Угол непрямоугольного треугольника как найти

Теорема косинусов

Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

  • a² = b² + c² – 2b.c.cosα
  • b² = a² + c² – 2a.c.cosβ
  • c² = a² + b² – 2a.b.cosγ

Теорема косинусов, Треугольник ABC, углы α, β, γ у соответствующих точек Формула косинуса пример

Например:

Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.

Решение по формуле a² = b² + c² – 2b.c.cosα:

cos α = cos 120º = — 1/2 (это значение можно найти в таблицах)

a² = 12² + 8² – 2×12×8×(- 1/2)

Длина третьей стороны — примерно 17,436 см.

Следствия

Следствие косинуса угла треугольника

При помощи теоремы косинусов можно найти косинус угла треугольника.

cos(A)=(b² + c² -a²)/2bc

cos(B)=(c² + a² -b²)/2ca

cos(C)=(a² + b² -c²)/2ab

Теорема косинусов, Треугольник ABC, углы α, β, γ у соответствующих точек, стороны AB - 6см, AC - 7см, BC - 8см

Используйте теорему косинусов, чтобы найти угол β.

Решение:

Будем использовать эту версию формулы:

cos(B)=(c² + a² -b²)/2ca

cos β = (6² + 8² − 7²) / 2×6×8

Следствие верхней части формулы cos α

Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):

  • b²+c²−a²<0, значит угол α — тупой;
  • b²+c²−a²=0, значит угол α — прямой;
  • b²+c²−a²>0, значит угол α — острый.

Доказательство теоремы косинусов

Доказательство теоремы косинусов, Треугольник ABC, из B проведена линия до AC, показано точкой D, так, что угол D прямой

Нужно доказать, что c² = a² + b² − 2a.b.cos C

1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a <=> CD = a.cos C.

2. Вычитаем это из стороны b, так мы получим DA:

3. Мы знаем из определения синуса, что в том же треугольнике BCD:

sin C = BD/a <=> BD = a.sinC.

4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²

5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²

6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C

6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC

7. Выносим за скобки «a²»: c² = a² (sin²C+cos²C) + b² − 2a.b.cosC

8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C

Теорема косинусов для равнобедренного треугольника

В равнобедренном треугольнике:

  • две его стороны равны;
  • углы при основании равны.

Теорема косинусов, равнобедренный Треугольник ABC, ∠B = 140º, стороны AB = BC = 8см, AC-?

Используем формулу теоремы косинусов

a² = b² + c² – 2b.c.cosα

Подставляем все известные:

x² = 8² + 8² – 2×8×8×cos140º

x² = 64 + 64 – 128 × (-0,766)

Теорема синусов

Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:

Как найти косинус угла в непрямоугольном треугольнике ?

Как найти косинус угла в непрямоугольном треугольнике ?

Определение данных тригонометрических функции в Эвклидовой геометрии (где сумма внутренних углов треугольника равна 180 градусов) применимы только для прямоугольных треугольников, в противном случае, вероятно, нужно переходить к геометрии Лобачевского.

Однако, если у вас есть любой треугольник, сумма внутренних углов которого равна 180 градусам, то, зная величины сторон, по теореме косинусов можно рассчитать внутренние углы, а уже к этим углам применить интересующие вас тригонометрические функции.

Стороны прямоугольного треугольника равны 10 дм 8 дм и 6 дм ?

Стороны прямоугольного треугольника равны 10 дм 8 дм и 6 дм .

Найти минус , косинус и тангенс острогов угла этого треугольника .

Найдите синус косинус и тангенс угла а треугольника авс?

Найдите синус косинус и тангенс угла а треугольника авс.

В треугольнике ABC : AB = 8?

В треугольнике ABC : AB = 8.

AC = 7 Найти косинус угла B.

Косинусом острого угла прямоугольного треугольника называется отношение?

Косинусом острого угла прямоугольного треугольника называется отношение.

В треугольнике ABC катет равен — 5 а гепотенуза — 13?

В треугольнике ABC катет равен — 5 а гепотенуза — 13.

Найти не известный катет, синус, косинус, тангецы острых углов».

В остроугольном треугольнике ABC высота AH равна 26√3 а сторона AB равна 52 , найти косинус угла B?

В остроугольном треугольнике ABC высота AH равна 26√3 а сторона AB равна 52 , найти косинус угла B.

Катеты прямоугольного треугольника равны 2 см и √5 см?

Катеты прямоугольного треугольника равны 2 см и √5 см.

Найти косинус меньшего острого угла этого треугольника.

Две стороны треугольника равны 7 и 8, а косинус угла между этими сторонами равен 4 / 7?

Две стороны треугольника равны 7 и 8, а косинус угла между этими сторонами равен 4 / 7.

Найти высоту, опущенную на третью сторону этого треугольника.

Найдите гипотенузу и косинус угла А прямоугольного треугольника, если его катеты равны?

Найдите гипотенузу и косинус угла А прямоугольного треугольника, если его катеты равны.

В прямоугольном треугольнике катеты = 5 и 6?

В прямоугольном треугольнике катеты = 5 и 6.

Найти синусы косинусы и тангенсы острых углов.

Вопрос Как найти косинус угла в непрямоугольном треугольнике ?, расположенный на этой странице сайта, относится к категории Математика и соответствует программе для 5 — 9 классов. Если ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему. Для этого ключевые фразы введите в строку поиска, нажав на кнопку, расположенную вверху страницы. Воспользуйтесь также подсказками посетителей, оставившими комментарии под вопросом.

47 : 4 = 11 3 / 4(м / c) скорость собаки — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 206 : 5 = 41 1 / 5(км / ч) скорость теплохода.

Теорема косинусов

Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:

Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними

Полезные формулы теоремы косинусов:

Как видно из указанного выше, с помощью теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.

Теорема Пифагора

Теорема Пифагора . В прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы .

Доказательство . Докажем, что длины сторон произвольного прямоугольного треугольника ABC (рис.1)

С этой целью рассмотрим квадрат квадрат со стороной, равной c , изображённый на рисунке 2.

Площадь этого квадрата равна сумме площадей четырёх одинаковых прямоугольных треугольников, равных треугольнику ABC (рис.3, рис.4), и площади квадрата со стороной, равной a – b (рис.5).

Рис.3
Рис.4
Рис.5

Поэтому справедливо равенство

что и требовалось доказать.

Формулировка теоремы косинусов для треугольника

Теорема косинусов для треугольника связывает две стороны треугольника и угол между ними со стороной, лежащей против этого угла. К примеру, обозначим буквами , , и длины сторон треугольника ABC, лежащие соответственно против углов A, B и C.

Тогда имеет теорема косинусов для этого треугольника может быть записана в виде:

На рисунке для удобства дальнейших рассуждений угол С обозначен углом . Словами это можно сформулировать следующим образом: «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними.»

Понятно, что если бы вы выражали другую сторону треугольника, например, сторону , то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны , то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны и . Выражение для квадрата стороны . Выражение для квадрата стороны получается аналогично:

Классическое доказательство теоремы косинусов.

Пусть есть треугольник ABC. Из вершины C на сторону AB опустили высоту CD. Значит:

Записываем теорему Пифагора для 2-х прямоугольных треугольников ADC и BDC:

h 2 = b 2 – (b cos α) 2 (1)

h 2 = a 2 – (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 – (b cos α) 2 = a 2 – (c – b cos α) 2

a 2 = b 2 + c 2 – 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

b 2 = a 2 + c 2 – 2ac cos β

c 2 = a 2 + b 2 – 2ab cos γ.

Формулировка и формула теоремы

В плоском треугольнике квадрат стороны равняется сумме квадратов двух других сторон минус удвоенное произведение данных сторон, умноженное на косинус угла между ними.

a 2 = b 2 + c 2 – 2bc cos α

Теорема косинусов для остроугольного треугольника.

Если угол острый, то справедлива формула:

a 2 = b 2 + c 2 −2bx

Доказательство теоремы косинусов для треугольника

Доказательство теоремы косинусов для треугольника проводят обычно следующим образом. Разбивают исходный треугольник на два прямоугольных треугольника высотой, а дальше играются со сторонами полученных треугольников и теоремой Пифагора. В результате после долгих нудных преобразований получаю нужный результат. Мне лично этот подход не по душе. И не только из-за громоздких вычислений, но ещё и потому что в этом случае приходится отдельно рассматривать случай, когда треугольник является тупоугольным. Слишком много трудностей.

Я предлагаю доказать эту теорему с помощью понятия «скалярного произведения векторов». Я сознательно иду на этот риск для себя, зная, что многие школьники предпочитают обходить эту тему стороной, считая, что она какая-то мутная и с ней лучше не иметь дела. Но нежелание возиться отдельно с тупоугольным треугольником во мне всё же пересиливает. Тем более, что доказательство в результате получается удивительно простым и запоминающимся. Сейчас вы в этом убедитесь.

Заменим стороны нашего треугольника следующими векторами:


Согласно правилам сложения векторов имеем: . Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим . Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим в правую часть равенства с противоположным знаком, в результате чего получаем следующее векторное выражение: .

Теперь возьмём скалярный квадрат обеих частей полученного выражения. В результате чего получим:

Я напоминаю, что по определению скалярное произведение векторов равно произведению длин этих векторов на косинус угла между ними. Из этого определения также следует, что скалярный квадрат вектора равен квадрату его длины. Действительно, ведь угол между вектором и им же самим равен нулю, то есть соответствующих косинус равен 1. То есть остаётся только квадрат длины вектора. Исходя из этого мы сразу получаем выражение для теоремы косинусов:

Что и требовалось доказать. Причём данное доказательство хорошо ещё тем, что позволяет лучше запомнить саму формулу. Ведь теперь становится понятным, откуда берётся этот хвост . Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол . Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол может быть острым, тупым или прямым. И не требуется рассматривать доказательство для каждого из этих случаев, что не может не радовать.

Кстати, в случае, когда угол прямой, мы получаем прямой, мы получаем , и выражение принимает следующий вид: . Что мы получили? Правильно! Это запись теоремы Пифагора. Квадрат гипотенузы равен сумме квадратов катетов. Так что ниточки постепенно сплетаются. То есть, как обычно говорят, теорема косинусов для треугольника есть обобщение теоремы Пифагора на случай произвольного треугольника, не обязательно прямоугольного.

Теорема косинусов

Теорема косинусов . Квадрат длины стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними.

Доказательство . Рассмотрим сначала треугольник ABC , у которого углы A и С – острые (рис.6).

Докажем, что длины сторон этого треугольника удовлетворяют равенству

a 2 = b 2 + c 2 –
– 2bc cos A
(1)

С этой целью проведём высоту BD из вершины B (рис.7).

В соответствии с определениями синуса и косинуса угла прямоугольного треугольника справедливы равенства

BD = c sin A, AD = c cos A, DC = b – AD = b – c cos A.

Из теоремы Пифагора , применённой к прямоугольному треугольнику BDC , получим

Таким образом, в случае треугольника ABC с острыми углами A и С теорема косинусов доказана.

Замечание 1 . Для того, чтобы получить полное доказательство теоремы косинусов, необходимо рассмотреть также и следующие случаи:

  1. Угол A – острый, угол C – тупой (рис.8)

Во всех перечисленных случаях доказательства теоремы косинусов проводятся совершенно аналогично тому, как это было сделано для случая острых углов A и C , и мы рекомендуем читателю провести эти доказательства в качестве полезного и несложного упражнения.

Замечание 2 . В случае, когда угол A является прямым углом, формула (1) принимает вид

откуда вытекает, что теорема Пифагора является частным случаем теоремы косинусов.

Замечание 3 . Если у треугольника известны длины всех сторон, то с помощью теоремы косинусов можно найти косинус любого угла треугольника, например,

Примеры задач

Задание 1
В треугольнике известны длины двух сторон – 5 и 9 см, а также, угол между ними – 60°. Найдите длину третьей стороны.

Решение:
Применим формулу теоремы, приняв известные стороны за b и c, а неизвестную за a:
a 2 = 5 2 + 9 2 – 2 * 5 * 9 * cos 60° = 25 + 81 – 45 = 61 см 2 . Следовательно, сторона a = √ 61 см ≈ 7,81 см.

Задание 2
Самая большая сторона треугольника равна 26 см, а две другие – 16 и 18 см. Найдите угол между меньшими сторонами.

Решение:
Примем бОльшую сторону за a. Чтобы найти угол между сторонами b и c, воспользуемся следствием из теоремы:

Синус, косинус, тангенс в прямоугольном треугольнике

Гипотенузой называется та сторона треугольника, что лежит против угла в 90 градусов, две оставшиеся стороны называются катетами прямоугольного треугольника.

Подробнее про прямоугольный треугольник здесь.

Синусом угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.

Косинусом угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.

Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.

Котангенсом угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.

Бывает (и на ЕГЭ, ГИА), что приходится иметь дело с косинусами, синусами и тангенсами внешних углов треугольника. Формулы приведения позволяют увидеть, что есть еще и вот такая связь между смежными углами (помимо того, что их сумма равна 180):

Смотрите подборку задач на применение указанных соотношений в статье «Прямоугольный треугольник. Вычисление длин и углов» часть I, часть II.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Как найти синус угла в треугольнике? Не в прямоугольном, в любом

Если рассматриваемый треугольник является прямоугольным, то можно использовать базовое определение тригонометрической функции синуса для острых углов. По определению синусом угла называют соотношение длины катета, лежащего напротив этого угла, к длине гипотенузы этого треугольника. То есть, если катеты имеют длину А и В, а длина гипотенузы равна С, то синус угла α, лежащего напротив катета А, определяйте по формуле α=А/С, а синус угла β, лежащего напротив катета В – по формуле β=В/С. Синус третьего угла в прямоугольном треугольнике находить нет необходимости, так как угол, лежащий напротив гипотенузы всегда равен 90°, а его синус всегда равен единице.

2
Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).

3
Воспользуйтесь для нахождения синуса угла двумя разными формулами расчета площади треугольника, в одной из которых задействованы только длины его сторон, а в другой – длины двух сторон и синус угла между ними. Так как результаты их будут равны, то из тождества можно выразить синус угла. Формула нахождения площади через длины сторон (формула Герона) выглядит так: S=¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С)) . А вторую формулу можно написать так: S=А*В*sin(γ). Подставьте первую формулу во вторую и составьте формулу для синуса угла, лежащего напротив стороны С: sin(γ)= ¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С) /(А*В)) . Синусы двух других углов можно найти по аналогичным формулам.

Тангенс

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Аргумент и значение тангенса

Аргументом тангенса может быть:
– как число или выражение с Пи: (1,3), (frac<π><4>), (π), (-frac<π><3>) и т.п.
– так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника – он равен отношению противолежащего катета к прилежащему.

1) Пусть дан угол и нужно определить тагенс этого угла.

2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить тангенс.

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга :

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=) (frac) (=) (frac<0><1>) (=0).

Пример. Вычислите (tg:(-765^circ)).
Решение: (tg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Однако можно определять тангенс и напрямую через тригонометрический круг – для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

2) Проводим через данную точку и начало координат прямую.

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt<3>) (приблизительно (-1,73)).

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-) (frac<7π><2>) ,(-) (frac<3π><2>) , (frac<π><2>) , (frac<5π><2>) , (frac<9π><2>) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-) (frac<9π><2>) ,(-) (frac<5π><2>) ,(-) (frac<π><2>) , (frac<3π><2>) , (frac<7π><2>) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Связь с другими тригонометрическими функциями:

котангенсом того же угла: формулой (ctg⁡:x=) (frac<1>)
Другие наиболее часто применяемые формулы смотри здесь .

[spoiler title=”источники:”]

http://sprashivalka.com/tqa/q/807447

http://cos-cos.ru/math/186/

[/spoiler]

Тема: Найти углы непрямоугольного треугольника  (Прочитано 3784 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Нужно найти углы непрямоугольного треугольника с гипотенузой=4 и катетами =2 и = 2√ 3

« Последнее редактирование: 15 Января 2012, 15:57:57 от Asix »


Решение задач – практическое искусство; научиться ему можно, только подражая хорошим образцам и постоянно практикуясь….


углы нужно найти, зная все стороны


НЕпрямоугольный треугольник имеющий гипотенузу и катеты? Это очень интересно)) Но у тебя то как раз прямоугольный)) Открой учебник в разделе соотношения сторон и углов в прямоугольном треугольнике.

Пожалуйста не пишите голое условие! Сначало мы выслушаем Ваши мысли или хотябы вопросы, но конкретные и лишь потом дадим необходимые советы!
Но можете всего этого и не делать, если Вас не интересует результат
Если не хотите разбираться сами закажите решение на сайте.


треугольник точно произвольный,извините что написала что “непрямоугольный”..знаю что решать нужно  пользуясь теоремой косинусов  по формуле Cos А=b2+с2-а2/2bc ,но не могу понять,при подстановки в эту формулу получается 0


Adobe Gitler! Zip File 😀

688 / 210 / 2

Регистрация: 06.07.2010

Сообщений: 1,611

1

Косинусы и синусы в непрямоугольном треугольнике

02.12.2010, 16:58. Показов 79718. Ответов 2


Студворк — интернет-сервис помощи студентам

Косинусы и синусы в непрямоугольном треугольнике, как?_



0



здесь больше нет…

3372 / 1670 / 184

Регистрация: 03.02.2010

Сообщений: 1,219

02.12.2010, 17:37

2

догадываемся, что косинусы и синусы

углов

в непрямоуг…
косинус (синус) – это мера угла, безотносительно к треугольнику:

Миниатюры

Косинусы и синусы в непрямоугольном треугольнике
 



1



3132 / 1325 / 156

Регистрация: 19.12.2009

Сообщений: 1,808

02.12.2010, 21:12

3

аналитика, я бы не горячился бы со словом мера – это не самый подходящий, в данном случае термин, лучше функция.



1



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

02.12.2010, 21:12

Помогаю со студенческими работами здесь

Синусы и косинусы
Помогите, пожалуйста.
Найдите sinα , если cosα = 0,6 и π &lt;α &lt;2π.

Синусы и косинусы
Пытаюсь прицепить объект к другому объекту, в данном случае контейнер к кораблю. Вроде бы делаю всё…

Синусы, косинусы
Написать программу решения следующей задачи: Из величин, определяемых выражениями A=sin(x),…

Косинусы и синусы в Паскале
В общем задали написать код этого примера в Паскале. Кто сможет, выручите:)
Не представляю как это…

Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:

3

Добавить комментарий