Удельная теплоемкость свинца как найти

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 января 2022 года; проверки требуют 7 правок.

Молекулы имеют внутреннюю структуру, образованную атомами, которые могут совершать колебания внутри молекул. Кинетическая энергия, запасённая в этих колебаниях, отвечает не только за температуру вещества, но и за его теплоёмкость

Уде́льная теплоёмкость — это отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу[1].

В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К)[2]. Иногда используются и внесистемные единицы: калория/(кг·°C) и т. д.

Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.

Формула расчёта удельной теплоёмкости:

{displaystyle c={frac {Q}{mDelta T}},}

где

c — удельная теплоёмкость(от лат. capacite – емкость, вместимость),
Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),
m — масса нагреваемого (охлаждающегося) вещества,
ΔT — разность конечной и начальной температур вещества.

Удельная теплоёмкость зависит от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) delta T и delta Q:

{displaystyle c(T)={frac {1}{m}}{frac {delta Q}{delta T}}.}

Значения удельной теплоёмкости некоторых веществ[править | править код]

Приведены значения удельной теплоёмкости при постоянном давлении (Cp).

Стандартные значения удельной теплоёмкости

Вещество Агрегатное
состояние
Удельная
теплоёмкость,
кДж/(кг·K)
Водород газ 14,304[3]
Аммиак газ 4,359—5,475
Гелий газ 5,193[3]
Вода (300 К, 27 °C) жидкость 4,1806[4]
Литий твёрдое тело 3,582[3]
Этанол жидкость 2,438[5]
Лёд (273 К, 0 °C) твёрдое тело 2,11[6]
Водяной пар (373 К, 100 °C) газ 2,0784[4]
Нефтяные масла жидкость 1,670—2,010
Бериллий твёрдое тело 1,825[3]
Азот газ 1,040[3]
Воздух (100 % влажность) газ 1,030
Воздух (сухой, 300 К, 27 °C) газ 1,007[7]
Кислород (O2) газ 0,918[3]
Алюминий твёрдое тело 0,897[3]
Графит твёрдое тело 0,709[3]
Стекло кварцевое твёрдое тело 0,703
Чугун твёрдое тело 0,554[8]
Алмаз твёрдое тело 0,502
Сталь твёрдое тело 0,468[8]
Железо твёрдое тело 0,449[3]
Медь твёрдое тело 0,385[3]
Латунь твёрдое тело 0,920[8]0,377[9]
Молибден твёрдое тело 0,251[3]
Олово (белое) твёрдое тело 0,227[3]
Ртуть жидкость 0,140[3]
Вольфрам твёрдое тело 0,132[3]
Свинец твёрдое тело 0,130[3]
Золото твёрдое тело 0,129[3]
Значения приведены для стандартных условий (T = +25 °C, P = 100 кПа),
если это не оговорено особо.
Значения удельной теплоёмкости для некоторых строительных материалов

Вещество Удельная
теплоёмкость
кДж/(кг·K)
Древесина 1,700
Гипс 1,090
Асфальт 0,920
Талькохлорит 0,980
Бетон 0,880
Мрамор, слюда 0,880
Стекло оконное 0,840
Кирпич керамический красный 0,840—0,880[10]
Кирпич силикатный 0,750—0,840[10]
Песок 0,835
Почва 0,800
Гранит 0,790
Стекло кронглас 0,670
Стекло флинт 0,503
Сталь 0,470

См. также[править | править код]

  • Теплоёмкость
  • Объёмная теплоёмкость
  • Молярная теплоёмкость
  • Теплоёмкость идеального газа

Примечания[править | править код]

  1. Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой c={frac  {dC}{dm}}={frac  {1}{rho }}{frac  {dC}{dV}}, меняющейся от точки к точке. Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется — вслед за теплоёмкостью — как дифференциальная величина и по температурной оси, то есть строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое delta T с соответствующим количеством переданной теплоты delta Q. (См. далее основной текст.)
  2. Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 4-135. — 2828 p. — ISBN 1420090844.
  4. 1 2 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-2. — 2828 p. — ISBN 1420090844.
  5. CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 15-17. — 2828 p. — ISBN 1420090844.
  6. CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-12. — 2828 p. — ISBN 1420090844.
  7. CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-17. — 2828 p. — ISBN 1420090844.
  8. 1 2 3 Paul Evans. Specific heat capacity of materials (англ.). The Engineering Mindset (16 октября 2016). Дата обращения: 14 июля 2019. Архивировано 14 июля 2019 года.
  9. Spezifische_Wärmekapazität. www.chemie.de. Дата обращения: 29 июня 2021. Архивировано 29 июня 2021 года.
  10. 1 2 Плотность и удельная теплоемкость кирпича: таблица значений Архивная копия от 22 марта 2019 на Wayback Machine.

Литература[править | править код]

  • Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
  • Лифшиц E. М. Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.

Какая удельная теплоемкость у свинца?

Гестия



Гуру

(4181),
закрыт



13 лет назад

Лучший ответ

Руслан Крыльев

Профи

(873)


13 лет назад

Удельная теплоемкость свинца c = 130 Дж/(кг×°С) , либо 26,65 Дж/(K⋅моль) (молярная теплоемкость).

Источник:

http://yandex.ru/yandsearch?text

=”удельная теплоемкость свинца”

Даня ПыталевУченик (184)

2 года назад

это не правильно должно быть 140 Дж/кг*°С

Остальные ответы

Дима Маркин

Ученик

(125)


5 лет назад

c = 130 Дж/(кг×°С)

Вообще то существует таблица удельная теплоемкость. И найти значение здесь легче чем ждать ответа майл ру

Похожие вопросы

Удельная теплоемкость (стандартные значения в кДж):

  • медь (твердое тело) 0,385
  • сталь (твердое тело) 0,462
  • свинец (твердое тело) 0,130
  • алюминий (твердое тело) 0,903

Приведенные здесь данные приняты в стандартных условиях, и будут меняться, с изменением температуры металла, а так же прочих факторов. Поэтому в каждом конкретном случае удельная теплоемкость определяется по формуле:

текст при наведении

  • с – удельная теплоемкость;
  • Q – количество тепла;
  • m – масса (меди, свинца, стали или алюминия);
  • ΔT – разность температур.

А формула, в которой более четко можно проследить зависимости от температуры выглядит следующим образом:

текст при наведении

Так же следует сказать, что удельная теплоемкость зависит и от давления, а так же еще от многих факторов под влиянием которых происходит изменение температуры, поэтому в каждом конкретном случае необходимо производить расчеты. Но в нашем случае, мы можем применять данные по стандартным условиям, в которых по умолчанию уже приняты определенные параметры применительно ко всем веществам данного агрегатного состояния.

автор вопроса выбрал этот ответ лучшим

morel­juba
[62.5K]

6 лет назад 

Удельную теплоёмкость для каждого из данных веществ мы можем найти в специальной табличке удельных теплоёмкостей для твёрдых тел. Показатели, занесённые в таблицу были получены опытным путём. Так вот для алюминия удельная теплоёмкость равна 0,903 кДж, для стали она равна 0,462 кДж, для меди она равна 0,385 кДж, а для свинца она равна 0,130 кДЖ.

Какова удельная теплоёмкость меди, стали, свинца, алюминия?

Для ответа на этот вопрос заглянем в таблицу удельных теплоемкостей твердых тел, которые были определены и составлены на основе опытных результатов. Итак, удельная теплоемкость меди равна380 ДЖ/кг*грС, удельная теплоемкость стали 500 ДЖ/кг*грС, удельная теплоемкость свинца 140 Ж/кг*грС и удельная теплоемкость алюминия 920 Ж/кг*грС

Помощ­ни к
[56.9K]

7 лет назад 

Алюминий – 0,903 кДж/(кг*К) или 0.22 кал/г*С.

Сталь – 0,462 кДж/(кг*К) или 0,11 кал/г*С.

Медь – 0,385 кДж/(кг*К) или 0,09 кал/г*С.

Свинец – 0,130 кДж/(кг*К) или 0,033 кал/г*С.

Это средние значение удельной теплоемкости, принятые для расчетов. Учитывайте, что при изменении температуры теплоемкость веществ меняется.

Знаете ответ?

Плотность свинца, теплопроводность и удельная теплоемкость свинца и другие его свойстваВ таблице приведены физические свойства свинца: плотность свинца d, удельная теплоемкость Cp, температуропроводность a, теплопроводность λ, удельное электрическое сопротивление ρ в зависимости от температуры (при отрицательных и положительных температурах — в интервале от -223 до 1000°С).

Плотность свинца зависит от температуры — при нагревании этого металла его плотность снижается. Уменьшение плотности свинца объясняется увеличением его объема при росте температуры. Плотность свинца равна 11340 кг/м3 при температуре 27°С. Это довольно высокая величина, сравнимая, например, с плотностью технеция Tc и тория Th.

Плотность свинца намного больше плотности таких металлов, как олово (7260 кг/м3), алюминий (2700 кг/м3), хром (7150 кг/м3) и других распространенных металлов. Однако свинец не самый тяжелый металл. Если, к примеру, положить кусочек свинца в чашку с ртутью или с расплавленным таллием Tl, то он будет плавать на их поверхности.

Свинец начинает плавиться при температуре 327,7°С. При переходе его в жидкое состояние плотность свинца снижается скачкообразно и при температуре 1000 К (727°С) плотность жидкого свинца составляет уже 10198 кг/м3.

Удельная теплоемкость свинца равна 127,5 Дж/(кг·град) при комнатной температуре и при нагревании его до температуры плавления — увеличивается. Например, удельная теплоемкость свинца при температуре 280°С составляет величину около 140 Дж/(кг·град). Теплоемкость свинца в жидком состоянии при нагревании, наоборот — уменьшается и при температуре более 1000 К также равна 140 Дж/(кг·град).

Теплофизические свойства свинца в зависимости от температуры

t, °С -223 -173 -73 27 127 227 327 327,7 527 727
d, кг/м3 11531 11435 11340 11245 11152 11059 10686 10430 10198
Cp, Дж/(кг·град) 103 116,8 123,2 127,5 132,8 137,6 142,1 146,4 143,3 140,1
λ, Вт/(м·град) 43,6 39,2 36,5 35,1 34,1 32,9 31,6 15,5 19,0 21,4
a·106, м2 35,7 29,1 24,3 24,3 22,8 21,5 20,1 9,9 12,7 15,0
ρ·108, Ом·м 2,88 6,35 13,64 21,35 29,84 38,33 47,93 93,6 102,9 112,2

Среди множества распространенных металлов свинец обладает относительно невысокой удельной теплоемкостью при комнатной температуре. Для примера, теплоемкость стали равна 440…550, чугуна — 370…550, меди — 385, никеля — 444 Дж/(кг·град). Следует отметить, что теплоемкость тяжелых металлов в общем случае не высока. Отмечается такая зависимость: чем плотнее металл, тем ниже его удельная теплоемкость.

Температуропроводность твердого свинца при его нагревании уменьшается, а жидкого — увеличивается. Теплопроводность свинца равна 35,1 Вт/(м·град) при комнатной температуре. Свинец при нормальной температуре имеет довольно низкую теплопроводность — почти в 7 раз меньше теплопроводности алюминия и в 11 раз ниже теплопроводности меди. Зависимость теплопроводности свинца от температуры следующая: при его нагревании до температуры плавления теплопроводность свинца уменьшается, а теплопроводность жидкого свинца при повышении температуры — растет.

Источник:
В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.

insldund

insldund

Вопрос по физике:

Для нагревания 100 г. свинца от 15 до 35°С надо сообщить 260 Дж. теплоты.Найдите удельную теплоемкость свинца.
(Желательно с Дано и с Решением:)

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 1

junsontunet

junsontunet

Дано
Q=260Дж
м=100г
100г переводим в кг получаем 0,1кг 
т1=15
т2=35
анализ
Q=cm(t2-t1)
c=Q/m(t2-t1)
решение
с=260/0,1*(35-15)=260/0,1*20=260/2=130дж/кг*к

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Добавить комментарий