формуле:

Тригонометрические функции с примерами решения

получаем

Тригонометрические функции с примерами решения

Учитывая, что Тригонометрические функции с примерами решения принимаем все значения из промежутка Тригонометрические функции с примерами решения имеем что Тригонометрические функции с примерами решения принимает все значения из промежутка.Тригонометрические функции с примерами решения Таким образом наибольшее значение заданного выражения равно 2, а наименьшее Тригонометрические функции с примерами решения

Комментарий:

Выражение Тригонометрические функции с примерами решения можно преобразовать по формуле Тригонометрические функции с примерами решения Здесь Тригонометрические функции с примерами решения тогда Тригонометрические функции с примерами решения

Таким образом:

Тригонометрические функции с примерами решения

Следовательно, аргумент Тригонометрические функции с примерами решения находится в IV четверти и как значение Тригонометрические функции с примерами решения можно взять, например, Тригонометрические функции с примерами решения Используя метод оценки для нахождения наибольшего и наименьшего значений выражения, учитываем, что необходимо не только оценить значение выражения с помощью нестрогих неравенств Тригонометрические функции с примерами решенияно и убедиться, что знак равенства в этих неравенствах достигается.

Пример №60

Постройте график функции Тригонометрические функции с примерами решения

Комментарий:

Выражение Тригонометрические функции с примерами решения можно записать в виде Тригонометрические функции с примерами решения Тогда график заданной функции можно построить с помощью геометрических преобразований графика функции Тригонометрические функции с примерами решения

Решение:

Тригонометрические функции с примерами решения

График заданной функции получаем из графика функции Тригонометрические функции с примерами решения растяжением в 2 раза вдоль оси Тригонометрические функции с примерами решения и параллельным переносом полученного графика вдоль оси Тригонометрические функции с примерами решения

Тригонометрические функции с примерами решения

Сведения из истории:

Слово «тригонометрия» впервые встречается (1505 г.) в названии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: «тригонон» — треугольник, «метрио» — мера. Иными словами, тригонометрия — наука об измерении треугольников. Множество понятий и фактов, которые теперь относят к тригонометрии, были известны еще две тысячи лет назад. Фактически, разные отношения отрезков треугольника и окружности (собственно говоря, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции — Евклида и Архимеда.

Длительное время тригонометрия развивалась как часть геометрии, то есть факты, которые мы теперь формулируем в терминах тригонометрических функций, формулировали и доказывали с помощью геометрических понятий и утверждений. Вероятно, наибольшие стимулы для развития тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач по определению местонахождения судна, предсказания солнечных и лунных затмений и т. п.). Современный вид тригонометрии придал великий математик XVIII в. Л.Эйлер (1707—1783), швейцарец по происхождению, который долгое время работал в России и был членом Петербургской академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, начал рассматривать функции произвольного угла, вывел формулы приведения. После Эйлера тригонометрия приняла формы исчисления: разные факты начали доказывать формальным применением тригонометрических формул, доказательства стали намного компактнее.

  • Производные тригонометрических функции
  • Производная сложной функции
  • Пределы в математике
  • Функции многих переменных
  • Координаты на прямой
  • Координаты на плоскости
  • Линейная функция
  • Квадратичная функция

Муниципальное
бюджетное общеобразовательное учреждение

«Гимназия
№22»

Тема: «Тригонометрические функции
целочисленного аргумента»

Работу выполнил

Ключников Никита

Ученик 10В класса

Руководитель Нежибецкая

Елена Викторовна

Учитель математики

Барнаул 2020

Оглавление

1.
Введение                                                                                                           3

2.
Из истории тригонометрии                                                                            4

2.1.
Древняя Греция                                                                                 4

2.2.
Средневековая Индия                                                                       5

2.3.
XVI
XVII
века                                                                                5

2.4.
XVIII
век                                                                                            6

2.5.
Реформы Леонарда Эйлера                                                              7

2.6.
XIX
XXI
века                                                                                  7

3.
Современное применение тригонометрии                                                   9

4.
Синус и косинус 1 градуса                                                                              12

4.1.
Синус и косинус 18 градусов                                                           12

4.2.
Синус и косинус 3 градусов                                                             13

4.3.
Синус и косинус 1 градуса, формула Кардано                               14

4.4.
Дополнительные формулы                                                               16

5.
Перспектива проекта (задачи, для которых необходимы
точные значения тригонометрических функций)                                                                                        18

6.
Заключение                                                                                                       19

7.
Обзор литературы                                                                                            20

1.         
Введение

Тема работы: тригонометрические
функции целочисленного аргумента.

Актуальность: большинство
людей, в том числе ученики, не до конца понимают суть тригонометрии, поэтому
данный проект способен объяснить и показать применение данного математического
инструмента.

Гипотеза: если х принимает
целые значения, то тригонометрические функции с аргументом, равным х, принимают
определённые значения – «табличные значения»; более того, существуют формулы, с
помощью которых можно найти такие значения для любого целого числа.

Цель исследования:
доказать справедливость гипотезы, приведённой выше, посредством выведения общей
формулы.

Задачи: 1) Рассмотреть историю
вопроса и тригонометрии в целом; 2) Изучить современное положение данного
раздела математики; 3) Рассмотреть уникальную геометрическую задачу о нахождении
синуса «нетабличного градуса» и использовать полученный результат для выведения
искомых значений и формул.

Объект исследования: тригонометрические
функции (синус, косинус, тангенс, котангенс).

Предмет исследования: значения
тригонометрических функций в точках с целочисленным аргументом.

Новизна: до сих пор нет ни
полноценного изучения данной темы, ни таблицы искомых значений.

Практическая значимость: знания,
полученные при работе с проектом или во время его изучения, можно применять на
уроках алгебры, геометрии и физики, а также в профессиональной деятельности,
для которой нужно знание тригонометрии.

Обзор литературы: статьи
Википедии (история тригонометрии, формула Кардано, материалы о практической
пользе тригонометрии), материалы с различных математических форумов (кубический
корень комплексного числа, формула Кардано, стагнация тригонометрии), материалы
интернет-калькулятора
Wolfram Alpha,
учебник алгебры (10 класс), видеоматериалы
YouTube.

2.         
Из истории тригонометрии

2.1.       Древняя
Греция

Древнегреческие
математики в своих построениях, связанных с измерением дуг круга, использовали
технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит
пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды —
это синус половинного угла, и поэтому функция синус известна также как
«половина хорды». Благодаря этой зависимости, значительное число
тригонометрических тождеств и теорем, известных сегодня, были также известны
древнегреческим математикам, но в эквивалентной хордовой форме. Хотя в работах
Евклида и Архимеда нет тригонометрии в строгом смысле этого слова, их теоремы
представлены в геометрическом виде, эквивалентном специфическим
тригонометрическим формулам. Теорема Архимеда для деления хорд эквивалентна
формулам для синусов суммы и разности углов. Для компенсации отсутствия таблицы
хорд математики времен Аристарха иногда использовали хорошо известную теорему,
в современной записи — sinα/sinβ < α/β < tgα/tgβ, где 0° < β < α
< 90°, совместно с другими теоремами.

Первые тригонометрические
таблицы были, вероятно, составлены Гиппархом Никейским (180 — 125 лет до н.
э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд
для серии углов. Систематическое использование полной окружности в 360° установилось
в основном благодаря Гиппарху и его таблице хорд.

Позднее Клавдий Птолемей
(90 — 168 г. н. э.) в «Альмагесте» расширил Гиппарховы «Хорды в окружности».
Тринадцать книг «Альмагеста» — самая значимая тригонометрическая работа всей
античности. Теорема, которая была центральной в вычислении хорд Птолемея, также
известна сегодня как теорема Птолемея, которая говорит о том, что сумма
произведений противоположных сторон выпуклого вписанного четырёхугольника равна
произведению диагоналей.

Теорема Птолемея влечёт
за собой эквивалентность четырёх формул суммы и разности для синуса и косинуса.
Позднее Птолемей вывел формулу половинного угла. Птолемей использовал эти
результаты для создания своих тригонометрических таблиц, хотя, возможно, эти
таблицы были выведены из работ Гиппарха.

2.2.       Средневековая
Индия

Замена хорд синусами
стала главным достижением средневековой Индии. Такая замена позволила вводить
различные функции, связанные со сторонами и углами прямоугольного треугольника.
Таким образом, в Индии было положено начало тригонометрии как учению о
тригонометрических величинах.

Индийские учёные
пользовались различными тригонометрическими соотношениями, в том числе основным
тригонометрическим тождеством, синусом суммы и разницы, а также формулами
синуса кратного угла (угла
n*a,
где
n
– множитель угла,
n = 2, 3, 4, 5).

Тригонометрия необходима
для астрономических расчётов, которые оформляются в виде таблиц. Первая таблица
синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Позднее учёные составили
более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1°
(целью данной проектной работы является попытка сделать таблицу Бхаскары более
«точной»).

2.3.       XVI—XVII
века

Развитие тригонометрии в
Новое время стало чрезвычайно важным не только для астрономии и астрологии, но
и для других приложений, в первую очередь артиллерии, оптики и навигации при
дальних морских путешествиях. Поэтому после XVI века этой темой занимались
многие выдающиеся учёные, в том числе Николай Коперник, Иоганн Кеплер, Франсуа
Виет. Коперник посвятил тригонометрии две главы в своём трактате «О вращении
небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические
таблицы Ретика, ученика Коперника, с шагом 10″.

Томас Финке предложил
оригинальное решение геодезической задачи, использовав формулу Региомонтана,
более известную, как теорема тангенсов:

Виет в первой части
своего «Математического канона» (1579) поместил разнообразные таблицы, в том
числе тригонометрические, а во второй части дал обстоятельное и
систематическое, хотя и без доказательств, изложение плоской и сферической
тригонометрии. В 1593 году Виет подготовил расширенное издание этого
капитального труда. Другой важной заслугой Виета стало применение в
тригонометрии разработанной им общей алгебраической символики; если ранее
решение задачи понималось как геометрическое построение, то начиная с работ
Виета приоритет начинает переходить к алгебраическим вычислениям. Появление
символики позволило записать в компактном и общем виде тригонометрические
тождества — например, формулы для кратных углов.

Первый график синусоиды
появился в книге Альбрехта Дюрера «Руководство к измерению циркулем и линейкой.
В 1630-х годах Жиль Роберваль, в ходе своих исследований циклоиды, независимо
вычертил синусоиду, он же опубликовал формулу тангенса двойного угла. Джон
Валлис в своей «Механике» (1670), опередив своё время, правильно указал знаки
синуса во всех квадрантах и указал, что у синусоиды бесконечно много
«оборотов». График тангенса для первого квадранта впервые начертил Джеймс
Грегори (1668).

2.4.       XVIII
век

Лейбниц строго доказал,
что sin x не может быть, вообще говоря, алгебраически выражен через x, то есть,
в современной терминологии, тригонометрические функции трансцендентны.

Важными открытиями в
начале XVIII века стали:

 — Открытие и широкое
распространение радианной меры углов (Роджер Котс, 1714). Сам термин «радиан»
появился позднее, его в 1873 году предложил английский инженер Джеймс Томсон.

 — Тригонометрическое
представление комплексного числа и формула Муавра:

— Начало использования
(Ньютон и Грегори) полярной системы координат, связанной с декартовой тригонометрическими
соотношениями; в общее употребление эти координаты ввёл Эйлер (1748).

В 1706 году швейцарский
математик Якоб Герман опубликовал формулы для тангенса суммы и тангенса кратных
углов, а Иоганн Ламберт в 1765 году нашёл чрезвычайно полезные формулы,
выражающие разные тригонометрические функции через тангенс половинного угла.

В книге «Полигонометрия»
(1789) Симон Люилье обобщил тригонометрические соотношения для треугольников,
дав их аналоги для произвольных многоугольников, включая пространственные. В
работах на эту тему Люилье привёл основную теорему полигонометрии: площадь
каждой грани многогранника равна сумме произведений площадей остальных граней
на косинусы углов, образуемых ими с первой гранью.

2.5.       Реформы
Леонарда Эйлера

Современный вид тригонометрии
придал Леонард Эйлер. В трактате «Введение в анализ бесконечных» (1748) Эйлер
дал определение тригонометрических функций, эквивалентное современному, и
соответственно определил обратные функции. Если его предшественники понимали
синус и прочие понятия геометрически, то есть как линии в круге или
треугольнике, то после работ Эйлера тригонометрические функции стали
рассматриваться как безразмерные аналитические функции действительной и
комплексной переменной. Для комплексного случая он установил связь
тригонометрических функций с показательной функцией (формула Эйлера):

Подход Эйлера с этих пор
стал общепризнанным и вошёл в учебники.

Эйлер рассматривал как
допустимые отрицательные углы, так и углы, большие 360°, что позволило
определить тригонометрические функции на всей вещественной числовой прямой, а
затем продолжить их на комплексную плоскость.

В других трудах, в первую
очередь «Основания сферической тригонометрии, выведенные из метода максимумов и
минимумов» (1753) и «Всеобщая сферическая тригонометрия, кратко и ясно
выведенная из первых оснований» (1779), Эйлер впервые дал полное
систематическое изложение сферической тригонометрии на аналитическом основании,
причём многие крупные результаты принадлежат самому Эйлеру.

2.6.       XIX—XXI
века

В начале XIX века Н. И.
Лобачевский добавил к плоской и сферической тригонометрии третий раздел —
гиперболическую (для геометрии Лобачевского, первую работу в этой области
опубликовал Ф. А. Тауринус в 1826 году). Лобачевский показал, что формулы
сферической тригонометрии переходят в формулы гиперболической тригонометрии при
замене длин сторон треугольника a, b, c на мнимые величины: ai, bi, ci — или,
что эквивалентно, при замене тригонометрических функций на соответствующие
гиперболические.

В XIX—XX веках бурное
развитие получили теория тригонометрических рядов и связанные с ней области
математики: гармонический анализ, теория случайных процессов, кодирование аудио
и видеоинформации и другие. Ещё Даниил Бернулли высказал убеждение, что любую
(непрерывную) функцию на заданном промежутке можно представить
тригонометрическим рядом. Дискуссии продолжались до 1807 года, когда Фурье
опубликовал теорию представления произвольных кусочно-аналитических функций
тригонометрическими рядами (окончательный вариант содержится в его
«Аналитической теории тепла», 1822). Для разложения функции в ряд Фурье привёл
интегральные формулы расчёта коэффициентов. Изложение Фурье не было строгим в
современном понимании, но уже содержало исследование сходимости большинства
полученных им рядов.

Универсальность и
эффективность методов анализа Фурье произвели большое впечатление на научный
мир. Если ранее тригонометрические ряды использовались в математической физике
преимущественно для изучения периодических процессов (колебания струны,
небесная механика, движение маятника и т. п.), то в труде Фурье исследовались
процессы совсем иного рода (теплопередача), и тригонометрические ряды помогли
получить ценные практические результаты. С этого момента тригонометрические
ряды и интегралы стали мощным инструментом анализа.

Исследуя множества особых
точек для тригонометрических рядов, Георг Кантор разработал фундаментальную для
всей математики теорию множеств. Огромное влияние теория тригонометрических
рядов оказала на развитие комплексного анализа, математической физики,
электроники и многих других разделов науки. Важные практические применения
имеет приближение функций конечными тригонометрическими полиномами
(используемое также для интерполирования).

3.   Современное применение
тригонометрии

В первую очередь, как это
изначально и предполагалось, данный математический инструмент используется
геодезистами, так как измерение расстояний, используя углы, предполагает
построение прямоугольного треугольника, где можно применять синус и косинус.

Также тригонометрия
необходима архитекторам, так как базовые фигуры и геометрические тела, которые
нужны при строительстве, легко разбиваются или на треугольники, или на
окружности. В обоих случаях тригонометрия сильно упрощает вычисления. Более
того, в современной архитектуре часто используются волнообразные формы и
кривые, которые математически описываются через функционалы от синуса или
тангенса. Следовательно, без тригонометрии нельзя спроектировать здания с
подобными элементами.

Сейсмология, важной
частью которой являются колебания, использует тригонометрию как один из
основных инструментов.

Звук – это наше
восприятие акустических колебаний, на которых построена музыка. Также
современные музыканты часто пользуются компьютерами при написании песен. Для
создания звука в специальных программах есть синтезаторы – генераторы звука или
шума. Главная часть синтезатора – осциллятор, который генерирует цифровую
«модель» акустических волн. Те, кто пользовались подобными синтезаторами,
знают, что волны, которые генерирует осциллятор, собираются из комбинации
синусных волн различных амплитуд, частот и смещений. Поэтому и в музыке в наше
время нужна тригонометрия.

И, конечно же,
тригонометрию можно встретить в различных разделах физики.

В кинематике движение по
окружности и различные виды колебаний, как, например, колебание маятника,
описывается формулами, использующими функционалы от синуса.

Динамика, описывающая
движение тел в зависимости от действующих на них сил, не существовала бы без
тригонометрии. Причина этого в том, что векторы – достаточно сложные объекты.
Их гораздо проще изучать через проекции, поэтому векторы в пространстве
описываются через координаты. Именно в таких ситуациях стоит применять
тригонометрию: проекция на плоскость получается, только если был опущен
перпендикуляр, который в свою очередь образует с проекцией и данным отрезком
(вектором) прямоугольный треугольник. Сила – это векторная величина. Поэтому
тригонометрия нужна при изучении динамики.

Оптика во многом основана
на том, что свет – это волна. (Вообще, свет обладает как свойствами волн, так и
свойствами потока частиц. Разные свойства проявляются при различных условиях. В
этом заключается корпускулярно-волновой дуализм, о котором будет сказано
далее.) При работе с колебаниями, физикам-оптикам необходима тригонометрия.

Нельзя не сказать о том,
насколько важна тригонометрия для квантовой механики. Достаточно посмотреть на
основное уравнение данного раздела физики, знаменитое уравнение Шрёдингера:

, где ℏ – постоянная
Дирака, а «перевёрнутый треугольник» – оператор Лапласа (сумма вторых частных
производных; оператор),
U – оператор
потенциальной энергии, Е – оператор полной энергии. Главная буква и основной
«кирпичик» уравнения – ψ, волновая функция. Как было написано выше, свет
обладает свойством корпускулярно-волнового дуализма. Тем самым, как было
изначально сформулировано физиками, свет делится на кванты, одновременно
являющиеся волнами и частицами. Гипотеза Де-Бройля говорит о следующем: все
элементарные частицы обладают квантовыми свойствами. Основываясь на этом,
Шрёдингер из уравнения Максвелла вывел своё. (Уравнение Максвелла работает
только для фотонов – квантов света. Уравнение Шрёдингера обобщает уравнение
Максвелла.) Так как в уравнении Максвелла используется поле, то и в уравнении
Шрёдингера появилась условная «волновая функция». Что важно, уравнение не имеет
решений в действительных числах, поэтому волновая функция обязана быть
комплексной. В квантовой механике, упрощённой форме квантовой физики и первой
квантовой теории, волновая функция описывается данной формулой:

Волновая функция, как
оказалось, не обладает физическим смыслом. Им обладает квадрат модуля волновой
функции, равный плотности вероятности обнаружения частицы в точке определённой
координаты. Но для вычисления модуля комплексного числа важно знать его
действительную и мнимую части. Но в вышеприведённом уравнении деления на части
нет. Эту проблему способна решить формула Эйлера (о которой написано во второй
части данного проекта), включающая в себя тригонометрические функции. Тем
самым, для описания движения частиц в квантовой физике необходима
тригонометрия.

Можно сделать вывод:
«стагнация» не помешала тригонометрии стать неотъемлемой частью различных сфер
жизни, и людям различных профессий она необходима и по сей день. Таким образом,
тригонометрия – это универсальный, незаменимый и во многом совершенный
математический инструмент.

4.   Синус и косинус 1 градуса

4.1    Синус и косинус 18 градусов

Чтобы найти значение
синуса или косинуса целочисленного аргумента, нужна определённая формула, и так
как мы работаем в натуральных числах (достаточно знать значение синуса и
косинуса для всех
n, принадлежащих (0°; 90°)), то наилучшим
вариантом было бы определить прогрессию, каждый член которой – синус и косинус
целочисленного аргумента. Получаем прогрессию:

Основой данной прогрессии
являются формулы синуса и косинуса суммы. Тангенс находится как отношение
синуса к косинусу, т.е. как отношение членов прогрессии
a
и
b
с совпадающими индексами. Теперь осталось узнать точные значения
t
и
v.
Их можно получить через синус и косинус 30
° и 45° :1) с. и к. (синус и косинус) 15°; 2)
с. и к. 5°; 3) с. и к. 1°. Но это сложный путь, так как приходится применять не
только формулу тройного, но и формулу пятерного угла, из-за чего решение
предполагает нахождение корня уравнения пятой степени.

Есть более простой путь. Для него нужно знать с. и к. 18°. Решим для
этого следующую геометрическую задачу.

Рассмотрим треугольник АВС, где АВ = ВС, угол А = угол С = 72°, угол В =
36°.Если мы проведём биссектрису угла А (А
L), то угол
ВА
L = угол LАС = угол В = 36°. Следовательно, AL = BL (по свойству равнобедренного треугольника).
Также угол
ALC = угол С = 72° (внешний угол треугольника АВL), поэтому AL = AC = BL (по свойству равнобедренного треугольника), а также треугольник АВС
подобен треугольнику С
AL (по двум углам). Пусть АВ = ВС = 1, АС = х.
Тогда коэффициент подобия
k = x, а LC = x^2. Значит BL = 1-x^2. Но
также
BL = AC = x. Значит,

Проведём
биссектрису-высоту-медиану ВМ (по свойству равнобедренного треугольника чевианы
совпадают). Тогда АМ = МС = х:2, угол СВМ = угол АВМ = 18
°, угол ВМС = 90°. По определению,

Получаем искомое
значение:

Также через основное
тригонометрическое тождество получаем:

Данные результаты ((2),
(3)) мы будем использовать в дальнейших вычислениях.

4.2    Синус и косинус 3
градусов

Это второй шаг в
вычислениях, наиболее простой из всех. Мы знаем:

Тогда, используя формулы с. и к. разницы, получаем:

Далее, так же применяя с. и к. разницы и значения (2) и (3), считаем:

Чтобы дальнейшие
уравнения было проще воспринимать, будем использовать х и у вместо с. и к. 3
°.

4.3    Синус и косинус 1 градуса, формула Кардано

Воспользуемся формулами
с. и к. тройного угла:

Обозначив синус 1° за t, а косинус 1° за v, запишем два уравнения:

Таким образом, для того,
чтобы найти искомые
t и v,
необходимо решить два кубических уравнения. Так как оба уравнения обладают
канонической формой (коэффициент при третьей степени равен 1, коэффициент при
второй степени равен 0), мы имеем право применить формулу Кардано.

Если мы имеем уравнение
вида

то формула Кардано для
этого уравнения выглядит так:

Первое уравнение (с
переменной
t) имеет тогда такое
решение (следующая запись подразумевает собой три случая – три корня уравнения):

Используя основное
тригонометрическое тождество для х и у, получаем:

(Здесь мы вынесли минус.
Это можно сделать, так как общий множитель – кубический корень из (-1) – не
может не принимать действительное значение, так как иначе
t
не будет действительным. Поэтому этот множитель можно заменить лишь на (-1).) Так
как х и у – действительные числа, выражения под радикалами – комплексные числа.
Это говорит о том, что наше уравнение относится к типу уравнения с
«неприводимыми» корнями. Для извлечения кубического корня из комплексного числа
необходима другая форма записи комплексных чисел:

Тогда выражения под
радикалами принимают данную форму:

Формула кубического корня
из комплексного числа (следствие формулы Эйлера) выглядит так:

Кубические корни наших
комплексных чисел принимают данный вид:

(Индекс k
совпадает для обоих корней, так как их сумма должна быть действительным числом.
Это можно перепроверить для несовпадающих индексов, воспользовавшись формулой
Эйлера и выделив мнимую часть, которая окажется ненулевой.) Тогда корни
уравнения такие:

(Здесь мы применили
комплексную формулу для косинуса – следствие из формулы Эйлера.) Итак, осталось
понять, какой из корней – синус 1
°. Если у округлить до 1, а х – до 0, то получим приблизительные
значения корней уравнения:

Именно последний из них,
примерно равный 0,

искомый. Это корень, получаемый при (
k
= -1). Итак, искомый корень уравнения выглядит так (после применения формулы
приведения):

На самом деле, если
подставить определения х и у (с. и к. 3 градусов) в ответ, то получится, что
синус
t
просто равно синусу 1 градуса. Поэтому, чтобы вычислить примерное значение,
нужно подставлять только точные значения (4) и (5).

Аналогично получаем
решение второго уравнения:

Конечно же, хотелось бы,
чтобы можно было найти более точные значения
t
и
v.
Но для этого нужно знать точное значения угла, не кратного 3. Таких пока не
было найдено, поэтому наилучший вариант искомой прогрессии выглядит так
(используем (1), (4), (5), (6), (7)):

Отдельно можно записать
результат для аргументов, кратных 3 (получаем аналогично):

4.4    Дополнительные
формулы

Далее будут рассмотрены
те формулы, которые в некоторых ситуациях могут упростить вычисления с. и к.
целочисленного аргумента, а также способ их выведения. Рассмотрим
последовательность (из (1)):

Применим её несколько
раз:

Можно заметить
закономерность:

При k=n
– 1:

Рассмотрим вторую часть
последовательности (1):

Применим для неё формулу
(8):

Данная формула для
косинуса целочисленного аргумента не зависит от значений синусов (кроме синуса 1
°, который также можно
определить через косинус 1
°). Её можно применять для вычислений, если
значения синусов не нужны. Проведя аналогичные вычисления сначала для второй, а
потом для первой частей (1), получим данную формулу:

Эту формулу можно
использовать при вычислении синусов, если не нужны значения косинусов.

Если продолжить
преобразования формул (9) и (10), то удастся вывести формулы кратного угла:

Эти формулы – следствие
формулы Эйлера и формулы Муавра. Они также находятся с помощью бинома Ньютона,
из-за чего мы и встречаем биномиальные коэффициенты. Данные формулы также можно
использовать при вычислениях.

5.   Перспектива проекта
(задачи, для которых необходимы точные значения тригонометрических функций)

Задача 1. Постройте с
помощью циркуля и линейки, используя значения с. и к. для целочисленных
аргументов: а) угол, равный 1
°; б) угол α = n°, где n – натуральное число.

При решении данной задачи
понадобятся 3 инструмента: формула для с. и к. целочисленного градуса (при
построении прямоугольного треугольника с искомым углом), теорема Пифагора (для
построения отрезка иррациональной длины) и гомотетия (для увеличения для
отрезка в
k раз, где k
– длина ранее построенного отрезка). При таком подходе нужно найти способ
отмерить отрезок длины, равной корню четвёртой степени из 5 (смотреть значения
с. и к. 3
°).
Если получится решить эту проблему, или обойти её стороной каким-то образом,
задача будет автоматически решена.

Задачу также усложняет
тот факт, что нам не получилось найти «табличные» значения с. и к. 1
°. Но если мы сможем построить угол, равный 3°,
то с помощью трисекции мы построим и угол, равный 1°.

Задача 2. При каких
целочисленных α значение
tgα
будет рациональным?

Данная задача проще, чем
предыдущая, так как её можно решить, если получится вычислить тангенс для
целочисленных углов, принадлежащих (0
°;45°) (т.к. период тангенса = 180°, tg(90°+α) = – сtgα, tg(90° – α) = ctgα, а также если тангенс α не равен 0 и
принадлежит множеству рациональных чисел, то котангенс α тоже рационален). К
тому же, мы знаем, что тангенс 45° = 1, что удовлетворяет условию.

Так как нам не известны точные значения с. и к. α, не кратных 3, мы
можем проверить на рациональность только тангенсы 3°, 6°, 9°, … ,39°, 42° (14
значений). Но найти данные значения не так просто, поэтому для решения задачи
нужно составить программу для автоматического вычисления. Это можно сделать в
дальнейших исследованиях; к тому же, возможно, есть способ найти точные
значения с. и к. угла, не кратного 3, и тогда задачу получится решить до конца.

Данные задачи – лишь два варианта перспективы проведённого исследования.
Потенциал полученных результатов гораздо больше, чем возможность решить пару
задач. Стоит только найти варианты их применения.

6.   Заключение

Итак, пора подвести
итоги. Изучив статьи Википедии, проанализировав содержательную часть теорем и
аксиом и даты их публикаций, мы пришли к выводу, что тригонометрия развивалась
на протяжении долгих лет. Большое множество математиков приняло участие в
изучении данного инструмента, но наибольший вклад внесли работы Леонарда
Эйлера. К ХХ веку тригонометрия стала полноценным методом расчётов, и в данный
момент из-за этого она находится в состоянии стагнации. При этом никакой другой
математический инструмент не заменит тригонометрии, её используют во многих
сферах жизни.

К тому же мы достигли
цели, доказав гипотезу. В самом деле, существует способ записать значения
синуса и косинуса целочисленного аргумента в точном, «табличном» виде. Как
минимум, «табличными» можно назвать значения для тригонометрических функций от
аргументов, кратных трём. Синусы и косинусы остальных чисел принимают другой
вид; их значения можно использовать, по сути, только для округления (используя
порядки Тейлора или другие методы).

Возможно, математикам
удастся найти «табличные» значения тригонометрических функций какого-то числа,
не кратного трём. Тогда поучится довести данную работу до конца. А пока
полученные результаты можно использовать при решении различных геометрических
задач, когда придётся обратиться к теоремам синусов и косинусов. Также, возможно,
получится довести до конца задачи, поставленные в 4.5, но это будет отдельным
исследованием, а данное – завершено.

7. Обзор литературы

Тригонометрия (история
тригонометрии):

https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F

Формула Кардано:

https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%B0%D1%80%D0%B4%D0%B0%D0%BD%D0%BE

https://www.youtube.com/watch?v=ecsSmmBY56Q

https://www.youtube.com/watch?v=4ttNyeqLdHY

Формула Эйлера:

https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0

Кубический корень из
комплексного числа:

https://socratic.org/questions/howdoifindthecuberootofacomplexnumber#:~:text=Those%20are%20some%20symbols%20thats,the%20other%20two%20cube%20roots.

Синус 18 градусов:

https://www.youtube.com/watch?v=_00oskWLtII

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Рис. 1.
Графики тригонометрических функций:      синуса,      косинуса,      тангенса,      котангенса,      секанса,      косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус (sin x);
  • косинус (cos x);
производные тригонометрические функции:
  • тангенс {displaystyle left(mathrm {tg} ,x={frac {sin x}{cos x}}right)};
  • котангенс {displaystyle left(mathrm {ctg} ,x={frac {cos x}{sin x}}right)};
  • секанс {displaystyle left(sec x={frac {1}{cos x}}right)};
  • косеканс {displaystyle left(mathrm {cosec} ,x={frac {1}{sin x}}right)};
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются {displaystyle tan x}, {displaystyle cot x}, csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках pm pi n + frac{pi}{2}, а у котангенса и косеканса — в точках pm pi n.
Графики тригонометрических функций показаны на рис. 1.

Способы определения[править | править код]

Определение для любых углов[править | править код]

Рис. 2.
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[3]. В декартовой системе координат на плоскости построим окружность единичного радиуса (R=1) с центром в начале координат O. Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча OB (точку B выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки B обозначим x_B, а ординату — y_B (см. рисунок 2).

Синусом угла alpha называется ордината точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Косинусом угла alpha называется абсцисса точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Тангенсом угла alpha называется отношение ординаты точки {displaystyle M_{alpha }} единичной окружности к её абсциссе, причём точка {displaystyle M_{alpha }} не принадлежит оси ординат.

Котангенсом угла alpha называется отношение абсциссы точки {displaystyle M_{alpha }} единичной окружности к её ординате, причём точка {displaystyle M_{alpha }} не принадлежит оси абсцисс.[4]

Таким образом, определения тригонометрических функций выглядят следующим образом:

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (pm 1). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса R, однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в {displaystyle 360^{circ }} запишется длиной единичной окружности 2pi . Угол в 180^{circ } равен, соответственно pi и так далее. Заметим, что угол на 2pi отличающийся от alpha по рисунку эквивалентен alpha , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа x тригонометрическими функциями угла, радианная мера которого равна x.

Определение для острых углов[править | править код]

Рис. 4.
Тригонометрические функции острого угла

Определение тангенса. Марка СССР 1961 года

В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[5]. Пусть {displaystyle triangle AOB} — прямоугольный (угол {displaystyle angle A} прямой), с острым углом {displaystyle angle AOB=alpha } и гипотенузой OB. Тогда:

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений[править | править код]

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

 left(cos xright)'' = - cos x,
 left(sin  xright)'' = - sin x.

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

frac{d^2}{dvarphi^2}R(varphi) = - R(varphi),

с дополнительными условиями:
R(0)=1 для косинуса и R'(0)=1 для синуса.

Определение как решений функциональных уравнений[править | править код]

Функции косинус и синус можно определить[7]
как решения (f и g соответственно) системы функциональных уравнений:

left{
begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\
g(x+y)&=&g(x)f(y)+f(x)g(y)
end{array}
right.

при дополнительных условиях:

f(x)^{2}+g(x)^{2}=1, g(pi /2)=1, и {displaystyle 0<g(x)<1} при 0<x<pi /2.

Определение через ряды[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

sin x=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+frac{x^9}{9!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n+1}}{(2n+1)!},
cos x=1-frac{x^2}{2!}+frac{x^4}{4!}-frac{x^6}{6!}+frac{x^8}{8!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также равенствами operatorname{tg},x=frac{sin x}{cos x}, operatorname{ctg},x=frac{cos x}{sin x}, sec x=frac{1}{cos x} и operatorname{cosec},x=frac{1}{sin x}, можно найти разложения в ряд и других тригонометрических функций:

{operatorname{tg},x=x+frac{1}{3},x^3 + frac{2}{15},x^5 + frac{17}{315},x^7 + frac{62}{2835},x^9 + cdots = sum_{n=1}^inftyfrac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1} quad left(-frac{pi}{2}<x<frac{pi}{2}right),}
{operatorname{ctg},x = frac{1}{x} - frac{x}{3} - frac{x^3}{45} - frac{2x^5}{945} - frac{x^7}{4725} - cdots = frac{1}{x} - sum_{n=1}^infty frac{2^{2n}|B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),}
{sec x=1+frac{1}{2},x^2+frac{5}{24},x^4+frac{61}{720},x^6+frac{277}{8064},x^8+cdots = sum_{n=0}^inftyfrac{|E_{n}|}{(2n)!},x^{2n}, quad left(-frac{pi}{2} < x < frac{pi}{2}right),}
operatorname{cosec} x = frac{1}{x} + frac{1}{6},x + frac{7}{360},x^3 + frac{31}{15120},x^5 + frac{127}{604800},x^7 + cdots = frac{1}{x} + sum_{n=1}^infty frac{2(2^{2n-1}-1) |B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),

где

B_{n} — числа Бернулли,
E_{n} — числа Эйлера.

Значения тригонометрических функций для некоторых углов[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («infty » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Радианы {displaystyle 0} {displaystyle {frac {pi }{6}}} {displaystyle {frac {pi }{4}}} {displaystyle {frac {pi }{3}}} {displaystyle {frac {pi }{2}}} pi {displaystyle {frac {3pi }{2}}} 2pi
Градусы {displaystyle 0^{circ }} {displaystyle 30^{circ }} {displaystyle 45^{circ }} {displaystyle 60^{circ }} {displaystyle 90^{circ }} {displaystyle 180^{circ }} {displaystyle 270^{circ }} {displaystyle 360^{circ }}
{displaystyle sin alpha } {displaystyle 0} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2} 1 {displaystyle 0} -1 {displaystyle 0}
cos alpha 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} {displaystyle 0} -1 {displaystyle 0} 1
operatorname{tg},alpha {displaystyle 0} {displaystyle {frac {1}{sqrt {3}}}} 1 sqrt{3} infty {displaystyle 0} infty {displaystyle 0}
operatorname{ctg},alpha infty sqrt{3} 1 frac{sqrt{3}}{3} {displaystyle 0} infty {displaystyle 0} infty
{displaystyle sec alpha } 1 {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 infty -1 infty 1
{displaystyle operatorname {cosec} ,alpha } infty 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}} 1 infty -1 infty

Значения тригонометрических функций нестандартных углов[править | править код]

Радианы {displaystyle {frac {2pi }{3}}} {displaystyle {frac {3pi }{4}}} {displaystyle {frac {5pi }{6}}} {displaystyle {frac {7pi }{6}}} {displaystyle {frac {5pi }{4}}} {displaystyle {frac {4pi }{3}}} {displaystyle {frac {5pi }{3}}} {displaystyle {frac {7pi }{4}}} {displaystyle {frac {11pi }{6}}}
Градусы {displaystyle 120^{circ }} {displaystyle 135^{circ }} {displaystyle 150^{circ }} {displaystyle 210^{circ }} {displaystyle 225^{circ }} {displaystyle 240^{circ }} {displaystyle 300^{circ }} {displaystyle 315^{circ }} {displaystyle 330^{circ }}
{displaystyle sin alpha } frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2}
cos alpha -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2}
operatorname{tg},alpha -sqrt{3} -1 -frac{sqrt{3}}{3} frac{sqrt{3}}{3} 1 sqrt{3} -sqrt{3} -1 -frac{sqrt{3}}{3}
operatorname{ctg},alpha -frac{sqrt{3}}{3} -1 -sqrt{3} sqrt{3} 1 frac{sqrt{3}}{3} -frac{sqrt{3}}{3} -1 -sqrt{3}
{displaystyle sec alpha } -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2
Радианы {displaystyle {frac {pi }{12}}} {displaystyle {frac {pi }{10}}} {displaystyle {frac {pi }{8}}} {displaystyle {frac {pi }{5}}} {displaystyle {frac {3pi }{10}}} {displaystyle {frac {3pi }{8}}} {displaystyle {frac {2pi }{5}}} {displaystyle {frac {5pi }{12}}}
Градусы {displaystyle 15^{circ }} {displaystyle 18^{circ }} {displaystyle 22{,}5^{circ }} {displaystyle 36^{circ }} {displaystyle 54^{circ }} {displaystyle 67{,}5^{circ }} {displaystyle 72^{circ }} {displaystyle 75^{circ }}
{displaystyle sin alpha } {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}} frac{sqrt{5}-1}{4} frac{sqrt{2-sqrt{2}}}{2} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{5}+1}{4} frac{sqrt{2+sqrt{2}}}{2} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}}
cos alpha {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} frac{sqrt{2+sqrt{2}}}{2} frac{sqrt{5}+1}{4} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{2-sqrt{2}}}{2} frac{sqrt{5}-1}{4} {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}}
operatorname{tg},alpha 2-sqrt{3} {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} sqrt{2}-1 {displaystyle {sqrt {5-2{sqrt {5}}}}} {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} sqrt{2}+1 {displaystyle {sqrt {5+2{sqrt {5}}}}} {displaystyle 2+{sqrt {3}}}
operatorname{ctg},alpha {displaystyle 2+{sqrt {3}}} {displaystyle {sqrt {5+2{sqrt {5}}}}} sqrt{2}+1 {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5-2{sqrt {5}}}}} sqrt{2}-1 {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} 2-sqrt{3}
{displaystyle sec alpha } {displaystyle {sqrt {2}}({sqrt {3}}-1)} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {sqrt {5}}-1} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {2}}({sqrt {3}}+1)}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {sqrt {2}}({sqrt {3}}+1)} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5}}-1} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {2}}({sqrt {3}}-1)}

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций[править | править код]

Простейшие тождества[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности (x^{2}+y^{2}=1) или теореме Пифагора, имеем:

{displaystyle sin ^{2}alpha +cos ^{2}alpha =1.}

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

{displaystyle 1+mathop {mathrm {tg} } ,^{2}alpha =mathop {mathrm {sec} } ,^{2}alpha ,}
{displaystyle 1+mathop {mathrm {ctg} } ,^{2}alpha =mathop {mathrm {cosec} } ,^{2}alpha .}

Из определения тангенса и котангенса следует, что

 mathop{mathrm{tg}},alpha  cdot mathop{mathrm{ctg}},alpha=1.

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для {displaystyle 0<x<pi /2}:

  sin cos tg ctg sec cosec
{displaystyle ,sin x=} {displaystyle ,sin x} {displaystyle {sqrt {1-cos ^{2}x}}} {displaystyle {frac {operatorname {tg} x}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle {frac {1}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle {frac {sqrt {sec ^{2}x-1}}{sec x}}} {displaystyle {frac {1}{operatorname {cosec} x}}}
{displaystyle ,cos x=} {displaystyle ,{sqrt {1-sin ^{2}x}}} {displaystyle ,cos x} {displaystyle ,{frac {1}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle ,{frac {operatorname {ctg} x}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle ,{frac {1}{sec x}}} {displaystyle ,{frac {sqrt {operatorname {cosec} ^{2}x-1}}{operatorname {cosec} x}}}
{displaystyle ,operatorname {tg} x=} {displaystyle ,{frac {sin x}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {sqrt {1-cos ^{2}x}}{cos x}}} {displaystyle ,operatorname {tg} x} {displaystyle ,{frac {1}{operatorname {ctg} x}}} {displaystyle ,{sqrt {sec ^{2}x-1}}} {displaystyle ,{frac {1}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {ctg} x=} {displaystyle ,{frac {sqrt {1-sin ^{2}x}}{sin x}}} {displaystyle ,{frac {cos x}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {1}{operatorname {tg} x}}} {displaystyle ,operatorname {ctg} x} {displaystyle ,{frac {1}{sqrt {sec ^{2}x-1}}}} {displaystyle ,{sqrt {operatorname {cosec} ^{2}x-1}}}
{displaystyle ,sec x=} {displaystyle ,{frac {1}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {1}{cos x}}} {displaystyle ,{sqrt {1+operatorname {tg} ^{2}x}}} {displaystyle ,{frac {sqrt {operatorname {ctg} ^{2}x+1}}{operatorname {ctg} x}}} {displaystyle ,sec x} {displaystyle ,{frac {operatorname {cosec} x}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {cosec} x=} {displaystyle ,{frac {1}{sin x}}} {displaystyle ,{frac {1}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {sqrt {1+operatorname {tg} ^{2}x}}{operatorname {tg} x}}} {displaystyle ,{sqrt {operatorname {ctg} ^{2}x+1}}} {displaystyle ,{frac {sec x}{sqrt {sec ^{2}x-1}}}} {displaystyle ,operatorname {cosec} x}

Непрерывность[править | править код]

Чётность[править | править код]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 sin left( - alpha right)  =  - sin alpha ,,
 cos left( - alpha right)  =  cos alpha ,,
 mathop{mathrm{tg}}, left( - alpha right)  = - mathop{mathrm{tg}}, alpha ,,
 mathop{mathrm{ctg}}, left( - alpha right)  = - mathop{mathrm{ctg}}, alpha ,,
 sec left( - alpha right)  =  sec alpha ,,
 mathop{mathrm{cosec}}, left( - alpha right)  = - mathop{mathrm{cosec}}, alpha ,.

Периодичность[править | править код]

Функции {displaystyle sin x,;cos x,;sec x,;mathrm {cosec} ,x} — периодические с периодом 2pi , функции {displaystyle mathrm {tg} ,x} и {displaystyle mathrm {ctg} ,x} — c периодом pi .

Формулы приведения[править | править код]

Формулами приведения называются формулы следующего вида:

{displaystyle f(npi +alpha )=pm f(alpha ),}
{displaystyle f(npi -alpha )=pm f(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}+alpha right)=pm g(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}-alpha right)=pm g(alpha ).}

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол alpha острый, например:

 cos left(  frac{ pi}{2} - alpha right)  =   sin alpha,, или что то же самое:  cos left( 90^circ - alpha right)  =   sin alpha,.

Некоторые формулы приведения:

alpha frac{pi}{2} - alpha frac{pi}{2} + alpha {displaystyle pi -alpha } {displaystyle pi +alpha } frac{3,pi}{2} - alpha frac{3,pi}{2} + alpha 2,pi - alpha
sinalpha cosalpha cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha }
cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha } sinalpha cosalpha
operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha
operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha

Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.

Формулы сложения и вычитания[править | править код]

Значения тригонометрических функций суммы и разности двух углов:

 sinleft( alpha pm beta right)= sinalpha , cosbeta pm cosalpha , sinbeta,
 cosleft( alpha pm beta right)= cosalpha , cosbeta mp sinalpha , sinbeta,
 operatorname{tg}left( alpha pm beta right) = frac{operatorname{tg},alpha pm operatorname{tg},beta}{1 mp operatorname{tg},alpha , operatorname{tg},beta},
 operatorname{ctg}left( alpha pm beta right) = frac{operatorname{ctg},alpha,operatorname{ctg},beta mp 1}{operatorname{ctg},beta pm operatorname{ctg},alpha}.

Аналогичные формулы для суммы трёх углов:

sin left( alpha + beta + gamma right) = sin alpha cos beta cos gamma + cos alpha sin beta cos gamma + cos alpha cos beta sin gamma - sin alpha sin beta sin gamma,
cos left( alpha + beta + gamma right) = cos alpha cos beta cos gamma - sin alpha sin beta cos gamma - sin alpha cos beta sin gamma - cos alpha sin beta sin gamma.

Формулы для кратных углов[править | править код]

Формулы двойного угла:

sin 2alpha = 2 sin alpha cos alpha = frac{2,operatorname{tg},alpha }{1 + operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha }{1 + operatorname{ctg}^2alpha} = frac{2}{operatorname{tg},alpha + operatorname{ctg},alpha},
cos 2alpha = cos^2 alpha,-,sin^2 alpha = 2 cos^2 alpha,-,1 = 1,-,2 sin^2 alpha = frac{1 - operatorname{tg}^2 alpha}{1 + operatorname{tg}^2alpha} = frac{operatorname{ctg}^2 alpha - 1}{operatorname{ctg}^2alpha + 1} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{operatorname{ctg},alpha + operatorname{tg},alpha},
operatorname{tg},2 alpha = frac{2,operatorname{tg},alpha}{1 - operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha}{operatorname{ctg}^2alpha - 1} = frac{2}{operatorname{ctg},alpha - operatorname{tg},alpha},
operatorname{ctg},2 alpha = frac{operatorname{ctg}^2 alpha - 1}{2,operatorname{ctg},alpha} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{2}.

Формулы тройного угла:

sin,3alpha=3sinalpha - 4sin^3alpha,
cos,3alpha=4cos^3alpha -3cosalpha,
operatorname{tg},3alpha=frac{3,operatorname{tg},alpha - operatorname{tg}^3,alpha}{1 - 3,operatorname{tg}^2,alpha},
operatorname{ctg},3alpha=frac{operatorname{ctg}^3,alpha - 3,operatorname{ctg},alpha}{3,operatorname{ctg}^2,alpha - 1}.

Прочие формулы для кратных углов:

sin,4alpha=cosalpha left(4sinalpha - 8sin^3alpharight),
cos,4alpha=8cos^4alpha - 8cos^2alpha + 1,
operatorname{tg},4alpha=frac{4,operatorname{tg},alpha - 4,operatorname{tg}^3,alpha}{1 - 6,operatorname{tg}^2,alpha + operatorname{tg}^4,alpha},
operatorname{ctg},4alpha=frac{operatorname{ctg}^4,alpha - 6,operatorname{ctg}^2,alpha + 1}{4,operatorname{ctg}^3,alpha - 4,operatorname{ctg},alpha},
sin,5alpha=16sin^5alpha-20sin^3alpha +5sinalpha,
cos,5alpha=16cos^5alpha-20cos^3alpha +5cosalpha,
operatorname{tg},5alpha=operatorname{tg}alphafrac{operatorname{tg}^4alpha-10operatorname{tg}^2alpha+5}{5operatorname{tg}^4alpha-10operatorname{tg}^2alpha+1},
operatorname{ctg},5alpha=operatorname{ctg}alphafrac{operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+5}{5operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+1},
 sin (nalpha)=2^{n-1}prod^{n-1}_{k=0}sinleft( alpha+frac{pi k}{n}right) следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

sin(nalpha)=sum_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}cos^{n-2k-1}alpha,sin^{2k+1}alpha,
cos(nalpha)=sum_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}cos^{n-2k}alpha,sin^{2k}alpha,
mathrm{tg}(nalpha)=frac{sin(nalpha)}{cos(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{tg}^{2k+1}alpha}}{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{tg}^{2k}alpha}},
mathrm{ctg}(nalpha)=frac{cos(nalpha)}{sin(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{ctg}^{n-2k}alpha}}{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{ctg}^{n-2k-1}alpha}},

где [n] — целая часть числа n, binom{n}{k} — биномиальный коэффициент.

Формулы половинного угла:

sinfrac{alpha}{2}=sqrt{frac{1-cosalpha}{2}},quad 0 leqslant alpha leqslant 2pi,
cosfrac{alpha}{2}=sqrt{frac{1+cosalpha}{2}},quad -pi leqslant alpha leqslant pi,
operatorname{tg},frac{alpha}{2}=frac{1-cosalpha}{sinalpha}=frac{sinalpha}{1+cosalpha},
operatorname{ctg},frac{alpha}{2}=frac{sinalpha}{1-cosalpha}=frac{1+cosalpha}{sinalpha},
operatorname{tg},frac{alpha}{2}=sqrt{frac{1-cosalpha}{1+cosalpha}},quad 0 leqslant alpha < pi,
operatorname{ctg},frac{alpha}{2}=sqrt{frac{1+cosalpha}{1-cosalpha}},quad 0 < alpha leqslant pi.

Произведения[править | править код]

Формулы для произведений функций двух углов:

sin alpha sin beta ={frac {cos(alpha -beta )-cos(alpha +beta )}{2}},
sinalpha cosbeta = frac{sin(alpha-beta) + sin(alpha+beta)}{2},
cosalpha cosbeta = frac{cos(alpha-beta) + cos(alpha+beta)}{2},
operatorname{tg},alpha,operatorname{tg},beta = frac{cos(alpha-beta) - cos(alpha+beta)}{cos(alpha-beta) + cos(alpha+beta)},
operatorname{tg},alpha,operatorname{ctg},beta = frac{sin(alpha-beta) + sin(alpha+beta)}{sin(alpha+beta) -sin(alpha-beta)},
operatorname{ctg},alpha,operatorname{ctg},beta = frac{cos(alpha-beta) + cos(alpha+beta)}{cos(alpha-beta) - cos(alpha+beta)}.

Аналогичные формулы для произведений синусов и косинусов трёх углов:

sinalpha sinbeta singamma = frac{sin(alpha+beta-gamma) + sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
sinalpha sinbeta cosgamma = frac{-cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) - cos(alpha+beta+gamma)}{4},
sinalpha cosbeta cosgamma = frac{sin(alpha+beta-gamma) - sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
cosalpha cosbeta cosgamma = frac{cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) + cos(alpha+beta+gamma)}{4}.

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править код]

{displaystyle sin ^{2}alpha ={frac {1-cos 2,alpha }{2}}={frac {operatorname {tg} ^{2},alpha }{1+operatorname {tg} ^{2},alpha }},}
cos ^{2}alpha ={frac  {1+cos 2,alpha }{2}}={frac  {operatorname {ctg}^{2},alpha }{1+operatorname {ctg}^{2},alpha }},
operatorname {tg}^{2},alpha ={frac  {1-cos 2,alpha }{1+cos 2,alpha }}={frac  {operatorname {sin}^{2},alpha }{1-operatorname {sin}^{2},alpha }},
{displaystyle operatorname {ctg} ^{2},alpha ={frac {1+cos 2,alpha }{1-cos 2,alpha }}={frac {operatorname {cos} ^{2},alpha }{1-operatorname {cos} ^{2},alpha }},}
sin^3alpha = frac{3sinalpha - sin 3,alpha}{4},
cos^3alpha = frac{3cosalpha + cos 3,alpha}{4},
operatorname{tg}^3,alpha = frac{3sinalpha - sin 3,alpha}{3cosalpha + cos 3,alpha},
operatorname{ctg}^3,alpha = frac{3cosalpha + cos 3,alpha}{3sinalpha - sin 3,alpha},
sin^4alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{8},
cos^4alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{8},
operatorname{tg}^4,alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{cos 4alpha + 4cos 2,alpha + 3},
operatorname{ctg}^4,alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{cos 4alpha - 4cos 2,alpha + 3}.

Иллюстрация равенства {displaystyle sin x-cos x={sqrt {2}}cdot sin left(x-{pi  over 4}right)}

Суммы[править | править код]

{displaystyle sin alpha pm sin beta =2sin {frac {alpha pm beta }{2}}cos {frac {alpha mp beta }{2}},}
{displaystyle cos alpha +cos beta =2cos {frac {alpha +beta }{2}}cos {frac {alpha -beta }{2}},}
{displaystyle cos alpha -cos beta =-2sin {frac {alpha +beta }{2}}sin {frac {alpha -beta }{2}},}
{displaystyle operatorname {tg} alpha pm operatorname {tg} beta ={frac {sin(alpha pm beta )}{cos alpha cos beta }},}
{displaystyle operatorname {ctg} alpha pm operatorname {ctg} beta ={frac {sin(beta pm alpha )}{sin alpha sin beta }},}
{displaystyle 1pm sin {2alpha }=(sin alpha pm cos alpha )^{2},}
{displaystyle sin alpha pm cos alpha ={sqrt {2}}cdot sin left(alpha pm {pi  over 4}right).}

Существует представление:

Asin alpha +Bcos alpha ={sqrt  {A^{2}+B^{2}}};sin(alpha +phi ),

где угол phi находится из соотношений:

{displaystyle sin phi ={frac {B}{sqrt {A^{2}+B^{2}}}},}
{displaystyle cos phi ={frac {A}{sqrt {A^{2}+B^{2}}}}.}

Универсальная тригонометрическая подстановка[править | править код]

Все тригонометрические функции можно выразить через тангенс половинного угла:

{displaystyle sin x={frac {sin x}{1}}={frac {2sin {frac {x}{2}}cos {frac {x}{2}}}{sin ^{2}{frac {x}{2}}+cos ^{2}{frac {x}{2}}}}={frac {2operatorname {tg} {frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle cos x={frac {cos x}{1}}={frac {cos ^{2}{frac {x}{2}}-sin ^{2}{frac {x}{2}}}{cos ^{2}{frac {x}{2}}+sin ^{2}{frac {x}{2}}}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {tg} ~x={frac {sin x}{cos x}}={frac {2operatorname {tg} {frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {ctg} ~x={frac {cos x}{sin x}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}},}

{displaystyle sec x={frac {1}{cos x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {cosec} ~x={frac {1}{sin x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}}.}

Исследование функций в математическом анализе[править | править код]

Разложение в бесконечные произведения[править | править код]

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

{displaystyle sin x=x,prod _{n=1}^{infty }left(1-{frac {x^{2}}{pi ^{2}n^{2}}}right),}
{displaystyle cos x=prod _{n=0}^{infty }left(1-{frac {4x^{2}}{pi ^{2}(2n+1)^{2}}}right).}

Эти соотношения выполняются при любом значении x.

Непрерывные дроби[править | править код]

Разложение тангенса в непрерывную дробь:

{displaystyle mathop {rm {tg}} x={frac {x}{1-{frac {x^{2}}{3-{frac {x^{2}}{5-{frac {x^{2}}{7-{frac {x^{2}}{ddots }}}}}}}}}}}

Производные и первообразные[править | править код]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

( sin x )' = cos x ,,

( cos x )' = -sin x ,,

{displaystyle (operatorname {tg} x)'={frac {1}{cos ^{2}x}}=1+operatorname {tg} ^{2}x=sec ^{2}x,}

{displaystyle (operatorname {ctg} x)'=-{frac {1}{sin ^{2}x}}=-operatorname {cosec} ^{2}x,}

{displaystyle (sec x)'={frac {sin x}{cos ^{2}x}}=sec xoperatorname {tg} x,}

( operatorname{cosec}~x)' = -frac{cos x}{sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[8]:

intsin x, dx = -cos x + C ,,

intcos x, dx = sin x + C ,,

{displaystyle int operatorname {tg} x,dx=-ln left|cos xright|+C,,}

{displaystyle int operatorname {ctg} x,dx=ln left|sin xright|+C,,}

intsec x, dx=ln left| operatorname{tg} , left( frac {pi}{4}+frac{x}{2}right) right|+ C ,,

int operatorname{cosec}~ x, dx=ln left| operatorname{tg} , frac{x}{2} right|+ C.

Тригонометрические функции комплексного аргумента[править | править код]

Определение[править | править код]

Формула Эйлера:

{displaystyle e^{ivartheta }=cos vartheta +isin vartheta .}

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

sin z = sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!}z^{2n+1} = frac{e^{i z} - e^{-i z}}{2i}, = frac{operatorname{sh}  i z }{i};
cos z = sum_{n=0}^infty frac{(-1)^{n}}{(2n)!}z^{2n} = frac{e^{i z} + e^{-i z}}{2}, = operatorname{ch} i z;
operatorname{tg}, z = frac{sin z}{cos z} = frac{e^{i z} - e^{-i z}}{i(e^{i z} + e^{-i z})};
operatorname{ctg}, z = frac{cos z}{sin z} = frac{i(e^{i z} + e^{-i z})}{e^{i z} - e^{-i z}};
sec z = frac{1}{cos z} = frac{2}{e^{i z} + e^{-i z}};
{displaystyle operatorname {cosec} ,z={frac {1}{sin z}}={frac {2i}{e^{iz}-e^{-iz}}},} где {displaystyle i^{2}=-1.}

Соответственно, для вещественного x:

{displaystyle cos x=operatorname {Re} (e^{ix}),}
{displaystyle sin x=operatorname {Im} (e^{ix}).}

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

{displaystyle sin(x+iy)=sin x,operatorname {ch} ,y+icos x,operatorname {sh} ,y,}
{displaystyle cos(x+iy)=cos x,operatorname {ch} ,y-isin x,operatorname {sh} ,y.}

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править код]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости

Complex sin.jpg

Complex cos.jpg

Complex tan.jpg

Complex Cot.jpg

Complex Sec.jpg

Complex Csc.jpg

{displaystyle sin ,z} {displaystyle cos ,z} {displaystyle operatorname {tg} ,z} {displaystyle operatorname {ctg} ,z} {displaystyle sec ,z} {displaystyle operatorname {cosec} ,z}

История названий[править | править код]

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения sin, cos введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

См. также[править | править код]

  • Гиперболические функции
  • Интегральный синус
  • Интегральный косинус
  • Интегральный секанс
  • Обратные тригонометрические функции
  • Редко используемые тригонометрические функции
  • Решение треугольников
  • Синус-верзус
  • Сферическая тригонометрия
  • Тригонометрические тождества
  • Тригонометрические функции от матрицы
  • Тригонометрический ряд Фурье
  • Функция Гудермана
  • Четырёхзначные математические таблицы (Таблицы Брадиса)
  • Эллиптические функции

Литература[править | править код]

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии.  — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.
  • Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.

Ссылки[править | править код]

  • GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
  • Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
  • Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
  • Интерактивная карта значений тригонометрических функций
  • Тригонометрические таблицы (0° — 360°)
  • «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)

Примечания[править | править код]

  1. Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. Архивная копия от 19 января 2015 на Wayback Machine относит их к специальным функциям.
  2. Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
  3. Справочник по элементарной математике, 1978, с. 282—284.
  4. Шахмейстер А. Х. Определение основных тригонометрических функций // Тригонометрия : [рус.] : книга / А. Х. Шахмейстер; под ред. Б. Г. Зива. — 3-е изд., стереотипное. — М. : Издательство МЦНМО ; СПб. : «Петроглиф» : «Виктория плюс», 2013. — С. 11, 14, 18, 20. — 752 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-4439-0050-6. — ISBN 978-5-98712-042-2. — ISBN 978-5-91673-097-5.
  5. Справочник по элементарной математике, 1978, с. 271—272.
  6. Латинско-русский словарь. Дата обращения: 9 апреля 2023.
  7. Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
  8. В формулах, содержащих логарифм в правой части равенств, константы интегрирования scriptstyle C, вообще говоря, различны для различных интервалов непрерывности.

Тригонометрические функции — служат прежде всего для описания разнообразных периодических процессов. С периодически повторяющимися ситуациями человек сталкивается повсюду. Его жизнь сопровождают различные астрономические явления — восход и заход Солнца, изменение фаз Луны, чередование времен года, положение звезд на небе, затмения и движения планет. Человек давно заметил, что все эти явления возобновляются периодически. Жизнь на Земле тесно связана с ними, и поэтому неудивительно, что астрономические наблюдения явились источником многих математических открытий.

Биение сердца, цикл в жизнедеятельности организма, вращение колеса, морские приливы и отливы, заполненность городского транспорта, эпидемии гриппа — в этих многообразных примерах можно найти общее: эти процессы периодичны.

Открывая утром газету, мы часто читаем сообщение об очередном запуске искусственного спутника Земли. Обычно в сообщении указываются наименьшее и наибольшее расстояния спутника от поверхности Земли и период его обращения. Если сказано, что период обращения спутника составляет 92 мин, то мы понимаем, что его положение относительно Земли в какой-то момент времени и через каждые 92 мин с этого момента будет одинаковым. Так мы приходим к понятию периодической функции как функции, обладающей периодом, т. е. таким числом Т, что значения функции при значениях аргумента, отличающихся на Т, 2Т, ЗТ и т. д., будут одинаковыми.

Астрономия, которая дает нам наиболее наглядное представление о периодических процессах, определяет положение объектов в небесной сфере с помощью углов. Можно сказать так: в качестве аргумента периодических функций очень часто выступает угол. Поэтому в нашей беседе мы обсудим вопрос об измерении углов.

Область определения и множество значений тригонометрических функций

Вы знаете, что каждому действительному числу х соответ­ствует единственная точка единичной окружности, получаемая
поворотом точки (1; 0) на угол х радиан. Для этого угла
опре­делены sin х и cos х. Тем самым каждому действительному чис­лу х поставлены в соответствие числа sin х и cos х, т. е. на мно­жестве R всех действительных чисел определены функции

y = sin x и у = cos x.

Таким образом, областью определения функций y = sin x и
у = cos x является множество R всех действительных чисел.
Чтобы найти множество значений функции y = sin х, нужно
вы­яснить, какие значения может принимать у при различных зна­чениях х, т. е. установить, для каких значений у есть такие зна­чения х, при которых sin x = y. Известно, что уравнение
sin x = a имеет корни, если Тригонометрические функции, и не имеет корней, если
|а |> 1 .

Томсон Уильям, лорд Кельвин (1824— 1907) — английский физик, прези­дент Лондонского королевского общества. Дал одну из формулировок второго начала термодинамики, предложил абсолютную шкалу температур (шкалу Кельвина).

Следовательно, множеством значений функции у = sin x
является отрезок Тригонометрические функции

Аналогично множеством значений функции у = сos x также
является отрезок Тригонометрические функции

Задача:

Найти область определения функции

Тригонометрические функции

Найдем значения х, при которых выражение — Тригонометрические функции
не имеет смысла, т. е. значения х, при которых знаменатель равен
нулю. Решая уравнение sin x + cos х = 0, находим tg x = — 1, Тригонометрические функции Тригонометрические функции
Следовательно, областью определения дан­ной функции являются все значения Тригонометрические функцииТригонометрические функции

Задача:

Найти множество значений функции y = 3 + sin х cos х.

Нужно выяснить, какие значения может принимать у при
различных значениях х, т. е. установить, для каких значений а
уравнение 3 + sin х cos х = а имеет корни. Применяя формулу
синуса двойного угла, запишем уравнение так: Тригонометрические функции

откуда sin2x = 2a — 6. Это уравнение имеет корни, если
|2а — 6| = 1, т. е. если Тригонометрические функции, откуда Тригонометрические функцииТригонометрические функции

Следовательно, множеством значений данной функции яв­ляется промежуток Тригонометрические функции

Функция y = tg x определяется формулой Тригонометрические функции

Эта функция определена при тех значениях х, для которых Тригонометрические функции
Известно, что cos x = 0 при Тригонометрические функцииТригонометрические функции

Следовательно, областью определения функции y = tg х яв­ляется множество чисел Тригонометрические функцииТригонометрические функции

Так как уравнение tg x = a имеет корни при любом
дейст­вительном значении а, то множеством значений функции
y = tg х является множество R всех действительных чисел.

Функции y = sin x, у = cos x, y = tg x называются
тригономет­рическими функциями.

Задача:

Найти область определения функции y = sin Зх + tg 2х.

Нужно выяснить, при каких значениях х выражение
sin 3x + tg 2х имеет смысл. Выражение sin Зх имеет смысл при
любом значении х, а выражение tg 2х — при Тригонометрические функцииТригонометрические функциит. е. при Тригонометрические функцииТригонометрические функции

Следовательно, областью опреде­ления данной функции является множество действительных чисел Тригонометрические функцииТригонометрические функции

Задача:

Найти множество значений функции
у = 3 sin x + 4 cos х.

Выясним, при каких значениях а уравнение 3 sin x + 4 cos x = a имеет корни. Поделим уравнение на Тригонометрические функции Тригонометрические функции

Так как Тригонометрические функции то очевидно найдется такой угол Тригонометрические функции первой четверти Тригонометрические функции, что Тригонометрические функции (этот угол Тригонометрические функции )

Четность, нечетность, периодичность тригонометрических функций

Вы знаете, что для любого значения х верны равенства
sin ( — x ) = — sin x, cos ( — x) = — cos x.

Следовательно, y = sin х — нечетная функция, а у = cos х —
четная функция. Так как для любого значения х из области
определения функции y — tg x верно равенство tg (— х)= — tg х,
то y = tg хнечетная функция.

Задача:

Выяснить, является ли функция

Тригонометрические функции

четной или нечетной.

Используя формулу приведения, запишем данную функцию
так: Тригонометрические функции

Имеем Тригонометрические функцииТригонометрические функции Тригонометрические функции, т. е. данная функция является четной. ▲

Известно, что для любого значения х верны равенства

Тригонометрические функции

Из этих равенств следует, что значения синуса и косинуса
периодически повторяются при изменении аргумента на Тригонометрические функции
Та­кие функции называются периодическими с периодом Тригонометрические функции

Функция f (x) называется периодической, если существует такое число Тригонометрические функциичто для любого х из области определения этой функции выполняется равенство f (х — T) = f (x) = f( x+ T ).

Число 7 называется периодом функции f (х).

Из этого определения следует, что если х принадлежит об­ласти определения функции f (х), то числа х + T , х — Т и вообще
числа х + Tn , Тригонометрические функции также принадлежат области определения
этой периодической функции и f (х + Tn ) = f (х), Тригонометрические функции

Покажем, что число Тригонометрические функции является наименьшим положи­тельным периодом функции у = cos х.
Пусть T > 0 — период косинуса, т. е. для любого х выпол­няется равенство cos (х + T) = cos х. Положив х = 0, получим
cos T = 1 . Отсюда Тригонометрические функцииТригонометрические функции

Так как T > 0 , то T может при­нимать значения Тригонометрические функции … и поэтому период не может быть меньше Тригонометрические функции

Можно доказать, что наименьший положительный период функции у = sin х также равен Тригонометрические функции

Задача:

Доказать, что f (x) = sin 3 x — периодическая
функция с периодом Тригонометрические функции

Если функция f (х) определена на всей числовой оси, то для
того, чтобы убедиться в том, что она является периодической
с периодом T, достаточно показать, что для любого х верно
ра­венство f (х + T ) = f (х). Данная функция определена для всех Тригонометрические функциии

Тригонометрические функции

Покажем, что функция tg х является периодической с пери­одом Тригонометрические функции

Если х принадлежит области определения этой функ­ции, т. е. Тригонометрические функцииТригонометрические функции то по формулам приведения полу­чаем:

Тригонометрические функции

Таким образом,

Тригонометрические функции

Следовательно, Тригонометрические функции— период функции tg х.

Покажем, что Тригонометрические функции — наименьший положительный период функции tg х.

Пусть T — период тангенса, тогда tg ( x + T ) = tg x , откуда
при х = 0 получаем:

Тригонометрические функции

Так как наименьшее целое положительное k равно 1, то Тригонометрические функции
наименьший положительный период функции tg х.

Тригонометрические функции

Задача:

Доказать, что Тригонометрические функциипериодическая функция
с периодом Тригонометрические функции

Так как Тригонометрические функцииТригонометрические функцииТригонометрические функцииТригонометрические функцииТригонометрические функцииТригонометрические функциито Тригонометрические функции — периодическая функция с периодом Тригонометрические функции

Периодическими функциями описываются многие физические
процессы (колебания маятника, вращение планет, переменный
ток и т. д.).
На рисунке 34 изображены графики некоторых периодичес­ких функций.
Отметим, что на всех последовательных отрезках числовой
прямой, длина которых равна периоду, график периодической
функции имеет один и тот же вид.

Функция у = cos x, ее свойства и график

Напомним, что функция у = cos х определена на всей число­вой прямой и множеством ее значений является отрезок [— 1; 1].
Следовательно, график этой функции расположен в полосе между прямыми у = — 1 и у = 1.
Так как функция у = cos х периодическая с периодом Тригонометрические функции, то
достаточно построить ее график на каком-нибудь промежутке длиной Тригонометрические функции, например на отрезке Тригонометрические функциитогда на
проме­жутках, получаемых сдвигами выбранного отрезка на Тригонометрические функцииТригонометрические функции график будет таким же.

Функция у = cos х является четной. Поэтому ее график симмет­ричен относительно оси Оу. Для построения графика на отрезке Тригонометрические функциидостаточно построить его для Тригонометрические функции а затем сим­метрично отразить относительно оси Оу.

Прежде чем перейти к построению графика, покажем, что
функция у = cos х убывает на отрезке Тригонометрические функции

В самом деле, при повороте точки Р (1; 0) вокруг начала ко­ординат против часовой стрелки на угол от 0 до Тригонометрические функции абсцисса точки,
т. е. cos х, уменьшается от 1 до — 1. Поэтому если Тригонометрические функции то Тригонометрические функции (рис. 35). Это и означает, что функция у = cos х убывает на отрезке Тригонометрические функции.

Тригонометрические функции

Тригонометрические функции

Итак, график функции у = cos x: построен геометрически на
всей числовой прямой, начиная с построения его части на отрезке
Тригонометрические функции. Поэтому свойства функции у = cos х можно получить,
опи­раясь на свойства этой функции на отрезке Тригонометрические функции. Например, функ­ция y = cosx возрастает на отрезке Тригонометрические функции так как она убы­вает на отрезке Тригонометрические функции и является четной.

Перечислим основные свойства функции у = cos х;
1) Область определения — множество R всех действительных
чисел.
2) Множество значений — отрезок [— 1; 1].
3) Функция у = cos х периодическая с периодом Тригонометрические функции.
4) Функция у = cos х четная.
5) Функция у = cos х принимает:
значение, равное 0, при Тригонометрические функцииТригонометрические функции
наибольшее значение, равное 1, при Тригонометрические функцииТригонометрические функции
наименьшее значение, равное — 1, при Тригонометрические функции Тригонометрические функции
положительные значения на интервале Тригонометрические функции и на
интервалах, получаемых сдвигами этого интервала на Тригонометрические функции Тригонометрические функции…;
отрицательные значения на интервале Тригонометрические функциии на
ин­тервалах, получаемых сдвигами этого интервала на Тригонометрические функцииТригонометрические функции …;
6) Функция у = cos х:
возрастает на отрезке Тригонометрические функции и на отрезках, получаемых
сдвигами этого отрезка на Тригонометрические функцииТригонометрические функции, … ;
убывает на отрезке Тригонометрические функции и на отрезках, получаемых
сдвигами этого отрезка на Тригонометрические функцииТригонометрические функции, … .

Задача:

Найти все корни уравнения Тригонометрические функции

при­надлежащие отрезку Тригонометрические функции

Построим графики функций у = сos х и Тригонометрические функции— на данном
отрезке (рис. 39). Эти графики пересекаются в трех точках,
аб­сциссы которых Тригонометрические функции являются корнями уравнения Тригонометрические функции

Тригонометрические функции

Задача:

Найти все решения неравенства Тригонометрические функциипринадлежащие отрезку Тригонометрические функции

Из рисунка 39 видно, что график функции у = cos x лежит
выше графика функции Тригонометрические функции на промежутках Тригонометрические функции и Тригонометрические функции

Ответ. Тригонометрические функции Тригонометрические функции

Функция y=sin x, ее свойства и график

Функция y = sin x определена на всей числовой прямой, яв­ляется нечетной и периодической с периодом Тригонометрические функции. Ее график можно
построить таким же способом, как и график функции у = cos x,
начиная с построения, например, на отрезке Тригонометрические функции. Однако проще воспользоваться следующей формулой:

Тригонометрические функции

Эта формула показывает, что график функции у = sin х можно
получить сдвигом графика функции у = соs х вдоль оси абсцисс
вправо на Тригонометрические функции (рис. 40).

График функции у = sin х изображен на рисунке 41.
Кривая, являющаяся графиком функции у = sin х, называется
синусоидой.

Так как график функции у = sin х получается сдвигом гра­фика функции у = соs х, то свойства функции у = sin х можно по­лучить из свойств функции у = соs x.

Перечислим основные свойства функции у = sin х :
1) Область определения — множество Я всех действитель­ных чисел.
2) Множество значений — отрезок [— 1; 1].
3) Функция у = sin x периодическая с периодом Тригонометрические функции.
4) Функция у = sin х нечетная.

Тригонометрические функции

5) Функция y = sin x принимает:
значение, равное 0 , при Тригонометрические функции Тригонометрические функции
наибольшее значение, равное 1, при Тригонометрические функцииТригонометрические функции
наименьшее значение, равное — 1, при Тригонометрические функцииТригонометрические функции
положительные значения на интервале Тригонометрические функции и на
интервалах, получаемых сдвигами этого интервала на Тригонометрические функции, Тригонометрические функции … ;
отрицательные значения на интервале Тригонометрические функции и на
интервалах, получаемых сдвигами этого интервала
на Тригонометрические функцииТригонометрические функции , … .

6) Функция у = sin х:
— возрастает на отрезке Тригонометрические функции и на отрезках, по­лучаемых сдвигами этого отрезка на Тригонометрические функцииТригонометрические функции и на отрезках, получае­мых сдвигами этого отрезка на Тригонометрические функции, Тригонометрические функции

Задача:

Найти все корни уравнения Тригонометрические функции
принад­лежащие отрезку Тригонометрические функции

Построим графики функций у = sin х и Тригонометрические функции— на данном
отрезке (рис. 42). Эти графики пересекаются в двух точках,
абс­циссы которых являются корнями уравнения Тригонометрические функции

На от­резке Тригонометрические функции уравнение имеет корень Тригонометрические функции

Второй корень Тригонометрические функции так как Тригонометрические функции

Ответ . Тригонометрические функции Тригонометрические функции

Тригонометрические функции

Задача:

Найти все решения неравенства Тригонометрические функции
при­надлежащие отрезку Тригонометрические функции

Из рисунка 42 видно, что график функции y = sin x лежит
ниже графика функции Тригонометрические функции на промежутках Тригонометрические функции и Тригонометрические функции

Ответ. Тригонометрические функцииТригонометрические функции

Функция y=tg x, ее свойства и график

Напомним, что функция y = tg x определена при Тригонометрические функцииТригонометрические функции является нечетной и периодической с периодом Тригонометрические функции. Поэтому достаточно построить ее график на промежутке Тригонометрические функции . Затем, отразив его симметрично относительно начала координат, полу­чить график на интервале Тригонометрические функции.

Наконец, используя пе­риодичность, построить график функции
y = tgx на всей области определения.

Прежде чем строить график функции на промежутке Тригонометрические функции,
покажем, что на этом промежутке функция y = tg x воз­растает.

Пусть Тригонометрические функцииПокажем, что Тригонометрические функции т. е. Тригонометрические функции

По условию Тригонометрические функции откуда по свойствам функции
у = sin х, имеем Тригонометрические функции а по свойствам функции
y = cos x имеем Тригонометрические функции откуда Тригонометрические функции

Перемножив неравенства Тригонометрические функции и Тригонометрические функцииполучим Тригонометрические функции

Используя свойство возрастания функции y = tg x на про­межутке Тригонометрические функции и найдя несколько точек, принадлежащих графику, построим его на этом промежутке (рис. 43).

Пользуясь свойством нечетности функции y = tg x, отразим
построенный на промежутке Тригонометрические функции график симметрично относи­тельно начала координат; получим график этой функции на интервале Тригонометрические функции

Напомним, что при Тригонометрические функции функция y = tg x не определена.
Если Тригонометрические функции и х приближается к Тригонометрические функции , то sin х приближается к 1,
a cos х, оставаясь положительным, стремится к 0. При этом дробь Тригонометрические функциинеограниченно возрастает, и поэтому график функции

Тригонометрические функции

у = tg х приближается к вертикальной прямой Тригонометрические функции. Анало­гично при отрицательных значениях х, больших Тригонометрические функциии приближающихся к Тригонометрические функции, график функции y = tg x приближается к вер­тикальной прямой Тригонометрические функции.

Перейдем к построению графика функции у = tg х на всей об­ласти определения. Функция y = tg х периодическая с периодом Тригонометрические функции.
Следовательно, график этой функции получается из ее графика
на интервале Тригонометрические функции (рис. 44) сдвигами вдоль оси абсцисс
на Тригонометрические функции Тригонометрические функции (рис. 45).

Тригонометрические функции

Итак, весь график функции у = tg х строится с помощью
гео­метрических преобразований его части, построенной на
проме­жутке Тригонометрические функции.

Поэтому свойства функции y = tg x можно получить, опираясь
на свойства этой функции на промежутке Тригонометрические функции. Например,
функция y = tg x возрастает на интервале Тригонометрические функции , так как
эта функция возрастает на промежутке Тригонометрические функции и является
не­четной.

Перечислим основные свойства функции y = tg x:
1) Область определения — множество всех действительных
чисел Тригонометрические функцииТригонометрические функции

2) Множество значений — множество R всех действительных
чисел.
3) Функция у = tg х периодическая с периодом Тригонометрические функции
4) Функция y = tg x нечетная.
5) Функция у = tg x принимает:
значение, равное 0, при Тригонометрические функцииТригонометрические функции
положительные значения на интервалах Тригонометрические функцииТригонометрические функцииотрицательные значения на интервалах Тригонометрические функции Тригонометрические функции
6) Функция у = tg х возрастает на интервалах

Тригонометрические функции

Задача:

Найти все корни уравнения tg х = 2, принадлежащие отрезку Тригонометрические функции

Построим графики функций y = tg х и у = 2 на данном от­резке (рис. 46, а) . Эти графики пересекаются в трех точках, абс­циссы которых Тригонометрические функции являются корнями уравнения tg x = 2.
На интервале Тригонометрические функции уравнение имеет корень Тригонометрические функции
Так как функция у = tg х периодическая с периодом Тригонометрические функции, то Тригонометрические функцииТригонометрические функции Тригонометрические функции

Ответ. Тригонометрические функции Тригонометрические функцииТригонометрические функции

Тригонометрические функции

Тригонометрические функции

Задача:

Найти все решения неравенства Тригонометрические функции
принадлежащие отрезку Тригонометрические функции

Из рисунка 46, а видно, что график функции y = tg х лежит
не выше прямой у = 2 на промежутках Тригонометрические функции Тригонометрические функции

и Тригонометрические функции.

Ответ. Тригонометрические функции Тригонометрические функции Тригонометрические функции

Задача:

Решить неравенство tg х > 1.
Построим графики функций y = tg x и у = 1 (рис. 46, б).
Рисунок показывает, что график функции y = tgx лежит выше
прямой у = 1 на промежутке Тригонометрические функции, а также на промежутках,
полученных сдвигами его на и т. д.

Ответ. Тригонометрические функцииТригонометрические функции

Тригонометрические функции широко применяются в мате­матике, физике и технике. Например, многие процессы, такие, как колебание струны, колебание маятника, напряжение в цепи
переменного тока и т. д., описываются функцией, которая задает­ся формулой Тригонометрические функции Такие процессы называют
гар­моническими колебаниями, а описывающие их функции —
гар­мониками (от греческого harmonikos — соразмерный). График
функции Тригонометрические функцииполучается из синусоиды y = sin x
сжатием или растяжением ее вдоль координатных осей и
сдви­гом вдоль оси Ох. Обычно гармоническое колебание является
функцией времени: Тригонометрические функции где А — амплитуда
коле­бания, Тригонометрические функции — частота, Тригонометрические функции— начальная фаза, Тригонометрические функции — период колебания.

Углы и их измерение

Геометрический угол — это часть плоскости, ограниченная двумя лучами, выходящими из одной точки, вершины угла. Чтобы сравнивать углы, удобно закрепить их вершины в одной точке и вращать стороны.

Как измеряют углы? В качестве единицы измерения геометрических углов принят градус Тригонометрические функции часть развернутого угла.

Конкретные углы удобно измерять в градусах с помощью транспортира. Многие оптические приборы также используют градусную меру угла. Углы, получающиеся при непрерывном вращении, удобно измерять не в градусах, а с помощью таких чисел, которые отражали бы сам процесс построения угла, т. е. вращение. На практике углы поворота зависят от времени, и поэтому удобно связать измерение углов со временем.

Представим себе, что зафиксирована не только вершина угла, но и один из образующих его лучей. Заставим второй луч вращаться вокруг вершины. Ясно, что получающиеся углы будут зависеть от скорости вращения и времени. Можно считать, что вращение происходит равномерно (с постоянной угловой скоростью). Тогда поворот будет определяться путем, который пройдет какая-либо фиксированная точка подвижного луча.

Если расстояние точки от вершины равно /?, то при вращении точка движется по окружности радиуса R. Отношение пройденного пути к радиусу R не зависит от радиуса и может быть взято за меру угла. Численно она равна пути, пройденному точкой по окружности единичного радиуса.

Итак, пусть угол получен вращением подвижного луча от некоторого начального положения. Его величина численно равна пути, который пройдет точка этого луча, находящаяся на единичном расстоянии от вершины.

Развернутый угол измеряется половиной длины единичной окружности. Это число обозначается буквой л. Число я было известно людям с глубокой древности и с довольно большой точностью. Первые десятичные знаки этого числа таковы:

π = 3,14159265358….

Угол величиной π часто используется как самостоятельная единица измерения углов — прямой угол равен Тригонометрические функции угол в равностороннем треугольнике равен Тригонометрические функции.

Часто встречаются записи меры углов в виде Тригонометрические функции и т. д. Угол, мера которого равна числу 1, называют радианом. Он соответствует некоторому углу, чуть меньшему, чем Тригонометрические функции, ведь Тригонометрические функции ≈ 1,047.

АННА ВОВК u715078663 ДЕЛАЕТ АЛГЕБРУ №2 (дополнительная)

Тригонометрические функции

Гаусс Карл Фридрих

(1777—1855) — немецкий математик, астроном и физик. Еще студентом написал «Арифметические исследования», определившие развитие теории чисел до нашего времени. В 19 лет определил, какие правильные многоугольники можно построить циркулем и линейкой. Занимался геодезией и вычислительной астрономией. Создал теорию кривых поверхностей. Один из создателей неевклидовой геометрии.

Так как на практике приходится иметь дело как с градусной, так и с радианной мерой, то на микрокалькуляторе обычно есть рычажок, регулирующий способ измерения используемого в вычислениях угла. Фактически микрокалькулятор умеет переводить градусы в радианы и обратно.

Выведем формулы для этого перевода. Достаточно сравнить меры одного и того же угла, например прямого:

Тригонометрические функции

Откуда Тригонометрические функции

Обратно можно выразить единицу (т. е. один радиан) в градусной мере:

Тригонометрические функции

В географии, астрономии и других прикладных науках используют доли градуса — минуту и секунду. Минута — это Тригонометрические функции градуса, а секунда — Тригонометрические функции минуты. Запишем соотношения между различными единицами измерения углов:

Тригонометрические функции

Заметим еще, что обозначение градуса (минуты, секунды) нельзя пропускать в записи, а обозначение радиана опускают. С физической точки зрения угол — безразмерная величина, поэтому имеют смысл записи: а = 0,23, а = 3,14, а=0,01. Во всех этих записях подразумевается, что угол а измерен в радианах. Подведем некоторые итоги. Угол мы можем получить вращением подвижного луча. Радианная мера угла численно равна пути, который проходит точка этого луча, отстоящая от вершины на расстояние 1.

Движение точки по окружности во многом аналогично движению точки по прямой. Чтобы определить положение точки на прямой, недостаточно знать путь, пройденный ею от начальной точки, нужно указать еще направление движения. Обычно на прямой фиксируют положительное направление, а положение точки определяют одним числом, которое может быть не только положительным (как путь), но и отрицательным.

Аналогично поступают и с вращательным движением. В качестве положительного направления движения по окружности выбирается движение против часовой стрелки. Угол задают числом t (которое может принимать произвольное значение). Чтобы построить угол t, на единичной окружности от неподвижной точки откладывают путь, равный|t|, в направлении, определяемом знаком числа t. Таким образом, для произвольного числа t мы построили угол t, определяемый двумя лучами — неподвижным и тем, который проходит через построенную точку (рис. 84).

Тригонометрические функции

При таком обобщении понятия угла постепенно отходят от его геометрического образа как части плоскости, лежащей между двумя лучами. Фактически слово «угол» становится для нас синонимом слова «число». Угол t (т. е. произвольное число t) может выступать у нас в качестве аргумента тригонометрических функций. Изображать угол t нам будет удобно не в виде пары лучей, а в виде точки единичной окружности. Для этого мы подробно рассмотрим вращательное движение.

Вращательное движение и его свойства

Представим себе маленький шарик, который равномерно вращается по единичной окружности в положительном направлении (т. е. против часовой стрелки). Будем считать, что в момент времени t = О шарик находился в положении А и что за время t = 1 он проходит по окружности расстояние, равное 1. Половину окружности шарик проходит за время, равное π, а всю окружность — за время 2 π.

Обозначим через Pt точку на окружности, в которой шарик находится в момент времени t. Для того чтобы найти на окружности точку Рt надо отложить от точки Р0—А по окружности дугу длиной |t| в положительном направлении, если t>0, и в отрицательном направлении (т. е. по часовой стрелке), если t <0. Рассмотрим примеры.

1.Пусть t=Тригонометрические функции. Отложим по окружности от точки Р0 в положительном направлении путь длиной Тригонометрические функции.

Так как длина всей окружности равна 2 π, то точка Тригонометрические функцииявляется серединой дуги АВ (рис. 85).

Тригонометрические функции

2. Пусть Тригонометрические функции. Отложим от точки Р0 путь длиной Тригонометрические функции

Заметим, что Тригонометрические функции Пройдя путь длиной 2 π, мы опять попадаем в точку А. Пройдя оставшийся путь, мы попадаем в середину дуги АВ. Таким образом, точка Тригонометрические функции совпадает с точкой Тригонометрические функции.

3. Найдем теперь точку Тригонометрические функции Для этого нам необходимо пройти в отрицательном направлении путь длиной Тригонометрические функции

Таким образом, мы для каждого значения t можем построить точку Рt. На языке механики аргумент t — это время, на языке геометрии t — это угол.

Оси координат делят плоскость на четыре части. В зависимости от того, в какую часть плоскости попадает точка Рt, говорят о том, в какую четверть попадает угол t. При этом полезно помнить, что 1 радиан чуть меньше 60°, т. е. трети развернутого угла. Перечислим некоторые свойства вращательного движения.

Свойство 1. Для всякого целого числа k точка Рt совпадает с точкой Тригонометрические функции Это свойство выражает периодичность вращательного движения: если моменты времени отличаются на число, кратное 2 π, то шарик в эти моменты времени занимает одно и то же положение.

Свойство 2. Если Тригонометрические функции, то найдется такое целое число k, что

Тригонометрические функции

Свойство 3. Для всякого значения t точки Рt и Рt+π диаметрально противоположны.

Свойство 4. Для всякого значения t точки Рt и Р_t симметричны друг другу относительно оси абсцисс.

Свойство 5. Для всякого значения t точки Рt и Р_t+π симметричны относительно оси ординат.

Свойство 6. Для всякого значения t точки Рt и Тригонометрические функции симметричны друг другу относительно биссектрисы первого и третьего координатных углов.

Тригонометрические функции

Эти свойства легко объяснить с помощью рисунка 86. Сделаем лишь пояснение к свойству 6. Возьмем две точки Р0 и Тригонометрические функции

Они симметричны друг другу относительно биссектрисы первого и третьего координатных углов. Чтобы построить точку Рt, надо от точки Р0 двигаться в одном каком-то направлении на расстояние |t|, а чтобы построить точку Тригонометрические функции, надо на такое же

расстояние двигаться от точки Тригонометрические функции, но в противоположном направлении. Ясно, что при этом точки Рt и Тригонометрические функции при всяком t будут

оставаться симметричными друг другу относительно указанной прямой.

Определение тригонометрических функций

Тригонометрические функции определяются с помощью координат вращающейся точки. Рассмотрим на координатной плоскости ху единичную окружность, т. е. окружность единичного радиуса с центром в начале координат. Обозначим через Ро точку единичной окружности с координатами (1; 0) (рис. 87). Точку Ро будем называть начальной точкой. Возьмем произвольное число t. Повернем начальную точку на угол t. Получим точку на единичной окружности, которую обозначим через Рt.

Определение. Синусом числа t называется ордината точки Pt, косинусом числа t называется абсцисса точки Pt, где Р, получается поворотом начальной точки единичной окружности на угол t.

Если обозначить координаты точки Р, через х и у, то мы получим x = cost y = sint или можно записать, что точка Рt имеет координаты (cos t; sin t).

Тригонометрические функции

Так как координаты точки Р, (х; у), лежащей на единичной окружности, связаны соотношением х2 + у2 = 1, то sin t и cos t связаны соотношением

Тригонометрические функции

которое называют основным тригонометрическим тождеством.

Определение. Тангенсом числа t называется отношение синуса числа t к его косинусу, т. е. по определению

Тригонометрические функции

Котангенсом числа t называется отношение косинуса числа t к его синусу, т. е. по определению

Тригонометрические функции

Тангенс числа t определен для тех значений t, для которых cos t ≠ 0. Котангенс числа t определен для тех значений t, для которых sin t ≠ 0.

Периодичность

Тригонометрические функции являются периодическими функциями.

Теорема:

Число 2π является периодом синуса и косинуса.

Доказательство. Необходимо доказать тождества

Тригонометрические функции

Значения тригонометрических функций определяются с помощью координат вращающейся точки. Так как точки Pt и Рt+2π совпадают, то совпадают и их координаты, т. е. cos t = cos (t + 2π) и sin t = sin (t + 2π), что и требовалось доказать.

Следствие:

Верны тождества

Тригонометрические функции

Действительно, Тригонометрические функции Аналогично доказывается и второе тождество. Это означает, что 2π является одним из периодов тангенса и котангенса.

Равенство sin (t + 2π) = sin t верно при всех значениях t. Подставляем в это равенство вместо t число t+2π, получаем цепочку равенств sin(t+ 2 π +2 π ) = sin (t + 2 π ) = sin t, т. е. равенство sin (t + 4 π ) = sin t также верно при всех значениях t. Аналогично, подставляя вместо t число t— 2 π , получим тождество sin (t —2 π ) = sin t. Можно сказать так, что раз 2 π является периодом синуса, то и 2-2 π , —2 π также являются его периодами. Получаем, что всякое число вида 2πk {k ∈ Z) является периодом синуса.

Число 2π выделяется тем, что это наименьший положительный период синуса. Аналогично 2π — наименьший положительный период косинуса. У тангенса и котангенса наименьшим положительным периодом будет число π. Эти утверждения мы докажем позже.

Знаки тригонометрических функций

Знаки тригонометрических функций определяются в зависимости от того, в какой четверти лежит рассматриваемый угол.
Синус числа t есть ордината точки Рt. Поэтому синус положителен в первой и второй четвертях и отрицателен в третьей и четвертой.
Косинус числа t как абсцисса точки Рt положителен в первой и четвертой четвертях и отрицателен во второй и третьей.

Тригонометрические функции

Тангенс и котангенс являются отношением координат. Поэтому они положительны тогда, когда эти координаты имеют одинаковые
знаки (первая и третья четверти), и отрицательны, когда разные (вторая и четвертая четверти). Знаки тригонометрических функций по четвертям приведены на рисунке 88.

Четность

Теорема:

Синус — нечетная функция, т. е. при всех t выполнено равенство sin (— t) = — sin t.

Косинус — четная функция, т. е. при всех t выполнено равенство cos ( — t) =cos t.

Доказательство:

Действительно, мы знаем, что для всякого значения t точки Р, и Р_( симметричны друг другу относительно оси абсциссы (т. е. cos t = cos ( — t)), а ординаты противоположны (т. е. sin t=— sin ( — t)), что и требовалось доказать.

Следствие. Тангенс и котангенс — нечетные функции.

Действительно, Тригонометрические функции. Аналогично доказывается нечетность котангенса.

Формулы приведения

Значения тригонометрических функций острых углов можно вычислить по таблицам или с помощью прямоугольного треугольника. Их вычисление для любого значения аргумента можно привести к вычислению значений для аргумента Тригонометрические функции

Соответствующие формулы так и называются — формулы приведения. Они основаны на симметрии вращательного движения.

Основные формулы:

Тригонометрические функции

Формула (1) —это запись в координатной форме свойства 3 вращательного движения, формула (2) — это запись свойства 5, а формула (3) — запись свойства 6.

С помощью периодичности и формул (1) — (3) можно привести вычисление синуса и косинуса любого числа t к их вычислению для t, лежащего между 0 и Тригонометрические функции.

Из основных формул (1) — (3) можно вывести и другие формулы приведения:

Тригонометрические функции

Доказательство:

Тригонометрические функции

Аналогично выводятся формулы

Тригонометрические функции

Формулы приведения для тангенса и котангенса получаются как следствие аналогичных формул для синуса и косинуса. Например:

Тригонометрические функции

Мнемоническое правило для запоминания формул приведения следующее:

1) Название функции не меняется, если к аргументу левой части добавляется — π или + π, и меняется, если добавляется число ±Тригонометрические функции или

Тригонометрические функции

2) Знак правой части определяется знаком левой, считая, что

Тригонометрические функции

Примеры.

1.Вычислить sin Тригонометрические функции. Представим так: Тригонометрические функции

Далее,

Тригонометрические функции

Тригонометрические функции

Значения тригонометрических функций

Вычисление значений тригонометрических функций имеет длинную историю. Потребности точных астрономических наблюдений вызвали к жизни появление огромных таблиц, позволявших производить вычисления с четырьмя, пятью и даже семью и более знаками. На составление этих таблиц было затрачено много усилий. Сейчас, нажав кнопку микрокалькулятора, мы можем моментально получить требуемое значение с очень высокой точностью. С помощью большой вычислительной машины нетрудно найти, если нужно, значения тригонометрических функций с любой степенью точности.

Некоторые соображения о значениях тригонометрических функций надо помнить всегда, так как они облегчают вычисления.

1) С помощью формул приведения вычисление значения тригонометрической функции любого числа можно свести к вычислению функции угла, лежащего в первой четверти.

2) Достаточно знать значение лишь одной из тригонометрических функций. С помощью основных тождеств и зная четверть, в которой лежит значение аргумента, легко найти значения остальных функций.

Примеры:

Тригонометрические функции

3) Полезно помнить значения тригонометрических функций для углов двух «знаменитых» прямоугольных треугольников —для равнобедренного и для треугольника с углами 30° (Тригонометрические функции) и 60° (Тригонометрические функции). Эти значения обычно записывают с помощью радикалов и при необходимости эти радикалы заменяют их приближенными значениями Тригонометрические функции

Сведем их в таблицу, дополнив ее значениями t = 0 и t=Тригонометрические функции.

Тригонометрические функции

Решение простейших тригонометрических уравнений

Для решения некоторых,особенно простых, но важных уравнений достаточно вспомнить определение тригонометрической функции.

Примеры:

  1. sin t = 0. Вращающаяся точка Рt имеет нулевую ординату в моменты времени t—0, π, 2 π, …, а также t— π, —2 π…..В общем виде множество этих значений можно записать в виде t=πk, k ∈ Z. Таким образом, решением уравнения sin t = 0 будут числа t = πk, k ∈ Z.

Запишем кратко решения еще нескольких уравнений, правильность которых предлагается проверить самостоятельно.

Тригонометрические функции
Тригонометрические функции

Все рассмотренные уравнения имеют бесчисленное множество решений. Эти решения записываются в виде бесконечных серий с помощью переменной (в наших примерах к), которая может принимать любые целые значения.

Теперь легко доказать, что 2π является наименьшим положительным периодом синуса и косинуса. Действительно, формула 3 показывает, что значение 1 синус принимает только в точках

Тригонометрические функции

Расстояние между соседними точками этой последовательности равно 2 π, поэтому синус не может иметь положительный период, меньший 2 π. Рассуждения для косинуса аналогичны.

Исследование тригонометрических функций

Основные свойства синуса и косинуса

При введении тригонометрических функций мы обозначали аргумент буквой t, так как буквы х и у были заняты — они обозначали координаты вращающейся точки Рt. Сейчас при исследовании мы вернемся к обычным обозначениям: х — аргумент, у — функция.

Рассмотрим функции y = sinx и y = cosx.

1) Область определения. Синус и косинус числа х задаются как координаты точки Рх, получающейся из точки Ро (1; 0) поворотом на угол х. Так как поворот возможен на любой угол, то областью определения синуса и косинуса является множество R всех вещественных чисел.

2) Промежутки монотонности. Проследим за характером изменения координат точки Рх, движущейся по окружности. При х = 0 точка занимает положение Ро (1; 0). Пока она движется по окружности, оставаясь в первой четверти, ее абсцисса уменьшается, а ордината увеличивается. При x=Тригонометрические функции точка займет положение Р Тригонометрические функции (0; 1). Итак, в первой четверти синус (ордината) возрастает от 0 до 1, а косинус (абсцисса) убывает от 1 до 0.

Когда точка переходит во вторую четверть, ордината начинает убывать от 1 до 0. Абсцисса становится отрицательной и растет по абсолютной величине, значит, косинус продолжает убывать от 0 до — 1. В третьей четверти синус становится отрицательным и убывает от 0 до —1, а косинус начинает возрастать от — 1 до 0.

Наконец, в четвертой четверти синус возрастает от — 1 до 0 и косинус возрастает от 0 до 1. Монотонность синуса и косинуса по четвертям показана на схеме VIII.

3) Точки экстремума. Координаты вращающейся точки меняются между —1 и +1. Эти числа являются наименьшими и наибольшими значениями синуса и косинуса. Если требуется указать абсциссы точек экстремума, то надо решить уравнения sin х = ±1 и cos х= ± 1.

4) Промежутки постоянного знака и корни функции. Мы повторим их еще раз при построении графика.

5) Множество значений. Синус и косинус принимают любые значения от —1 до +1, так как являются координатами точки, движущейся по единичной окружности.

Графики синуса и косинуса

Для приближенного построения синусоиды можно поступить так. Разделим первую четверть на 8 равных частей и на столько же частей разделим отрезок [0; Тригонометрические функции]оси абсцисс. Удобно при этом начертить окружность слева, как на рисунке 89. Перенесем значения синуса (проекции на ось у точек деления окружности) к соответствующим точкам оси х. Получим точки, лежащие на синусоиде, которые нужно плавно соединить и продолжить кривую дальше, пользуясь симметрией.

Тригонометрические функции

Так мы получим график синуса на промежутке [0;Тригонометрические функции]. Так

как sin (Тригонометрические функции—х = sinТригонометрические функции +x). то график синуса должен быть

симметричен относительно прямой x=Тригонометрические функции. Это позволяет построить

график синуса на отрезке [Тригонометрические функции-; π]. Воспользовавшись нечетностью

синуса, получим график синуса на отрезке [ — π; 0] симметричным отражением построенной части синусоиды относительно начала координат. Так как отрезок [— π; π] имеет длину, равную периоду синуса, то график синуса на всей числовой оси можно получить параллельными переносами построенной кривой.

График синуса мы построили, воспользовавшись его свойствами. При этом к определению синуса мы обращались только при построении графика на отрезке [0; Тригонометрические функции].

Построение графика на всей оси потребовало знания симметрии вращательного движения (формулы приведения, нечетность, периодичность). После того как график построен, полезно вернуться к свойствам синуса и посмотреть, как они проявляются на графике.

Функция y = sin х имеет период 2 π. На графике это свойство отражается следующим образом: если мы разобъем ось х на отрезки длиной 2 π, например, точками… —4 π, —2 π, 0, 2 π, 4 π, …, то весь график разобьется на «одинаковые» части, получающиеся друг из друга параллельным переносом вдоль-оси х. При этом видно, что 2 π — наименьший положительный период синуса.

Функция y = sin x: нечетна. На графике это свойство проявляется так: синусоида симметрична относительно начала координат.

Функция y = sin x обращается в нуль при х = πk, k ∈ Z. На графике это точки пересечения синусоиды с осью абсцисс.

Функция y = sin x положительна при Тригонометрические функции и отрицательна при Тригонометрические функции или третьей-четвертой четвертям (sin х<0).

Функция y = sin х возрастает при Тригонометрические функции и убывает при

Тригонометрические функции

Указанные отрезки соответствуют четвертой-первой и второй-третьей четвертям.

Множеством значений функции y = sinx является отрезок [— 1; 1]. Действительно, проекции вращающейся точки на ось заполняют отрезок [—1; 1]. На графике это свойство проявляется так: синусоида расположена в полосе Тригонометрические функции и при этом проекции точек графика на ось у целиком заполняют отрезок [— 1; 1].

График косинуса можно построить так же, как и график синуса. Возможен и другой путь. Формулы приведения показывают, что синус и косинус связаны между собой простыми соотношения-
ми. Воспользуемся, например, формулой cosx = sin (x+Тригонометрические функции)
Эта формула показывает, что график косинуса получается сдвигом синусоиды на Тригонометрические функциивлево по оси х (схема VIII).

Если изображать графики синуса и-косинуса в системе координат с одинаковым масштабом по осям, то синусоида получается очень растянутой. Однако на практике величины х и у, связанные с помощью тригонометрических функций, имеют различные единицы измерения и необязательно изображать их в одном масштабе.

Если аргумент умножить на некоторое число, то синусоида будет, как гармоника, сжиматься и растягиваться по оси х. Примеры такого преобразования приведены на рисунке 90.

Тригонометрические функции

Если значение синуса умножить на число, то будет происходить растяжение (сжатие) по оси у.

Графики функций вида у = А sin ( ω х + а) при различных А, ω, а являются синусоидами. Эти функции описывают так называемые гармонические колебания — движение проекции вращающегося шарика на ось или колебания конца упругой пружины.

Постоянные величины А, ω, а, задающие колебания, имеют наглядный физический смысл: А — амплитуда колебания, ω — его частота, а — начальная фаза.

Исследование тангенса и котангенса

Если свойства синуса и косинуса мы получили, рассматривая свойства движения точки по окружности, то для исследования тангенса и котангенса нам нет необходимости возвращаться к механической модели.

По определению тангенс числа х задается как отношение sin х и cos х. Изучим свойства тангенса.

1.Областью определения функции Тригонометрические функцииявляется

множество всех вещественных чисел, за исключением тех, в которых косинус обращается в нуль. Мы запишем это множество следующим образом:

Тригонометрические функции

2. Тангенс — периодическая функция с периодом π:

Тригонометрические функции

3. Тангенс — нечетная функция, т. е. tg ( — х)= — tg х.

4. Функция y = tg x обращается в нуль одновременно с синусом, т. е. при x=πk, k ∈ Z.

5. Функция у= tg x: положительна в первой и третьей четвертях и отрицательна во второй и четвертой.

Выберем для дальнейшего изучения тангенса какой-либо промежуток числовой оси длиной, равной периоду, т. е. числу π. Можно было бы выбрать отрезок от 0 до π, но это неудобно, так как внутри этого отрезка есть точка x= Тригонометрические функции в которой тангенс не определен. Лучше выбрать промежуток ( —Тригонометрические функции; Тригонометрические функции).

6. Тангенс возрастает в первой четверти. Действительно, пусть Тригонометрические функции

Тогда Тригонометрические функции(возрастание синуса) и Тригонометрические функции(убывание косинуса). Так как значения косинуса положительны, то по свойству неравенств имеем Тригонометрические функции

Умножим это неравенство на неравенство с положительными членами: sin х1<sin х2. Получим tg x1<tg x2.

Тангенс возрастает также и в четвертой четверти. Действительно, пустьТригонометрические функции Тогда имеем Тригонометрические функции

Теперь числа (— х2) и ( — х1) лежат в первой четверти, и мы можем воспользоваться тем, что в первой четверти тангенс возрастает: tg (— x2)<tg (— x1). Но так как тангенс — нечетная функция, получим:

Тригонометрические функции

На промежутке (—Тригонометрические функции; 0 ] тангенс отрицателен и возрастает. На тангенс становится положительным и возрастает.

В итоге тангенс возрастает на промежутке (-Тригонометрические функции; Тригонометрические функции).

7. Какие же значения принимает тангенс? Когда х возрастает от 0 до Тригонометрические функции тангенс возрастает. При этом когда х приближается к Тригонометрические функции синус х близок к единице, а косинус близок к нулю. Поэтому отношение Тригонометрические функции становится сколь угодно большим. То, что любое вещественное число может быть значением тангенса, видно из рисунка 91. Построим ось, параллельную оси ординат с началом в точке Ро. Возьмем на этой оси точку, соответствующую произвольно выбранному числу а. Соединим 0 с а. Получим точку Р на окружности. Пусть х — число, принадлежащее Тригонометрические функции и такое, что (cos х; sin х) — координаты Р. ТогдаТригонометрические функцииТригонометрические функции

Мы показали, что областью значений тангенса является вся числовая ось R.

Вообще на этой оси, которую часто называют осью тангенсов, можно проследить все свойства тангенса.

Тригонометрические функции

8. Построим график тангенса. На промежутке Тригонометрические функции график
тангенса можно построить по точкам, учтя, что тангенс строго возрастает, в нуле обращаясь в нуль, а при приближении к Тригонометрические функции становится сколь угодно большим (рис. 92).

Отразив построенную часть графика относительно начала координат (тангенс — нечетная функция), получим график тангенса на промежутке Тригонометрические функции. Для построения полного графика
разобьем числовую ось на отрезки, перенося Тригонометрические функциивправо
и влево на π, 2 π, З π и т. д.

График тангенса распадается на отдельные, не связанные между собой части. Это вызвано тем, что в точках Тригонометрические функциитангенс не определен.

Замечание (о монотонности тангенса).
Мы доказали, что функция тангенс возрастает на Тригонометрические функции.

Можно ли сказать, что тангенс возрастает на всей области определения? Нет. Достаточно посмотреть на график. Если взять

Тригонометрические функции

Хотя х1 <х2, но tg х1 >tg х2.

Нарушение монотонности связано с тем, что между точками х1 и х2 лежала точка х = Тригонометрические функции в которой тангенс не определен.

Однако можно сказать, что тангенс возрастает на каждом промежутке, который целиком попадает в его область определения.

Свойства котангенса получаются так же, как и свойства тангенса. Перечислим кратко эти свойства, оставляя их доказательство для самостоятельной работы.

1.Функция Тригонометрические функцииопределена при Тригонометрические функции

2. Функция у = ctg х периодична. Ее периодом является число π:

Тригонометрические функции

3. Функция у = ctg x нечетна: ctg ( — х)= — ctg х.

4. Функция у = ctg х обращается в нуль одновременно с косинусом, т. е. при х = Тригонометрические функции+ лk, k ∈ Z.

5. Функция у = ctgx: положительна в первой и третьей четвертях и отрицательна во второй и четвертой.

6. Функция y=ctgx убывает на промежутке (0; π). Перенося его на kπ, получаем, что котангенс убывает на каждом промежутке ( πk; π + πk).

7. Область значений котангенса — множество R всех вещественных чисел.

8. График котангенса изображен на рисунке 93.

Производные тригонометрических функций

Пусть точка А движется с единичной скоростью . по окружности радиуса 1 с центром в начале координат О в положительном направлении. Координаты точки А в момент времени t равны cos t и sin t. Вектор мгновенной скорости точки А в момент времени t направлен по касательной к окружности в точке А (рис. 94), и в силу теоремы о перпендикулярности касательной к радиусу, проведенному в точку касания, вектор Тригонометрические функции перпендикулярен вектору Тригонометрические функции.

Вычислим координаты вектора Тригонометрические функции. Отложив от точки О вектор Тригонометрические функции, мы получим вектор Тригонометрические функции, координаты которого равны координатам вектора Тригонометрические функции. Далее, так как движение точки А по окружности происходит с единичной скоростью, то длина вектора и равна 1, поэтому длина вектора Тригонометрические функции также равна 1. Следовательно, точка В лежит на окружности.

Вектор Тригонометрические функции перпендикулярен векторуТригонометрические функции, поэтому если A = Pt,

то Тригонометрические функции. Таким образом, координаты вектора Тригонометрические функции = Тригонометрические функции равны

Тригонометрические функции

С другой стороны, координаты скорости Тригонометрические функции являются производными от координат точки А, следовательно,

Тригонометрические функции

Найдем производную функции y = A sin ( ωt + а):

Тригонометрические функции

Тригонометрические функции

Рассмотрим примеры.

Тригонометрические функции

Вычислим теперь производную функции y = tgx. Так как Тригонометрические функции то по теореме о производной частного получаем:

Тригонометрические функции

Следовательно,

Тригонометрические функции

Аналогично

Тригонометрические функции

Таким образом,

Тригонометрические функции
Тригонометрические функции

Примеры:

Тригонометрические функции

Приближенные формулы

Главная приближенная формула: вблизи нуля sin tt.

Доказательство. Дифференциал функции y = sin х равен dy = cos х dx. Найдем dy при х = 0. Так как cos 0=1, то при х = 0 dy = dx. Найдем приращение функции:

∆y = sin ∆х — sin 0 = sin ∆х.

Так как ∆y ≈ dy, то получим ∆y = sin ∆х ≈ dy=dx = ∆х. Вместо ∆х можно написать t и получить sin t ≈ t.

Эта формула дает тем точнее значение синуса, чем ближе t к нулю. Возможность заменять sin t на t при маленьких значениях угла t широко употребляется в приближенных вычислениях. Можно дать различные интерпретации этой приближенной формулы.

1.Тригонометрические функции — это запись того, что отношение приращения

функции к его главной части стремится к единице при стремлении к нулю приращения аргумента.

2. Рассмотрим единичный круг. Пусть для простоты t>0. Тогда длина дуги АВ равна t, а длина отрезка ВС равна sin t. Удвоим дугу АВ и отрезок ВС — дуга BD имеет длину 2t, а хорда BD — длину 2 sin t. Соотношение sin t ≈ t означает, что отношение длины хорды к длине стягиваемой ею дуги стремится к единице, когда дуга стягивается в точку (рис. 95).

3. Рассмотрим касательную к синусоиде в начале координат. Так как (sin x)’=cos х, a cos 0= 1, то уравнение этой касательной у — х. Таким образом, заменяя вблизи начала координат график синуса отрезком касательной, мы вычисляем приближенное значение синуса по формуле sin tt.

Тригонометрические функции

Для получения других приближенных формул выпишем дифференциалы тангенса и косинуса:

Тригонометрические функции

При x = 0 получим приближенное значение тангенса:

Тригонометрические функции

Применяя этот же прием к косинусу, мы получим, что дифференциал косинуса при x=0 равен —sin0 • dx т. е. равен 0. Это означает, что главная часть приращения косинуса равна нулю и в первом приближении cos x ≈ cos 0 = 1. Можно получить более точную формулу таким путем. Запишем cos х так:

Тригонометрические функции

Заменим в этой формуле sin х на х и воспользуемся приближенной формулой для квадратного корня:

Тригонометрические функции

Полученная приближенная формула для косинуса вблизи точки x = 0 весьма точна.

Более точные приближения можно получить с помощью формул

Тригонометрические функции

Примеры:

  1. Вычислить приближенно sin 0,03 • tg 0,12. sin 0,03 ≈ 0,03, tg 0,12 ≈ 0,12, sin 0,03 • tg 0,12 ≈ 0,0036 ≈ 0,004.
  2. Вычислить приближенно sin 2°. Переводим 2° в радианную меру: 2° ≈ 0,034. sin 2° ≈ 0,034.

Тождественные преобразования

Формулы сложения

Тригонометрические функции связаны между собой многочисленными соотношениями. Первая серия тождеств описывает связь между координатами точки окружности — это так называемые основные соотношения. Эти соотношения позволяют выразить значения одних функций через другие (при одном и том же значении аргумента). Вторая серия тождеств происходит от симметрии и периодичности в движении точки по окружности. Отсюда мы получаем формулы приведения. Третий источник тригонометрических формул — это изучение поворотов. Поворот точки на угол а + β можно составить из композиции двух поворотов — на угол а и на угол β. Есть простые формулы, связывающие координаты точек Тригонометрические функции Эти формулы называются формулами сложения.

Нашей целью является вывод формул, связывающих sin (а ± β), cos (а ± β), tg (а ± β), ctg (а ± β) с тригонометрическими функциями углов а и β. Достаточно вывести формулу косинуса разности, остальные формулы получатся как ее следствия.

Теорема. Косинус разности двух углов равен произведению косинусов этих углов, сложенному с произведением синусов:

cos (а — β) =cos а cos β + sin а sin β.

Доказательство. Построим углы а и β помощью единичной окружности, т. е. точки Ра и Рβ , такие, что векторы Тригонометрические функцииобразуют углы а и β с положительным направлением оси абсцисс. Угол между векторами Тригонометрические функции равен а — β (рис. 96).

Тригонометрические функции

Вычислим скалярное произведение этих векторов. По определению скалярного произведения

Тригонометрические функции

(так как векторы Тригонометрические функции имеют длину, равную 1).

Теперь вычислим это же скалярное произведение с помощью координат:

Тригонометрические функции

Сравнивая результаты вычислений, получаем требуемую формулу:

Тригонометрические функции

Доказательство теоремы закончено. Выведем остальные формулы.

Косинус суммы. Сумму а + β представим как разность а — ( — β) и подставим в формулу для косинуса разности:

Тригонометрические функции

Воспользуемся тем, что cos( —p) = cos p (четность косинуса), a sin( —p)=—sin p (нечетность синуса). Получим:

Тригонометрические функции

Синус суммы. Воспользуемся одной из формул приведения:

Тригонометрические функции

Теперь по формуле косинуса разности получим:

Тригонометрические функции

Окончательно

Тригонометрические функции

Тригонометрические функции

В качестве примера вычислим sin 15°. Представим 15° как разность 45° —30°. Получим sin 15° = sin (45° — 30°) = sin 45° cos 30° Тригонометрические функции

Тангенс суммы и разности. По определению tg(a + β) Тригонометрические функцииформулам синуса и косинуса суммы имеем:

Тригонометрические функции

Разделив числитель и знаменатель этой дроби на cos a cos β, получим:

Тригонометрические функции

Заменяя β на ( — β) и пользуясь нечетностью тангенса, получаем:

Тригонометрические функции

Формулы удвоения

Формулы сложения являются одними из основных формул, связывающих тригонометрические функции. Из них можно вывести различные следствия. Полагая а = р, получим так называемые формулы удвоения.

Тригонометрические функции

Заметим, что в формуле для cos 2a можно заменить Тригонометрические функции на 1 —Тригонометрические функции или Тригонометрические функции на 1 — Тригонометрические функции. Получим две новые формулы:

Тригонометрические функции

Тригонометрические функции половинного угла

Из формул двойных углов Тригонометрические функции можно получить формулы для синуса и косинуса половинного угла. Сначала запишем:

Тригонометрические функции

Затем в этих формулах подставив Тригонометрические функции вместо а, получим:

Тригонометрические функции

Извлекая корень, получим:

Тригонометрические функции

(Для того чтобы раскрыть модули, надо знать, в какой четверти лежит угол Тригонометрические функции).

Обилие тригонометрических формул связано с тем, что между основными тригонометрическими функциями — синусом, косинусом, тангенсом и котангенсом — есть соотношения, которые позволяют по-разному написать одно и то же выражение. Возникает вопрос: нельзя ли выбрать одну какую-то функцию и через нее выражать все остальные? Если в качестве такой функции мы выберем синус, то во многих формулах появятся квадратные корни. Так, например, выражая sin 2а через sin а, мы получим sin 2а = 2 sin а cos а = 2 sin а Тригонометрические функции. Такие формулы неудобны.

Оказывается, что все тригонометрические функции от аргумента х (и от nх при целом n) выражаются через тангенс угла Тригонометрические функции рационально, без квадратных корней. Выведем эти полезные формулы.

Напишем формулы двойного угла для исходного угла Тригонометрические функции

Тригонометрические функции

Представим число 1 в виде Тригонометрические функции и поделим на 1 правые части последних формул

Тригонометрические функции

Поделим теперь числитель и знаменатель каждой дроби на

Тригонометрические функции

Пользуясь этими формулами, можно функцию вида у = а sin x + b cos x + c представить в виде рациональной функции от tg Тригонометрические функции.

Пример. Выразить у = 2 sin х + З cos х — 1 в виде функции от tg Тригонометрические функции.

Тригонометрические функции

Преобразование суммы тригонометрических функций в произведение и обратные преобразования

Пусть требуется преобразовать сумму sin a + sin β в произведение. Используем следующий искусственный прием: напишем тождества

Тригонометрические функции

заменим а и β выражениями, стоящими справа, в формулах для синуса суммы и разности:

Тригонометрические функции

Аналогично выводятся еще три формулы:

Тригонометрические функции

Выпишем подряд четыре формулы сложения:

Тригонометрические функции

Вычитая почленно из четвертого равенства третье, получим:

Тригонометрические функции

Складывая третье и четвертое равенства, получим:

Тригонометрические функции

Складывая два первых равенства, получим:

Тригонометрические функции

Мы рассмотрели различные тождества, связывающие тригонометрические функции. Все их запомнить трудно, и приходится обращаться к таблицам и справочникам. Важнее запомнить не сами формулы, а то, какие функции между собой они связывают, что с их помощью можно получить.

Тригонометрические уравнения

Простейшим тригонометрическим уравнением называется уравнение вида sinx=a, где cos x=a, tgx=a, где a — некоторое действительное число.

Арксинус

Рассмотрим уравнение sin x = a. Так как областью значений синуса является отрезок [—1; 1], то это уравнение не имеет решений при |a| > 1. Пусть теперь |а|< 1. Построим на одном чертеже графики у = а и y = sin x (рис. 97).

Тригонометрические функции

По рисунку ясно, что прямая у = а пересечет синусоиду бесконечно много раз. Это означает, что при |a| ≤ 1 уравнение sin x = a имеет бесконечно много корней. Так как синус имеет период 2π, то достаточно найти все решения в пределах одного периода. По графику видно, что при |a| < 1 на отрезке [0; 2π] есть два числа, или, можно сказать, два угла, синус которых равен а.

Если один из таких углов а, то другой π—а. Все другие решения уравнения sin х = а, где |a| < 1, получаются из двух найденных с помощью свойства периодичности синусa.

Итак, пусть а — какое-либо решение уравнения sin х = а, где |a| < 1. Тогда все решения этого уравнения получаются по формулам

Тригонометрические функции

Эти две серии решений иногда записываются одной формулой:

Тригонометрические функции

Пример. Решить уравнение Тригонометрические функции

Одно решение этого уравненияТригонометрические функции Все остальные решения получаются по формулам

Тригонометрические функции

Как мы уже выяснили, уравнение sinx=a при |а| ≤ 1 имеет бесконечно много решений. Для одного из них имеется специальное название — арксинус.

Определение. Пусть число а по модулю не превосходит единицы. Арксинусом числа а называется угол х, лежащий в пределах от Тригонометрические функции, синус которого равен а.

Обозначение: х = arcsin а.

Итак, равенство x = arcsin a равносильно двум условиям: sin z = a и Тригонометрические функции

Обратим еще раз внимание на то, что arcsin а существует лишь, если |а|≤ 1.

Примеры:

Тригонометрические функции

Теперь решения уравнения sin х = а (при |а| ≤ 1) можно записать так: х = arcsin а+2πk, х= π — arcsin а+2πk, или в виде одной формулы:

Тригонометрические функции

Запишем некоторые тождества для арксинуса.

  1. sin arcsin а = а.

Это тождество вытекает из определения арксинуса (arcsin а — это такой угол х, что sin х=а).

Тригонометрические функции

Действительно, обозначим sin х через а. Тогда наше тождество будет равносильно определению арксинуса: arcsin а = х, если Тригонометрические функциии sinx = a. Заметим, что выражение arcsin (sin х) имеет смысл при любом х, однако при Тригонометрические функции оно не равно х.

Тригонометрические функции

Действительно, синусы от правой и левой частей равны: sin (arcsin ( —а)) = —а и sin ( — arcsin а)= —sin (arcsin а)= —а. В то же время правая часть доказываемого равенства — это угол, принадлежащий отрезку Тригонометрические функции. Поэтому левая и правая части равны между собой.

Арккосинус

Так же как и в предыдущем пункте, при |а|>1 уравнение cosx = a решений не имеет; если |а| ≤ 1 то решений уравнения бесконечно много.

Если a — какое-либо решение уравнения cos х=а, то —а также есть решение этого уравнения, так как cos a = cos ( — a). По графику или на единичном круге видно, что при |а|< 1 в пределах одного периода уравнение cos х=а имеет два решения.

Если a — одно из решений уравнения cos х = а, то все решения исчерпываются двумя сериями:

Тригонометрические функции

Эти серии обычно записывают в виде одной формулы:

Тригонометрические функции

Пример. Решить уравнение Тригонометрические функции

Одно решение находится легко: Тригонометрические функции.

Запишем все решения так:

Тригонометрические функции

Так же как и для синуса, выделяется одно определенное решение уравнения cos х = а и ему дается специальное название — арккосинус.

Определение. Пусть а — число, по модулю не превосходящее единицы. Арккосинусом числа а называется угол х, лежащий в пределах от 0 до π, косинус которого равен а.

Обозначение: х= arccos а.

Равенство x = arccos a равносильно двум условиям: cos x = a и 0 ≤ х ≤ π. Арккосинус числа а существует лишь при |а| ≤ 1 .

Пример:

Тригонометрические функции

Решение уравнения cos х=а (при |а| ≤ 1) можно записать теперь в общем виде:

Тригонометрические функции

По каким причинам для значений арксинуса был выбран отрезок Тригонометрические функции, а для арккосинуса отрезок [0; π]?

Это объясняется тем, что на этих отрезках, во-первых, синус и косинус принимают все возможные значения от — 1 до 1 и, во-вторых, каждое значение принимается ровно один раз. Отрезков с этими условиями бесконечно много, но при этом выбраны отрезки «поближе к нулю».

Для арккосинуса можно вывести ряд тождеств.

  1. cos (arccos а) = а.

Это тождество следует из определения арккосинуса.

Тригонометрические функции

Обозначим cos x = а. Получим определение арккосинуса: arccos а = х, если x ∈ [0; π ] и cos х = а.

Тригонометрические функции

Сначала вычислим косинус от левой и правой частей:

Тригонометрические функции

Если равны косинусы двух чисел, то это еще не означает, что равны сами числа. Проверим, что правая часть принадлежит отрезку [0; π]. (Так как левая часть тоже принадлежит этому отрезку, то из равенства косинусов двух чисел теперь уже будет следовать равенство самих чисел.) Итак, надо доказать, что π —arccos а принадлежит [0; π]. Действительно, arccos а ∈ [0; π — arccos а ∈ [ — π ; 0], π— arccos а ∈ [0; π], что и требовалось доказать.

Арктангенс

Область значений тангенса (котангенса) — вся числовая ось. Поэтому уравнения tgx = a, ctg х — а имеют решения при любом а. В пределах одного периода π тангенс и котангенс принимают каждое значение ровно один раз. Поэтому если известно одно решение уравнения tg х—а или ctg х=а, то все остальные получают прибавлением периода:

Тригонометрические функции

где a — какое-либо решение соответствующего уравнения. Примеры. Решить уравнения:

Тригонометрические функции

Определения арктангенса и арккотангенса вводятся аналогично определениям арксинуса и арккосинуса, поэтому мы проведем его короче.

Определение. Арктангенсом числа а называется угол Тригонометрические функции тангенс которого равен а. Арккотангенсом числа а называется угол x ∈ (0; π), котангенс которого равен а.

Обозначения: х = arctg а и x = arcctg а. Примеры.

Тригонометрические функции

2. Решить уравнения:

Тригонометрические функции

Тождества:

Тригонометрические функции

Решение тригонометрических уравнений

Тригонометрические уравнения встречаются в задачах, в которых из соотношений между тригонометрическими функциями требуется найти неизвестные углы. Основными, чаще всего встречающимися тригонометрическими уравнениями являются уравнения простейшего типа sin х — а, cos х = а, tg х = а и ctg х = а, которые уже рассмотрены в предыдущих пунктах. Следует отметить, что такие уравнения обычно имеют бесконечные серии решений, задаваемые с помощью параметра, принимающего целые значения.

Более сложные тригонометрические уравнения обычно решаются сведением их к простейшим с помощью различных алгебраических и тригонометрических формул и преобразований. Рассмотрим некоторые приемы решения тригонометрических уравнений.

а) Уравнения, алгебраические относительно одной из тригонометрических функций.

Примеры решения уравнений.

Тригонометрические функции

Это уравнение является квадратным относительно sin х. Корни этого квадратного уравнения Тригонометрические функциии sin x= — 2. Второе из полученных простейших уравнений не имеет решений, так как |sinx| ≤ 1, решение первого можно записать так:

Тригонометрические функции

Если в уравнении встречаются разные тригонометрические функции, то надо пытаться заменить их все через какую-нибудь одну, используя тригонометрические тождества.

Тригонометрические функции

Так как квадрат синуса легко выражается через косинус, то, заменяя sin2 х на 1 —cos2 х и приводя уравнение к квадратному относительно cos х, получим 2 (1 —cos2 х) — 5 cos х — 5 = 0, т. е. квадратное уравнение 2 cos2 x + 5 cos x + 3 = 0, корни которого Тригонометрические функции

Уравнение Тригонометрические функции решений не имеет. Решения уравнения cos x= — 1 запишем в виде

Тригонометрические функции

Тригонометрические функции

Заменив ctg x на Тригонометрические функции и приведя к общему знаменателю, получим квадратное уравнение Тригонометрические функции, корни которого tg x=l, tg х = 3, откуда

Тригонометрические функции

Тригонометрические функции

Если в этом уравнении заменим косинус на синус (по аналогии с предыдущими примерами) или наоборот, то получим уравнение с радикалами. Чтобы избежать этого, используют формулы, выражающие синус и косинус через тангенс половинного угла, т. е.

Тригонометрические функции

Делая замену, получаем уравнение относительно Тригонометрические функции

Тригонометрические функции

Квадратное уравнение Тригонометрические функции имеет корниТригонометрические функции откуда

Тригонометрические функции

б) Уравнения, решаемые понижением их порядка.

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заменить линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.

Примеры решения уравнений.

  1. Решить уравнение Тригонометрические функции

Можно заменить cos 2х на 2 Тригонометрические функции— 1 и получить квадратное уравнение относительно cos х, но проще заменить Тригонометрические функции на Тригонометрические функциии получить линейное уравнение относительно cos 2х:

Тригонометрические функции

2. Решить уравнение Тригонометрические функции

Подставляя вместо Тригонометрические функции их выражение через cos 2x, получим:

Тригонометрические функции

в) Уравнения, решаемые после преобразований с помощью тригонометрических формул.

Иногда в уравнениях встречаются тригонометрические функции кратных углов. В таких случаях нужно использовать формулы преобразования суммы в произведение.

Примеры решения уравнений.

Тригонометрические функции

Тригонометрические функции

Преобразуем произведение синусов в сумму:

Тригонометрические функции

Полученное уравнение можно решить разными способами. Можно воспользоваться формулами сложения и преобразовать в произведение. Удобнее воспользоваться условием равенства косинусов двух углов 2х и 6х:

Тригонометрические функции

Получим два уравнения:

Тригонометрические функции

Проверьте, что решения второй серии содержат в себе все решения первой серии. Учитывая это, ответ можно записать короче:

Тригонометрические функции

г) Однородные уравнения.

Решим уравнение Тригонометрические функции

Если считать, что sin х и cos х — члены первой степени, то каждое слагаемое имеет вторую степень. Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным. Его можно решать делением на старшую степень синуса (или косинуса). Делим наше уравнение на cos2 х. (При этом мы не потеряем корней, так как если мы в данное уравнение подставим cos x = 0, то получим, что и sin x=0, что невозможно.)

Тригонометрические функции

Тригонометрические функции

Гармонические колебания

Гармонические колебания — это процесс, который может быть описан функцией вида у = A sin (ω + а).

Примеры:

1) Колебания упругой пружины. Конец упругой пружины (точка Р) при ее сжатии или растяжении описывает колебательные движения. Если на прямой, по которой движется точка Р, ввести координату х так, чтобы в положении равновесия xр = 0, оттянуть конец пружины в положительном направлении на расстояние A и в момент времени t = 0 отпустить его, то зависимость координаты точки Р от времени t (рис. 98) будет иметь следуюший вид: Тригонометрические функции, где ω — некоторый коэффициент, характеризующий упругость пружины.

2) Электрический колебательный контур. Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора С и катушки индуктивности L (рис. 99). Если эту цепь замкнуть накоротко и считать, что в ней есть некоторый запас энергии (например, ненулевой заряд в конденсаторе), то по этой цепи пойдет ток, напряжение которого U будет меняться со временем. При идеальном предположении отсутствия потерь в цепи зависимость U от времени t будет иметь следующий вид: U = U0 sin (ωt + a), где ω — некоторая характеристика контура, которая вычисляется через параметры конденсатора и катушки. Константы Uo и а зависят от состояния цепи в начальный момент времени.

Таким образом, гармоническое колебание у=А sin (ωt + a) определяется тремя параметрами: амплитудой A>0, угловой скоростью ω>0 и так называемой начальной фазой а. Часто вместо угловой скорости ω говорят о частоте колебаний v, которая связана с угловой скоростью ω (или иначе круговой частотой) формулой ω = 2πv. Функция у периодична. Ее основной период равен

Тригонометрические функции

Колебания приходится складывать. В механике это связано с тем, что на точку может действовать несколько сил, каждая из которых вызывает гармонические колебания. В электро-и радиотехнике сложение колебаний происходит как естественное наложение токов. Оказывается, имеет место замечательный закон: при сложении гармонических колебаний одной и той же частоты получается снова гармоническое колебание той же частоты. На математическом языке это означает, что сумма двух функций

Тригонометрические функции

есть функция того же вида: Тригонометрические функции

Достаточно научиться складывать функции вида у = A1 sin ωt и

Тригонометрические функции

y = A2 cos ωt. Для их сложения применяется прием введения вспомогательного угла. Итак, рассмотрим выражение у = A1 sin ωt + A2 cos ωt. Оно похоже на формулу синуса суммы: sin (ωt + a) = sin ωt cos a+ cos ωt sin a. Числа A1 и A2 нельзя считать косинусом и синусом, однако если их разделить на число Тригонометрические функциито тогда это будет возможно. Введем угол а с помощью соотношении

Тригонометрические функции

Сделаем преобразование:

Тригонометрические функции

Примеры:

Тригонометрические функции

Периодические функции

Тригонометрические функции являются периодическими. В общем виде функция y = f(x) называется периодической, если существует такое число Т ≠ О, что равенство f (x+T)=f (х) выполняется тождественно при всех значениях х.

Обычно среди периодов периодической функции можно выделить наименьший положительный период, который часто называют основным периодом. Все другие периоды функции являются целыми кратными основного. График периодической функции состоит из повторяющихся кусков, поэтому достаточно построить его на отрезке изменения аргумента длиной, равной основному периоду. На рисунке 100 изображены графики различных периодических функций.

Тригонометрические функции

Приведем пример одной интересной периодической функции. Всякое число х можно представить в виде суммы его целой и дробной частей. Целая часть числа х определяется как наибольшее целое число, не превосходящее х, и обозначается [х]. Например, [3]=3; [3,14]=3; [ — 3,14]=— 4. Дробная часть обозначается {x} и равна по определению x — [x]. Функция у — {х)=х — [х] является периодической с основным периодом, равным единице. Ее график изображен на рисунке 101.

Если функция y — f (х) периодична и ее периодом является число Т, то и функция y=f (kx) будет периодической, причем ее пе-риодом будет число Тригонометрические функции Действительно, рассмотрим функцию y=g(x), где g(x) = f{kx). Вычислим Тригонометрические функции

Тригонометрические функции

Сдвиг аргумента не меняет период функции. Отсюда следует, что функция у=А sin (ωt + а), задающая гармоническое колебание, имеет период Тригонометрические функции

Если Т является общим периодом двух функций f и g, то Т остается периодом их суммы, произведения, частного. Правда, как мы видим на примере тангенса, если Т является основным периодом f и g, то это может быть не так для новых функций, полученных из f и g арифметическими операциями.

Сумма двух функций с различными периодами необязательно будет периодической. Интересен случай сложения двух функций с различными, но очень близкими периодами. Рассмотрим, например, сумму функций Тригонометрические функции близки друг к другу. Складывая синусы, получим

Тригонометрические функции

Так как

Тригонометрические функции

Поэтому Тригонометрические функции при маленьких значениях t и Тригонометрические функции

Однако с ростом t множитель Тригонометрические функции будет убывать.

«Ровное» гармоническое колебание типа у1 заменится «биением», график которого изображен на рисунке 102. Можно представить себе, что «биение» — это колебание, амплитуда которого медленно (и тоже периодически) меняется. Явление «биения» можно наблюдать при наложении звуков близкой частоты, при измерении величины океанских приливов, которые вызываются наложением двух периодических процессов с близкими, но различными периодами — притяжением Солнца и притяжением Луны.

Разложение на гармоники

Чистый звуковой тон представляет собой колебание с некоторой постоянной частотой. Музыка, которую мы слышим, представляет собой наложение различных чистых тонов, т. е. получается сложением колебаний с различными частотами. Преобладание звука той или иной частоты (скажем, низких звуков или высоких) связано с амплитудой соответствующих колебаний. Это знакомое нам разложение звуков на чистые тона часто встречается при изучении различных колебательных процессов.

Можно сказать так: простейшие гармонические колебания являются теми кирпичиками, из которых складывается любое колебание. На языке математики это означает, что любую периодическую функцию можно представить с наперед заданной точностью как сумму синусов.

Тригонометрические функции

Тригонометрические функции

Эйлер Леонард

(1707—1783) — швейцарский математик и механик, академик Петербургской Академии наук, автор огромного количества научных открытий во всех областях математики. Эйлер первым применил средства математического анализа в теории чисел, положил начало топологии.

«Математика, вероятно, никогда не достигла бы такой высокой степени совершенства, если бы древние не приложили столько усилий для изучения вопросов, которыми сегодня многие пренебрегают из-за их мнимой бесплодности».
Л. Эйлер

Этот замечательный факт обнаружен еще в XVIII в. Д. Бернулли при решении задачи о колебании струны. Это показалось удивительным и невозможным по отношению к любой функции даже такому гениальному математику, как Л. Эйлер, который, кстати, является автором всей современной символики тригонометрии. Систематически разложения периодических функций в сумму синусов (или, как говорят, на гармоники) изучал в начале XIX в. французский математик Ж. Фурье, которые так теперь и называются разложениями (или рядами) Фурье.

В качестве примера на рисунке 103 изображено приближение к периодической функции y = {x) в виде суммы нескольких гармоник. Разложение произвольного периодического сигнала на гармоники является главным математическим аппаратом радиотехники.

Тригонометрические функции

Тригонометрические и обратные тригонометрические функции

Тригонометрические и обратные тригонометрические функции

Тригонометрические и обратные тригонометрические функции

Тригонометрические и обратные тригонометрические функции

Смотрите также:

Предмет математический анализ

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Добавить комментарий