Вектор 2аб как найти

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

  • Нахождение координат вектора

  • Примеры задач

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Вектор AB

Формулы для определения координат вектора

Для плоских задач AB = {Bx – Ax; By – Ay}
Для трехмерных задач AB = {Bx – Ax; By – Ay; Bz – Az}
Для n-мерных векторов AB = {B1 – A1; B2 – A2; … Bn – An}

Примеры задач

Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).

Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.

Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).

Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.

Таким образом, B = (8; 19).

Уважаемые студенты!
Заказать решение задач по 200+ предметам можно здесь всего за 10 минут.

Длина вектора

Как найти?

Длина вектора $ overline{a}$ обозначается как $ |overline{a}| $. Как найти длину вектора по его координатам? Для этого существует две формулы в зависимости от расположения вектора: на плоскости $ overline{a}=(a_x;a_y) $ или в пространстве $ overline{a} = (a_x; a_y; a_z) $.

Формула длины вектора на плоскости:

$$ |overline{a}| = sqrt{a_x ^2 + a_y ^2} $$

Формула длины вектора в пространстве:

$$ |overline{a}| = sqrt{a_x ^2 + a_y ^2 + a_z ^2 } $$

Если даны координаты точек начала и конца вектора $ A(a_x; a_y) $ и $ B(b_x; b_y) $, то найти длину можно по формулам:

$$ |overline{AB}| = sqrt{(a_x-b_x)^2 + (a_y-b_y) ^2} $$

$$ |overline{AB}| = sqrt{(a_x-b_x)^2 + (a_y-b_y)^2+ (a_z-b_z)^2} $$

Примеры решений

Пример 1
Найти длину вектора по его координатам $ overline{a} = (4;-3) $
Решение

Разберем вектор. Первая координата $ a_x = 4 $, а вторая координата $ a_y=-3 $. Так как даны две координаты, то делаем вывод, что задача плоская. Необходимо применить первую формулу. Подставляем в неё значения из условия задачи:

$$|overline{a}| = sqrt{4^2+(-3)^2} = sqrt{16+9} = sqrt{25} = 5 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Длина вектора $|overline{a}| = 5 $
Пример 2
Найти длину вектора по координатам $ overline{a}=(4;2;4) $
Решение

Сразу замечаем, что дана пространственная задача. А именно $ a_x=4, a_y=2, a_z=4 $. Для нахождения длины вектора используем вторую формулу. Подставляем неизвестные в неё:

$|overline{a}|=sqrt{4^2+2^2+4^2}=sqrt{36}=6 $

Ответ
Длина вектора $|overline{a}|=6 $
Пример 3
Найти длину вектора, если известны координаты его начала и конца. $ A=(2;1), B=(-1;3) $
Решение

Задача дана плоская судя по наличию только двух координат у векторов. Но даны на этот раз начало и конец вектора. Поэтому сначала находим координаты вектора $ overline{AB} $, а только потом его длину по формуле координат:

$ overline{AB}=(b_x-a_x;b_y-a_y)=(-1-2;3-1)=(-3;2) $

Теперь когда координаты вектора $ overline{AB} $ стали известны можно использовать привычную формулу:

$|overline{AB}|=sqrt{(-3)^2+2^2}=sqrt{9+4}=sqrt{13} $

Ответ
$|overline{AB}|=sqrt{13} $

В статье мы ответили на вопрос:”Как найти длину вектора?” с помощью формул. А также рассмотрели практические примеры решения задач на плоскости и в пространстве. Следует заметить, что существуют аналогичные формулы для пространств больше, чем трёхмерные.

Онлайн калькулятор для нахождения координат вектора на плоскости по двум или по трём точкам в пространстве.

Чтобы узнать координаты вектора в плоскости (i,j) или найти координаты вектора в пространстве (i,j,k), необходимо произвести ряд однотипных вычислений на основе координат точек его начала и конца.

Предположим, нам дана точка начала вектора A с координатами (1;2) и точка конца вектора с координатами B(3;5). Для того чтобы рассчитать координаты самого вектора необходимо отнять координату начала от координаты конца вдоль каждой оси.
[ bar{i}=x_{2}-x_{1}=3-1=2 ]
[ bar{j}=y_{2}-y_{1}=5-2=3 ]

Таким образом, координатами вектора становятся (2;3), причем порядок расположения координат строго соблюдается. Аналогично происходит, если отталкиваться от координат в пространстве (x,y,z).
[ A(0;3;1) ]
[ B(2;2;1) ]
[ bar{i}=x_{2}-x_{1}=2-0=2 ]
[ bar{j}=y_{2}-y_{1}=2-3=-1 ]
[ bar{k}=z_{2}-z_{1}=1-1=0 ]
Координаты вектора: [ = (2,-1,0) ]

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Длина вектора – основные формулы

Длину вектора a→ будем обозначать a→. Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат Oxy. Пусть в ней задан некоторый вектор a→ с координатами ax;ay. Введем формулу для нахождения длины (модуля) вектора a→ через координаты ax и ay.

От начала координат отложим вектор OA→=a→. Определим соответственные проекции точки A на координатные оси как Ax и Ay . Теперь рассмотрим прямоугольник OAxAAy с диагональю OA.

Длина вектора - основные формулы

Из теоремы Пифагора следует равенство OA2=OAx2+OAy2, откуда OA=OAx2+OAy2. Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что OAx2=ax2 и OAy2=ay2, а по построению длина OA равна длине вектора OA→, значит, OA→=OAx2+OAy2.

Отсюда получается, что формула для нахождения длины вектора a→=ax;ay имеет соответствующий вид: a→=ax2+ay2.

Если вектор a→ дан в виде разложения по координатным векторам a→=ax·i→+ay·j→, то вычислить его длину можно по той же формуле a→=ax2+ay2, в данном случае коэффициенты ax и ay выступают в роли координат вектора a→ в заданной системе координат.

Пример 1

Вычислить длину вектора a→=7;e, заданного в прямоугольной системе координат.

Решение

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатамa→=ax2+ay2: a→=72+e2=49+e

Ответ: a→=49+e.

Формула для нахождения длины вектора a→=ax;ay;az по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

Длина вектора - основные формулы

В данном случае OA2=OAx2+OAy2+OAz2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда OA=OAx2+OAy2+OAz2. Из определения координат вектора можем записать следующие равенства OAx=ax; OAy=ay; OAz=az; , а длина ОА равна длине вектора, которую мы ищем, следовательно, OA→=OAx2+OAy2+OAz2.

Отсюда следует, что длина вектора a→=ax;ay;az равна a→=ax2+ay2+az2.

Пример 2

Вычислить длину вектора a→=4·i→-3·j→+5·k→, где i→,j→,k→ – орты прямоугольной системы координат.

Решение

Дано разложение вектора a→=4·i→-3·j→+5·k→, его координаты равны a→=4,-3,5. Используя выше выведенную формулу получим a→=ax2+ay2+az2=42+(-3)2+52=52.

Ответ:a→=52.

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A(ax;ay) и B(bx;by), отсюда вектор AB→ имеет координаты (bx-ax; by-ay)значит, его длина может быть определена по формуле: AB→=(bx-ax)2+(by-ay)2

А если даны точки с заданными координатами A(ax;ay;az) и B(bx;by;bz) в трехмерном пространстве, то длину вектора AB→ можно вычислить по формуле

AB→=(bx-ax)2+(by-ay)2+(bz-az)2

Пример 3

Найти длину вектора AB→, если в прямоугольной системе координат A1, 3, B-3, 1.

Решение

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим AB→=(bx-ax)2+(by-ay)2: AB→=(-3-1)2+(1-3)2=20-23.

Второй вариант решения подразумевает под собой применение данных формул по очереди: AB→=(-3-1; 1-3)=(-4; 1-3); AB→=(-4)2+(1-3)2=20-23.-

Ответ: AB→=20-23.

Пример 4

Определить, при каких значениях  длина вектора AB→ равна 30, еслиA(0, 1, 2); B(5, 2, λ2) .

Решение

Для начала распишем длину вектора AB→ по формуле: AB→=(bx-ax)2+(by-ay)2+(bz-az)2=(5-0)2+(2-1)2+(λ2-2)2=26+(λ2-2)2

Затем полученное выражение приравняем к 30, отсюда найдем искомые λ:

 26+(λ2-2)2=3026+(λ2-2)2=30(λ2-2)2=4λ2-2=2 или λ2-2=-2  λ1=-2, λ2=2, λ3=0.

Ответ: λ1=-2, λ2=2, λ3=0.

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов AB→, AC→ и угол между ними (или косинус угла), а требуется найти длину вектора BC→ или CB→. В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ABC, вычислить длину стороны BC, которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Пример 5

Длины векторов AB→ и AC→ равны 3 и 7 соответственно, а угол между ними равен π3. Вычислить длину вектора BC→.

Решение

Длина вектора BC→ в данном случае равна длине стороны BC треугольника △ABC. Длины сторон AB и AC треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов:BC2=AB2+AC2-2·AB·AC·cos∠(AB,→AC→)=32+72-2·3·7·cosπ3=37 ⇒BC=37 Таким образом, BC→=37.

Ответ:BC→=37.

Итак, для нахождения длины вектора по координатам существуют следующие формулы a→=ax2+ay2 или a→=ax2+ay2+az2, по координатам точек начала и конца вектора AB→=(bx-ax)2+(by-ay)2 или AB→=(bx-ax)2+(by-ay)2+(bz-az)2, в некоторых случаях следует использовать теорему косинусов.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Задача 63489 Найдите координаты вектора (2АВ +ВС),…

Условие

Найдите координаты вектора (2АВ +ВС), если А(4;0;2) , В(0;0;1) , С(3;5;–2)

математика 10-11 класс
1626

Решение

vector{AB}=(0-4;0-0;1-2)=(-4;0;-1)

vector{BС}=(3-0;5-0;-2-1)=(3;5;-3)

Умножение вектора на число 2 – умножение каждой координаты на число

2*vector{AB}=(-8;0;-2)

Сложение двух векторов выполняются [i]покоординатно[/i], т.е складываем первые координаты, складываем вторые координаты и складываем третьи координаты :

2*vector{AB}+vector{BС}=(-8;0;-2)+(3;5;-3)=(-8+3;0+5;-2+(-3))=[b](-5;5;-5)[/b]

Написать комментарий

Добавить комментарий