Вектор мат ожидания как найти

Материал из MachineLearning.

Перейти к: навигация, поиск

Математическое ожидание — мера среднего значения случайной величины в теории вероятностей. В зарубежной литературе обозначается через mathbb{E}[X] (например, от англ. Expected value или нем. Erwartungswert), в русской M[X] (возможно, от англ. Mean value).

Содержание

  • 1 Определение
  • 2 Основные формулы для математического ожидания
    • 2.1 Математическое ожидание дискретного распределения
      • 2.1.1 Математическое ожидание целочисленной величины
    • 2.2 Математическое ожидание абсолютно непрерывного распределения
  • 3 Математическое ожидание случайного вектора
  • 4 Математическое ожидание преобразования случайной величины
  • 5 Простейшие свойства математического ожидания
  • 6 Дополнительные свойства математического ожидания
  • 7 Примеры
  • 8 Литература

Определение

Пусть задано вероятностное пространство (Omega,mathcal{F},mathbb{P}) и определённая на нём случайная величина X. Тогда, если существует интеграл Лебега от X по пространству Omega, то он называется математическим ожиданием, или средним значением, и обозначается M[X] или mathbf{E}[X].

M[X]=intlimits_{Omega}! X(omega), mathbb{P}(domega).

Основные формулы для математического ожидания

  • Если F_X(x) — функция распределения случайной величины, то её математическое ожидание задаётся интегралом Лебега — Стилтьеса:
M[X]=intlimits_{-infty}^{infty}!x, dF_X(x).

Математическое ожидание дискретного распределения

  • Если X — дискретная случайная величина, имеющая распределение
mathbb{P}(X=x_i) = p_i,; sumlimits_{i=1}^{infty} p_i = 1,

то прямо из определения интеграла Лебега следует, что

M[X]=sumlimits_{i=1}^{infty} x_i, p_i.

Математическое ожидание целочисленной величины

  • Если X — положительная целочисленная случайная величина (частный случай дискретной), имеющая распределение вероятностей
mathbb{P}(X=j) = p_i,; j=0,1,...;quad sumlimits_{j=0}^{infty} p_j = 1

то её математическое ожидание может быть выражено через производящую функцию последовательности {p_i}

P(s)=sum_{k=0}^infty;p_k s^k

как значение первой производной в единице: M[X] = P'(1). Если математическое ожидание X бесконечно, то lim_{sto 1}P'(s)=infty и мы будем писать P'(1)=M[X]=infty

Теперь возьмём производящую функцию Q(s) последовательности «хвостов» распределения {q_k}

q_k=mathbb{P}(X>j)=sum_{j=k+1}^infty{p_j};quad Q(s)=sum_{k=0}^infty;q_k s^k.

Эта производящая функция связана с определённой ранее функцией P(s) свойством: Q(s)=frac{1-P(s)}{1-s} при |s|<1.
Из этого по теореме о среднем (формуле конечных приращений) следует, что математическое ожидание равно просто значению этой функции в единице:

M[X]=P'(1)=Q(1)

Математическое ожидание абсолютно непрерывного распределения

  • Математическое ожидание абсолютно непрерывной случайной величины, распределение которой задаётся плотностью f_X(x), равно
M[X]=intlimits_{-infty}^{infty}! x f_X(x), dx.

Математическое ожидание случайного вектора

Пусть X=(X_1,dots,X_n)^{top}::Omega to mathbb{R}^n — случайный вектор. Тогда по определению

M[X]=(M[X_1],dots,M[X_n])^{top},

то есть математическое ожидание вектора определяется покомпонентно.

Математическое ожидание преобразования случайной величины

Пусть g::mathbb{R}to mathbb{R} — борелевская функция, такая что случайная величина Y = g(X) имеет конечное математическое ожидание. Тогда для него справедлива формула:

Mleft[g(X)right] = sumlimits_{i=1}^{infty} g(x_i) p_i,

если X имеет дискретное распределение;

Mleft[g(X)right] = intlimits_{-infty}^{infty}!g(x) f_X(x), dx,

если X имеет абсолютно непрерывное распределение.

Если распределение mathbb{P}^X случайной величины X общего вида, то

Mleft[g(X)right] = intlimits_{-infty}^{infty}!g(x), mathbb{P}^X(dx).

В специальном случае, когда g(X)=X^k, Математическое ожидание Mleft[g(X)right]=M[X^k] называется k-тым моментом случайной величины.

Простейшие свойства математического ожидания

  • Математическое ожидание числа есть само число.
M[a] = a
a in mathbb{R} — константа;
  • Математическое ожидание линейно, то есть
M[aX+bY] = aM[X]+bM[Y],
где X,Y — случайные величины с конечным математическим ожиданием, а a,bin mathbb{R} — произвольные константы;
0 leq M[X] leq M[Y];
  • Математическое ожидание не зависит от поведения случайной величины на событии вероятности нуль, то есть если X = Y почти наверное, то
M[X]=M[Y].
  • Математическое ожидание произведения двух независимых случайных величин X,Y равно произведению их математических ожиданий
M[XY] = M[X]M[Y].

Дополнительные свойства математического ожидания

  • Неравенство Маркова.

Пусть случайная величина X::Omega to mathbb{R} определена на вероятностном пространстве (Omega, mathcal{F},mathbb{P}), и её математическое ожидание конечно. Тогда

mathbb{P}left(|X| geq aright) leq frac{M[X]}{a},

где a>0.

  • Теорема Леви о монотонной сходимости.

Пусть {X_n}_{n=1}^{infty} — монотонная последовательность неотрицательных почти наверное интегрируемых случайных величин. Тогда

Mleft[limlimits_{nto infty} X_nright] = limlimits_{ntoinfty} Mleft[X_nright].
  • Теорема Лебега о мажорируемой сходимости.

Пусть есть сходящаяся почти наверное последовательность случайных величин: X_nto X почти наверное. Пусть в дополнение существует интегрируемая случайная величина Y, такая что forall ninmathbb{N}quad|X_n|leq Y почти наверное. Тогда случайные величины X_n,;X интегрируемы и

limlimits_{ntoinfty}Mleft[X_nright]=Mleft[Xright].
  • Тождество Вальда.

Пусть X_1,...,X_N — независимые одинаково распределенные случайные величины. N — также является случайной величиной имеющей дискретное распределение и принимающая положительные целые значения. Далее, X_i и N должны иметь конечное математическое ожидание и N должно быть независимым от X_i. Тогда

Mleft[sum_{i=1}^{N}X_iright]=M[N]M[X].
  • Лемма Фату.

Пусть есть неотрицательная последовательность интегрируемых случайных величин {X_n}_{n=1}^{infty}. Тогда выполняется следующее неравенство для нижних пределов:

Mleft[{liminflimits_{nto infty}}X_nright] le {liminflimits_{nto infty}} ,Mleft[X_nright].

Примеры

  • Пусть случайная величина имеет дискретное равномерное распределение, то есть mathbb{P}(X = x_i) = frac{1}{n},; i=1,ldots, n. Тогда её математическое ожидание
M[X] = frac{1}{n} sumlimits_{i=1}^n x_i

равно среднему арифметическому всех принимаемых значений.

M[X] = intlimits_{a}^b!frac{x}{b-a}, dx = frac{a+b}{2}.
  • Пусть случайная величина X имеет стандартное распределение Коши. Тогда
intlimits_{-infty}^{infty}!xf_X(x), dx = infty,

то есть математическое ожидание X не определено.

Литература

  • В.Феллер Глава XI. Целочисленные величины. Производящие функции // Введение в теорию вероятностей и её приложения = An introduction to probability theory and its applicatons, Volume I second edition. — 2-е изд. — М.: Мир, 1964. — С. 270—272.

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание – это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины – срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$: $$ M(X)=sum_^. $$ Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом: $$ M(X)=int_<-infty>^ <+infty>f(x) cdot x dx. $$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом: $$ x_i quad -1 quad 2 quad 5 quad 10 quad 20 \ p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1 $$

Используем формулу для м.о. дискретной случайной величины: $$ M(X)=sum_^. $$ Получаем: $$ M(X)=sum_^ =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8. $$ Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу: $$ M(X)=int_<-infty>^ <+infty>f(x) cdot x dx. $$ Подставляем из условия плотность вероятности и вычисляем значение интеграла: $$ M(X)=int_<-infty>^ <+infty>f(x) cdot x dx = int_<0>^ <1>12(x^2-x^3) cdot x dx = int_<0>^ <1>12(x^3-x^4) dx = \ =left.(3x^4-frac<12><5>x^5) right|_0^1=3-frac<12> <5>= frac<3><5>=0.6. $$

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Полезные ссылки

Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по терверу. Для закрепления материала – еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

3.3 Математические ожидания и ковариации векторов и матриц

3.3. Математические ожидания и ковариации векторов и матриц

При работе с линейными моделями удобно представлять данные в виде векторов или матриц. Элементы некоторых векторов или матриц статистических линейных моделей являются случайными переменными. Определение случайной переменной было дано. Значение этой переменной зависит от случайного результата опыта.

В этой книге рассматривается такой тип векторов случайных переменных отклика, элементы которого могут быть коррелированы, а влияющие на них переменные являются контролируемыми и неслучайными. В конкретной линейной модели, влияющие на отклик переменные, имеют выбранные или полученные в результате расчёта детерминированные значения. Таким образом, в рассматриваемых линейных моделях имеются два вектора случайных переменных:

у= и e=.

Значения i-й переменной уi (i=1, 2, …, n) отклика наблюдаются в результате проведения i-го опыта эксперимента, а значения переменной ei случайной ошибки не наблюдаются, но могут оцениваться по наблюдаемым значениям переменной отклика и значениям влияющих на неё переменных.

При рассмотрении линейных моделей широко используются векторы и матрицы случайных переменных, поэтому в первую очередь для них необходимо обобщить идеи математического ожидания, ковариации и дисперсии.

Математическое ожидание вектора у размеров пх1 случайных переменных y1, y2, . уп определяется как вектор их ожидаемых значений:

Е(у)=Е===y, (3.3.1)

Рекомендуемые файлы

где Ei)=yi получается в виде Ei)=, используя функцию fi(уi) плотности вероятности безусловного распределения переменной уi.

Если х и у – векторы случайных переменных размеров пх1, то, в силу (3.3.1) и (3.2.7), математическое ожидание их суммы равно сумме их математических ожиданий:

Пусть уij (i=1, 2, . m; j=1, 2, . п) набор случайных переменных с ожидаемыми значениями Eij). Выражая случайные переменные и их математические ожидания в матричной форме, можно определить общий оператор математического ожидания матрицы Y=(yij) размеров mхп следующим образом:

Определение 3.3.1. Математическое ожидание матрицы Y случайных переменных равно матрице математических ожиданий её элементов

По аналогии с выражением (3.3.1), ожидаемые значения матрицы Y случайных переменных представляются в виде матрицы ожидаемых значений:

E(Y)==. (3.3.3)

Вектор можно рассматривать как матрицу, следовательно, определение 3.3.1 и следующая теорема справедливы и для векторов.

Теорема 3.3.1. Если матрицы А=ij) размеров lхm, B=(bij) размеров nхp, С=(cij) размеров lхp – все имеют элементами постоянные числовые значения, а Y – матрица размеров mхn случайных переменных, то

Доказательство дано в книгах [Себер (1980) стр.19; Seber, Lee (2003) стр.5]

Там же доказывается, что, если матрицы A и В размеров mхn, элементами которых являются постоянные числовые значения, а х и у – векторы случайных переменных размеров пх1, то

Если f(Y) – линейная функция матрицы Y, то её ожидаемое значение находится по формуле Е[f(Y)]=f[Е(Y)] [Boik (2011) cтр.134]. Например, если матрицы А размеров рхm, B размеров пхр и С размеров рхр – все имеют элементами постоянные числовые значения, а матрица Y размеров тхп случайных переменных, то

Ковариации и дисперсии

Аналогичным образом можно обобщить понятия ковариации и дисперсии для векторов. Если векторы случайных переменных х размеров mх1 и у размеров nх1, то ковариация этих векторов определяется следующим образом.

Определение 3.3.2. Ковариацией векторов х и у случайных переменных является прямоугольная матрица ковариаций их элементов

Теорема 3.3.2. Если случайные векторы х и у имеют векторы математических ожиданий E(x)=x и Е(у)=y, то их ковариация

Применим эту теорему для нахождения матрицы ковариаций векторов х размеров 3х1 и у размеров 2х1

=E

=Е

=.

=. (3.3.4)

E[(yy)(yy) T ]=. (3.3.5)

Дисперсии s11, s22, . sпп переменных y1, y2, . уп и их ковариации sij, для всех ij, могут быть удобно представлены матрицей дисперсий и ковариаций, которая иногда называется ковариационной матрицей и обозначается прописной буквой S строчной s:

S=D(у)= (3.3.6)

В матрице S i-я строка содержит дисперсию переменной уi и её ковариации с каждой из остальных переменных вектора у. Чтобы быть последовательными с обозначением sij, используем для дисперсий sii=si 2 , где i =1, 2, . n. При этом дисперсии расположены по диагонали матрицы S и ковариации занимают позиции за пределами диагонали. Отметим различие в значении между обозначениями D(у)=S для вектора и Сi, уj)=sij для двух переменных.

Матрица S дисперсий и ковариаций симметричная, так как sij=sji [см. (3.2.9)]. Во многих приложениях полагается, что матрица S положительно определённая. Это обычно верно, если рассматриваются непрерывные случайные переменные, и между ними нет линейных зависимостей. Если между переменными есть линейные зависимости, то матрица S будет неотрицательно определённой.

Для примера найдём матрицу дисперсий и ковариаций вектора у размеров 3х1

=E

=E

=.

=.

Как следует из определения 3.3.3,

что после подобного сделанному в (3.2.4) преобразованию приводится к выражению

Последние два выражения являются естественным обобщением одномерных результатов данных выражениями (3.2.2) и (3.2.4).

Пример 3.3.1. Если а – какой-либо вектор числовых значений тех же размеров пх1, что и вектор у, то

Напомним, что симметричная матрица А является положительно определенной, если для всех векторов у0 квадратичная форма у Т Ау>0. В дальнейшем будет использоваться часто следующая теорема.

Теорема 3.3.3. Если у – вектор случайных переменных, в котором ни одна из переменных не является линейной комбинации остальных, то есть, нет вектора а0 и числа b таких, что а Т у=b для любого у, то D(у)=S – положительно определенная матрица.

Доказательство этой теоремы дано в [Себер (1980) стр.22].

Обобщенная дисперсия и нормированный вектор

Матрица S содержит дисперсии и ковариации всех п случайных переменных вектора у и всесторонне представляет полную их вариацию. Обобщённой мерой, характеризующей вариацию случайных переменных вектора у, может служить определитель матрицы S:

Обобщенная дисперсия =det(S). (3.3.9)

В качестве статистики обобщённой дисперсии используется обобщённая выборочная дисперсия, определяемая детерминантом матрицы S=Y T (IЕ/n)Y/(n–1) вариаций и ковариаций выборочных значений переменных вектора у, представленных матрицей Y=[y1, y2, …, yk], где её столбцы составлены из векторов значений переменных вектора у [Rencher, Christensen (2012) стр.81]:

Обобщенная выборочная дисперсия =det(S). (3.3.10)

Если det(S) малый, то значения переменных вектора у располагаются ближе к их усреднённым значениям вектора , чем, если бы det(S) был большим. Малое значение det(S) может указывать также на то, что переменные y1, y2. уп вектора у сильно взаимно коррелированы и стремятся занимать подпространство меньшее, чем п измерений, что соответствует одному или большему числу малых собственных значений [Rencher (1998) раздел 2.1.3; Rencher, Christensen (2012) стр.81].

Для получения полезной меры разности между векторами у и y необходимо учитывать дисперсии и ковариации переменных вектора у. Как для одной нормированной случайной переменной, получаемой по формуле z=(у–y)/s и имеющей среднее равное 0 и дисперсию равную 1, нормированная разность между векторами у и y определяется в виде

Использование матрицы S –1 в этом выражении нормирует (трансформирует) переменные вектора у так, что нормированные переменные имеют средние равные 0 и дисперсии равные 1, а также становятся и некоррелированными. Это получается потому, что матрица S положительно определённая. По теореме П.6.5 её обратная матрица тоже положительно определённая. В силу (П.12.18), матрица S –1 =S –1/2 S –1/2 . Отсюда

где z=S –1/2 (уy) – вектор нормированных случайных переменных. Математическое ожидание вектора z получается

и его дисперсия

Следовательно, по пункту 2 теоремы 4.5.2 следующей главы вектор S –1/2 (уy) имеет нормальное распределение N(0, I).

Для нормированной разности, как параметра, есть соответствующая статистика, а именно, выборочная нормированная дистанция, определяемая формулой (у) Т S –1 (у) и называемая часто дистанцией Махаланобиса [Mahalanobis (1936); Seber (2008) cтр.463]. Некоторый п-мерный гиперэллипсоид (у) Т S –1 (у)=а 2 , центрированный вектором и базирующийся на S –1 для нормирования расстояния до центра, содержит выборочные значения переменных вектора у. Гиперэллипсоид (у) Т S –1 (у) имеет оси пропорциональные квадратным корням собственных значений матрицы S. Можно показать, что объём гиперэллипсоида пропорционален [det(S)] 1/2 . Если минимальное собственное значение матрицы S равно нулю, то в этом направлении нет оси и гиперэллипсоид расположен в (п–1)-мерном подпространстве п-мерного пространства. Следовательно, его объём в п-мерном пространстве равен 0. Нулевое собственное значение указывает на избыточность переменных вектора у. Для устранения этого необходимо убрать одну или более переменных, являющихся линейными комбинациями остальных.

Математическое ожидание

Математическое ожидание — это ожидаемый результат от какого-то действия.

Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.

Случайная величина может быть двух типов:

  1. Дискретной: число возможных значений X — это числимое конечное или бесконечное множество точек; пример: количество дефектных устройств в производстве фабрики.
  2. Непрерывной: X может принимать любое значение в заданном диапазоне; пример: концентрация углекислого газа в воде.

Математическое ожидание дискретной случайной величины рассчитывается этой формулой:

Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет “1” — 1/6, “2” — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).

Для непрерывной случайной величины используется эта формула:

В этом случае рассчитывается интеграл в заданном интервале.

Примеры вычисления математического ожидания

  • если в задаче даётся таблица с данными, то перемножаем каждое событие на его вероятность и потом всё складываем;
  • если в задаче дают функцию с заданным интервалом, то вычисляем интеграл с этим интервалом.

Пример 1

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi −1 1 2 3 4
pi 0,1 0,2 0,3 0,1 0,3

Используется формула для дискретной случайной величины:

M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2

Пример 2

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

Пример 3

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi 1 2 3 4 5
pi 0,3 0,3 0,1 0,1 0,2

Используется формула для дискретной случайной величины:

M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6

Пример 4

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

[spoiler title=”источники:”]

http://studizba.com/lectures/47-matematika/680-statisticheskie-metody-eksperimentalnyh-issledovaniy/13066-33-matematicheskie-ozhidaniya-i-kovariacii-vektorov-i-matric.html

http://www.uznaychtotakoe.ru/matematicheskoe-ozhidanie/

[/spoiler]

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 октября 2021 года; проверки требуют 7 правок.

Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее (взвешенное по вероятностям возможных значений) значение случайной величины[1]. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения (более строгие определения см. ниже). Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.

Обозначается через {mathbb  {E}}[X][2] (например, от англ. Expected value или нем. Erwartungswert);
в русскоязычной литературе также встречается обозначение M[X] (возможно, от англ. Mean value или нем. Mittelwert, а возможно от «Математическое ожидание»). В статистике часто используют обозначение mu .

Для случайной величины, принимающей значения только 0 или 1 математическое ожидание равно p — вероятности «единицы». Математическое ожидание суммы таких случайных величин равно np, где n — количество таких случайных величин. При этом вероятности появления определенного кол-ва единиц рассчитываются по биномиальному распределению. Поэтому в литературе, скорее всего, легче найти запись, что мат. ожидание биномиального распределения равно np[3].

Некоторые случайные величины не имеют математического ожидания, например, случайные величины, имеющие распределение Коши.

На практике математическое ожидание обычно оценивается как среднее арифметическое наблюдаемых значений случайной величины (выборочное среднее, среднее по выборке). Доказано, что при соблюдении определенных слабых условий (в частности, если выборка является случайной, то есть наблюдения являются независимыми) выборочное среднее стремится к истинному значению математического ожидания случайной величины при стремлении объема выборки (количества наблюдений, испытаний, измерений) к бесконечности.

Определение[править | править код]

Общее определение через интеграл Лебега[править | править код]

Пусть задано вероятностное пространство (Omega,mathfrak{A},mathbb{P}) и определённая на нём случайная величина X. То есть, по определению, Xcolon Omega to mathbb {R}  — измеримая функция. Если существует интеграл Лебега от X по пространству Omega , то он называется математическим ожиданием, или средним (ожидаемым) значением и обозначается M[X] или {mathbb  {E}}[X].

{displaystyle mathbb {E} [X]=int limits _{Omega }!X(omega ),mathbb {P} (domega ).}

Определение через функцию распределения случайной величины[править | править код]

Если F_{X}(x) — функция распределения случайной величины, то её математическое ожидание задаётся интегралом Лебега — Стилтьеса:

{displaystyle mathbb {E} [X]=int limits _{-infty }^{infty }!x,dF_{X}(x)}, {displaystyle xin mathbb {R} }.

Определение для абсолютно непрерывной случайной величины (через плотность распределения)[править | править код]

Математическое ожидание абсолютно непрерывной случайной величины, распределение которой задаётся плотностью f_{X}(x), равно

{displaystyle mathbb {E} [X]=int limits _{-infty }^{infty }!xf_{X}(x),dx}.

Определение для дискретной случайной величины[править | править код]

Если X — дискретная случайная величина, имеющая распределение

{displaystyle mathbb {P} (X=x_{i})=p_{i}} , {displaystyle sum limits _{i=1}^{infty }p_{i}=1},

то прямо из определения интеграла Лебега следует, что

{displaystyle mathbb {E} [X]=sum limits _{i=1}^{infty }x_{i},p_{i}}.

Математическое ожидание целочисленной величины[править | править код]

  • Если X — положительная целочисленная случайная величина (частный случай дискретной), имеющая распределение вероятностей
{displaystyle mathbb {P} (X=j)=p_{j}} , {displaystyle j=0,1,dotsc }, {displaystyle sum limits _{j=0}^{infty }p_{j}=1},

то её математическое ожидание может быть выражено через производящую функцию последовательности {p_{i}}

P(s)=sum _{{k=0}}^{infty };p_{k}s^{k}

как значение первой производной в единице: {displaystyle mathbb {E} [X]=P'(1)}. Если математическое ожидание X бесконечно, то lim _{{sto 1}}P'(s)=infty и мы будем писать {displaystyle P'(1)=mathbb {E} [X]=infty }

Теперь возьмём производящую функцию Q(s) последовательности «хвостов» распределения {q_{k}}

{displaystyle q_{k}=mathbb {P} (X>k)=sum _{j=k+1}^{infty }{p_{j}}} , {displaystyle Q(s)=sum _{k=0}^{infty }q_{k}s^{k}.}

Эта производящая функция связана с определённой ранее функцией P(s) свойством: Q(s)={frac  {1-P(s)}{1-s}} при |s|<1. Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:

{displaystyle mathbb {E} [X]=P'(1)=Q(1)}

Математическое ожидание случайного вектора[править | править код]

Пусть X=(X_{1},dots ,X_{n})^{{top }}colon Omega to {mathbb  {R}}^{n} — случайный вектор. Тогда по определению

{displaystyle mathbb {E} [X]=(mathbb {E} [X_{1}],dots ,mathbb {E} [X_{n}])^{top }},

то есть математическое ожидание вектора определяется покомпонентно.

Математическое ожидание преобразования случайной величины[править | править код]

Пусть gcolon {mathbb  {R}}to {mathbb  {R}} — борелевская функция, такая что случайная величина Y = g(X) имеет конечное математическое ожидание. Тогда для него справедлива формула

{displaystyle mathbb {E} left[g(X)right]=sum limits _{i=1}^{infty }g(x_{i})p_{i},}

если X имеет дискретное распределение;

{displaystyle mathbb {E} left[g(X)right]=int limits _{-infty }^{infty }!g(x)f_{X}(x),dx,}

если X имеет абсолютно непрерывное распределение.

Если распределение mathbb {P} ^{X} случайной величины X общего вида, то

{displaystyle mathbb {E} left[g(X)right]=int limits _{-infty }^{infty }!g(x),mathbb {P} ^{X}(dx).}

В специальном случае, когда {displaystyle g(X)=X^{k}}, математическое ожидание {displaystyle mathbb {E} [g(X)]=mathbb {E} [X^{k}]} называется k-м моментом случайной величины.

Свойства математического ожидания[править | править код]

  • Математическое ожидание числа (не случайной, фиксированной величины, константы) есть само число.
{displaystyle mathbb {E} [a]=a}
ain {mathbb  {R}} — константа;
  • Математическое ожидание линейно[4], то есть
{displaystyle mathbb {E} [aX+bY]=amathbb {E} [X]+bmathbb {E} [Y]},
где X,Y — случайные величины с конечным математическим ожиданием, а a,bin mathbb{R} — произвольные константы;

В частности, математическое ожидание суммы (разности) случайных величин равно сумме (соответственно — разности) их математических ожиданий.

{displaystyle 0leqslant mathbb {E} [X]leqslant mathbb {E} [Y]}.
  • Математическое ожидание не зависит от поведения случайной величины на событии вероятности нуль, то есть если X=Y почти наверняка, то
{displaystyle mathbb {E} [X]=mathbb {E} [Y]}.
  • Математическое ожидание произведения двух независимых или некоррелированных[5] случайных величин X,Y равно произведению их математических ожиданий
{displaystyle mathbb {E} [XY]=mathbb {E} [X]cdot mathbb {E} [Y]}.

Неравенства, связанные с математическим ожиданием[править | править код]

Неравенство Маркова — для неотрицательной случайной величины {displaystyle Xcolon Omega to mathbb {R} ^{+}} определённой на вероятностном пространстве (Omega ,{mathcal  {F}},{mathbb  {P}}) с конечным математическим ожиданием {displaystyle mathbb {E} (X)} выполняется неравенство:

{displaystyle mathbb {P} left(Xgeqslant aright)leqslant {frac {mathbb {E} (X)}{a}}}, где a>0.

Неравенство Йенсена для математического ожидания выпуклой функции от случайной величины. Пусть (Omega ,{mathcal {F}},mathbb {P} ) — вероятностное пространство, {displaystyle Xcolon Omega to mathbb {R} } — определённая на нём случайная величина, varphi colon {mathbb  {R}}to {mathbb  {R}} — выпуклая борелевская функция, такие, что X,varphi (X)in L^{1}(Omega ,{mathcal  {F}},{mathbb  {P}}), то

{displaystyle varphi (mathbb {E} (X))leqslant mathbb {E} (varphi (X))}.

Теоремы, связанные с математическим ожиданием[править | править код]

{displaystyle lim limits _{nto infty }mathbb {E} (X_{n})=mathbb {E} (X)} .
{displaystyle mathbb {E} left(sum _{i=1}^{N}X_{i}right)=mathbb {E} (N)mathbb {E} (X)}
{displaystyle mathbb {E} (X)=G'(0)}.

Примеры[править | править код]

  • Пусть случайная величина имеет дискретное равномерное распределение, то есть mathbb {P} (X=x_{i})={frac {1}{n}},;i=1,ldots ,n. Тогда её математическое ожидание
{displaystyle mathbb {E} [X]={frac {1}{n}}sum limits _{i=1}^{n}x_{i}}

равно среднему арифметическому всех принимаемых значений.

{displaystyle mathbb {E} [X]=int limits _{a}^{b}!{frac {x}{b-a}},dx={frac {a+b}{2}}}.
  • Пусть случайная величина X имеет стандартное распределение Коши. Тогда
int limits _{-infty }^{infty }!xf_{X}(x),dx=infty ,

то есть математическое ожидание X не определено.

См. также[править | править код]

  • Дисперсия случайной величины
  • Моменты случайной величины
  • Условное математическое ожидание

Примечания[править | править код]

  1. «Математическая энциклопедия» / Главный редактор И. М. Виноградов. — : «Советская энциклопедия», 1979. — 1104 с. — (51[03] М34). — 148 800 экз.
  2. А. Н. Ширяев. 1 // «Вероятность». — : МЦНМО, 2007. — 968 с. — ISBN 978-5-94057-036-3, 978-5-94057-106-3, 978-5-94057-105-6.
  3. В.Е.Гмурман. Часть вторая. Случайные величины. ->
    Глава 4. Дискретные случайные величины. ->
    Параграф 3.
    // [http://elenagavrile.narod.ru/ms/gmurman.pdf РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И
    МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ]. — 1979. — С. 63. — 400 с.
    Архивная копия от 21 января 2022 на Wayback Machine
  4. Пытьев Ю. П., Шишмарев И. А., Теория вероятностей, математическая статистика и элементы теории возможностей для физиков. — М.: Физический факультет МГУ, 2010.
  5. Теория вероятностей: 10.2. Теоремы о числовых характеристиках. sernam.ru. Дата обращения: 10 января 2018. Архивировано 10 января 2018 года.

Литература[править | править код]

  • Феллер В. Глава XI. Целочисленные величины. Производящие функции // Введение в теорию вероятностей и её приложения = An introduction to probability theory and its applicatons, Volume I second edition / Перевод с англ. Р. Л. Добрушина, А. А. Юшкевича, С. А. Молчанова Под ред. Е. Б. Дынкина с предисловием А. Н. Колмогорова. — 2-е изд. — М.: Мир, 1964. — С. 270—272.

Ссылки[править | править код]

  • Математическое ожидание и его свойства на http://www.toehelp.ru

Савельев Ф. Г.

Гр. 2351

Вариант 19.

Дано:

  1. Вычисление вектора мат. Ожиданий и
    ковариационных характеристик С.В.

Сначала найдём неизвестную константу.
Для этого вычислим плотность распределения
одной из компонент случайного вектора
с учётом неизвестной константы C
и приравняем её к единице.

.

Найдём вектор математических ожиданий

Имеем:
.

Плотность распределения
:

Плотность распределения
:

Отсюда,

вектор мат. ожиданий.

Ковариационную матрицу мы можем найти
двумя способами

1-ый способ. Ковариационная матрица
– это матрица, обратная матрице
квадратичной формы.

Матрица квадратичной формы:
;

Матрица ковариации:
.

2-ой способ. Найдем первый и четвертый
элемент матрицы ковариации – это
дисперсии компонент случайного вектора
x и y
соответственно.

,

Остается найти второй и третий члены
матрицы. Они, как известно, равны между
собой и вычисляются по формуле:
.

Найдем
.

Тогда второй и третий элементы будут
равны:
.

Имеем матрицу ковариации:
,
что полностью совпало с вычисленным
первым способом.

  1. Найти ортогональное преобразование,
    переводящее соответствующий центрированный
    случайный вектор в вектор с независимыми
    компонентами.

Преобразование будет называться
ортогональным, если его матрица будет
ортогональна т. е.

Тогда само преобразование можно описать
формулой


– матрица

– вектор при этом матрица

должна быть ортогональной.

Однако нам в задании уже дана плотность
с независимыми компонентами, следовательно
для перевода данного случайного вектора
в центрированный вектор необходим лишь
сдвиг. Опишем общий вид данного
преобразования.

Матрица

– матрица перехода от стандартного
базиса к базису собственных векторов
нашей матрицы квадратичной формы.

Матрица квадратичной формы

уже диагональная и собственные числа
равны, соответственно,

Матрица перехода будет

– единичная матрица. Эта матрица
ортогональна, следовательно, ортогонально
и преобразование. Для центрирования
данного случайного вектора необходимо
просто отнять столбец математических
ожиданий данных компонент.

Произведём первую замену. Вместе
,

подставляем новые координаты

Тогда квадратичная форма будет следующей

Якобиан такой замены будет равен 1

Следовательно, после такой замены,
плотность случайного вектора принимает
вид

Данный вектор центрирован (математическое
ожидание обоих компонент равно 0), имеет
независимые друг от друга компоненты
и получен ортогональным преобразованием.

Из такого вектора легко получить
стандартный нормальный вектор. Достаточно
сделать ещё одну замену. Вместо
,


ставим

На диагонали всегда будут находиться
члены вида
.
Якобиан такой замены также можно очень
просто посчитать

И умножив плотность распределения

т. е. компонент предыдущей замены получим

плотность распределения стандартного
и центрированного вектора.

4. Вычислить характеристики совместного
распределения с.в.
и
записать его плотность.

Математические ожидания мы находим,
используя свойство его линейности.

Пусть
,
тогда
,

.

Находим новые дисперсии, используя
свойства линейности для независимых
компонент.

Для заданного случайного вектора
компоненты уже независимы, следовательно,
мы можем найти дисперсию так:

Из ранее найденного имеем:

Тогда можно вычислить
.

Аналогично, имеем для дисперсии Y:

.

Вычислим матрицу ковариации

,

Надо вычислить ковариации новых компонент
вектора.

.


для наших независимых компонент равно
0.

Отсюда, матрица ковариации в явном виде:

.

Записываем плотность нового случайного
вектора

где
.

Подставив все значения, получим:

.

Для проверки распределения составим
матрицу квадратичной формы,

Возведем ее в (-1)-ую степень,
получили матрицу ковариации, что
показывает верность наших расчетов.

Содержание:

  1. Случайные векторы
  2. Свойства функции распределения случайного вектора
  3. Двумерные дискретные случайные векторы
  4. Двумерные абсолютно непрерывные случайные векторы
  5. Сходимость случайных величин

Случайные векторы

Рассматриваем случайное явление и вероятностное пространство, которое отвечает этому случайному явлению. Пусть Случайные векторы – случайные величины, связанные с этим случайным явлением. Совместное распределение этих случайных величин будем называть случайным вектором и обозначать Случайные векторы
Определение. Функцией распределения случайного вектора Случайные векторы называется функция n переменных Случайные векторы
Случайные векторы

Свойства функции распределения случайного вектора

1. Функция распределения непрерывна слева и монотонно неубывающая по всем аргументам.
2. 
Случайные векторы
3. Случайные векторы
4. Случайные векторы
5. Функция распределения компоненты Случайные векторы является границей функции распределения случайного вектора для всех Случайные векторы
Определение. Случайный вектор Случайные векторы называется дискретным, если он приобретает конечное или счетное количество значений.
Очевидно, что каждая компонента этого случайного вектора является дискретной случайной величиной.
Дискретный случайный вектор определяется значениями, которые он приобретает, и вероятностями, с которыми приобретаются эти значения.
Далее будем считать, что компонента ξ1 приобретает значения Случайные векторы компонента ξ1 – Случайные векторы компонента ξn – Случайные векторы а
Случайные векторы
Определение. Случайный вектор Случайные векторы называется абсолютно непрерывным, если существует n-мерная действительная функция Случайные векторы которую мы будем называть плотностью абсолютно непрерывного случайного вектора Случайные векторы такая, для которой выполняется равенство
Случайные векторы
Определение. Компоненты случайного вектора Случайные векторы называются независимыми, если Случайные векторы выполняется равенство
Случайные векторы
Случайные векторы
Если случайный вектор является дискретным, то условие независимости конкретизируется так:
Случайные векторы
Случайные векторы
Для абсолютно непрерывного случайного вектора условие независимости является таким:
Случайные векторы
Пусть Случайные векторы – некоторая функция. Математическое ожидание случайной величины Случайные векторы равно
Случайные векторы
Случайные векторы
Если случайный вектор является дискретным и
Случайные векторы
если вектор ξ – абсолютно непрерывный.
Определение. Ковариантной матрицей случайного вектора Случайные векторы называют числовую матрицу К размера Случайные векторы вида
Случайные векторы
где
Случайные векторы
и если Случайные векторы то величина Случайные векторы называется ковариацией.
Понятно, что на диагоналях стоят дисперсии соответствующих компонент.
Легко видеть, что
Случайные векторы
Доказательство.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Коэффициентом корреляции компонент Случайные векторы является число
Случайные векторы
корреляционной матрицей является матрица
Случайные векторы
Детальнее свойства случайных векторов рассмотрим для двумерного случая.

Двумерные дискретные случайные векторы

Рассматриваем двумерный случайный вектор Случайные векторы Предположим, что компонента ξ приобретает значения Случайные векторы компонента η приобретает значения Случайные векторы и Случайные векторы Распределение двумерного дискретного вектора удобно представлять в виде таблицы:
Случайные векторы
Очевидно, что Случайные векторы
где Случайные векторы
Пример. Дано распределение двумерного случайного вектора Случайные векторы
Случайные векторы
Найти Случайные векторы
Решение. Поскольку
Случайные векторы
то 
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Пример. Дано распределение двумерного случайного вектора Случайные векторы
Случайные векторы
Найти Случайные векторы
Решение. Очевидно, что
Случайные векторы
Случайные векторы
Случайные векторы
Распределение компонент находится так:
Случайные векторы
Далее определяем Случайные векторы Случайные векторы
Пример. Дано распределение двумерного случайного вектора Случайные векторы
Случайные векторы
Найти распределение компонент.
РешениеСлучайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Для контроля целесообразно сделать проверку. Известно, что Случайные векторы Убедимся, что это действительно так.
Случайные векторы
Следовательно, распределение компоненты ξ является таким:
Случайные векторы
Переходим к компоненте η:
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Проверка: Случайные векторы
Следовательно, распределение компоненты η является таким:
Случайные векторы
Заметим, что распределение компонент можно находить значительно проще.
Запишем еще раз распределение вектора, добавив одну строку снизу и один столбец справа. Далее находим суммы элементов по строкам и записываем эти суммы в последний столбец, а также находим суммы элементов по столбцах и значения найденных сумм записываем в нижнюю строку. Полученные суммы являются значениями вероятностей. Например, сумма верхней строки является вероятностью Случайные векторы сумма второй строки является вероятностью Случайные векторы соответственно сумма третьей строки – Случайные векторы Для того, чтобы найти Случайные векторы нужно найти сумму элементов второго столбца и т. д.
Случайные векторы
Определение. Условным распределением компоненты ξ при условии, что Случайные векторы называют совокупность значений
Случайные векторы
Аналогично, условным распределением компоненты η при условии, что Случайные векторы называют совокупность значений
Случайные векторы
Условным математическим ожиданием компоненты ξ при условии, что Случайные векторы называют число
Случайные векторы
Аналогично, условным математическим ожиданием компоненты η при условии, что Случайные векторы называют число
Случайные векторы
Пример. Дано распределение дискретного случайного вектора Случайные векторы
Случайные векторы
Найти условное распределение компоненты ξ при условии, что Случайные векторы условное распределение компоненты η при условии, что Случайные векторы условное математическое ожидание компоненты ξ при условии, что Случайные векторы условное математическое ожидание компоненты η при условии, что Случайные векторы
РешениеСлучайные векторы
Значение вероятности Случайные векторы находим как сумму элементов второго справа столбца.
Случайные векторы
Далее
Случайные векторы
Случайные векторы
Случайные векторы
Следовательно, условное распределение компоненты ξ при условии, что Случайные векторы будет таким:
Случайные векторы
Сразу находим условное математическое ожидание компоненты ξ при условии, что Случайные векторы
Случайные векторы
Случайные векторы
Переходим к нахождения условного распределения компоненты η при условии, что Случайные векторыСлучайные векторы
Случайные векторы
Случайные векторы
Запишем это условное распределение в виде таблицы
Случайные векторы
Далее найдем условное математическое ожидание.
Случайные векторы
Случайные векторы
Условие независимости для двумерного дискретного случайного вектора является такой:
Случайные векторы
для произвольных Случайные векторы
Пример. Дано распределение двумерного случайного вектора Случайные векторы
Случайные векторы
Проверить, являются ли независимыми компоненты этого вектора.
РешениеСлучайные векторы Случайные векторы Случайные векторы
Случайные векторы
Очевидно, условие Случайные векторы не выполняется. ■
Функция распределения для двумерного случайного вектора Случайные векторы находится так. По определению имеем
Случайные векторы
Очевидно, что функция распределения является кусочно-постоянной на отрезках Случайные векторы Поэтому ее можно представить в виде таблицы, которая содержит на одну строку больше чем таблица распределения этого случайного вектора и на один столбец больше чем таблица распределения этого случайного вектора.
Поскольку случайный вектор Случайные векторы не содержит значений меньших, чем Случайные векторы и Случайные векторы, то элементы в крайнем левом столбце и верхней строке будут нулевыми. Далее алгоритм заполнения таблицы будет таким: в Случайные векторы строке и Случайные векторы столбце будет записана сумма вероятностей, которые отвечают Случайные векторы
Пример. Дано распределение двумерного случайного вектора Случайные векторы.
Случайные векторы
Найти функцию распределения.
Решение. Поскольку наименьшим значением среди Случайные векторы является 2, а среди Случайные векторы является — 1, то вероятность того, что случайный вектор будет приобретать меньшие значения, равно 0. Поэтому слева и сверху мы проставляем нули.
Осталось заполнить 4 строки и 3 столбца. Обозначим значения незаполненных клеточек через Случайные векторы Очевидно, что
Случайные векторы
Случайные векторы
Пусть Случайные векторы – некоторая кусочно-непрерывная функция. Математическое ожидание случайной функции Случайные векторы находится так:
Случайные векторы
В частности ковариация находится по формуле
Случайные векторы
де
Случайные векторы
Случайные векторы
Случайные векторы
Коэффициент корреляции
Случайные векторы
Пример. Найти ковариацию и коэффициент корреляции случайного вектора Случайные векторы
Случайные векторы
Решение. Сначала найдем распределение компонент.
Случайные векторы
Случайные векторы
Далее находим Случайные векторы Случайные векторы Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
И, наконец, находим
Случайные векторы
Случайные векторы
Переходим к коэффициенту корреляции.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Запишем ковариационную и корреляционную матрицы
Случайные векторы
Заметим, что если компоненты случайного вектора является независимыми, то ковариация, а следовательно, и коэффициент корреляции равняются нулю. Наоборот не всегда правильно.
Пример случайного вектора, у которого ковариация равна нулю и коэффициенты зависимы.
Случайные векторы
Сначала покажем, что ковариация равно нулю.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Далее проверяем компоненты на независимость
Случайные векторы
Случайные векторы
Следовательно, Случайные векторы а поэтому компоненты являются зависимыми. ■
Заметим, что если ковариация является ненулевой, то компоненты зависимы.

Двумерные абсолютно непрерывные случайные векторы

Рассматриваем двумерный абсолютно непрерывный вектор Случайные векторы с плотностью Случайные векторы Плотность компонент Случайные векторы находят так:
Случайные векторы
Пример. Плотность двумерного случайного вектора Случайные векторы равна
Случайные векторы
где область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы Найти плотность компонент.
Решение. Сначала изобразим область D.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Вероятность попадания в область Случайные векторы находится из формулы
Случайные векторы
Очевидно, что Случайные векторы
Пример. Дана плотность абсолютно непрерывного случайного вектора Случайные векторы
Случайные векторы
Найти Случайные векторы Случайные векторы Случайные векторы Случайные векторы Случайные векторы если область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы
Решение. Сначала найдем неизвестную константу Случайные векторы Для этого графически изобразим область D
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Сначала найдем Случайные векторы Снова графически изобразим область
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Далее находим вероятность Случайные векторы Изобразим графически область
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Переходим к нахождению вероятности Случайные векторы Как и в предыдущих случаях сначала изображаем графически область интегрирования
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
И, наконец находим вероятность Случайные векторы Изображаем графически область интегрирования
Случайные векторы
Как видно из рисунка, сначала нужно найти точку пересечения прямых Случайные векторы Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Условие независимости компонент проверяется так:
Случайные векторы
Пример. Дана плотность случайного вектора Случайные векторы
Случайные векторы
где область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы Случайные векторы Найти Случайные векторы и проверить, являются ли компоненты независимыми.
Решение. Прежде всего изобразим область D.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Следовательно,
Случайные векторы
Проверяем независимость компонент. Для этого находим их плотности
Случайные векторы
Случайные векторы
Случайные векторы
Следовательно,
Случайные векторы
Переходим к нахождению плотности η
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Находим произведение Случайные векторы в области D и проверяем, равно ли оно Случайные векторы
Случайные векторы
Случайные векторы
В области D имеем Случайные векторы
Следовательно, условие независимости не выполняется. ■
Пример. Известно, что компоненты случайного вектора Случайные векторы является независимыми. Их плотности равняются:
Случайные векторы Случайные векторы
Найти совместную плотность случайного вектора Случайные векторы.
Решение. Из условия независимости Случайные векторы
Поэтому
Случайные векторы
где область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы Случайные векторы
Функция распределения находится по определению
Случайные векторы
Пример. Дана плотность абсолютно непрерывного случайного вектора
Случайные векторы
Найти Случайные векторы функцию распределения, если область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы Случайные векторы
Решение. Прежде всего находим неизвестную константу.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
По определению имеем
Случайные векторы
Аналитический вид функции распределения зависит от того, где находится точка Случайные векторы
В частности:
1. Пусть Случайные векторы или Случайные векторы
Случайные векторы Случайные векторы
Тогда, как видно из рисунка
Случайные векторы
2. Случайные векторы
Случайные векторы
Тогда
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
3. Далее рассмотрим точки Случайные векторы для которых выполняются условия Случайные векторы Случайные векторы
Случайные векторы
Очевидно аналитический вид функции распределения в этом случае будет таким:
Случайные векторы
Случайные векторы
4. Далее рассматриваем множество точек Случайные векторы для которых выполняются условия Случайные векторы Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
5. Наконец, если Случайные векторы Случайные векторы тогда
Случайные векторы
Случайные векторы
Случайные векторы
Условная плотность Случайные векторы находится по формуле
Случайные векторы
соответственно, условная плотность Случайные векторы
Случайные векторы
Пример. Дана плотность абсолютно непрерывного случайного вектора Случайные векторы
Случайные векторы
Найти неизвестную константу Случайные векторы условные плотности Случайные векторы Случайные векторы если область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы
Решение. Сначала изображаем область D и находим неизвестную постоянную.
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Далее находим распределение составляющих
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Следовательно, условия плотности будут такими:
Случайные векторы
Случайные векторы
Математическое ожидание от функции компонент вектора Случайные векторы равно
Случайные векторы
Пример. Дана плотность абсолютно непрерывного случайного вектора
Случайные векторы
Найти ковариацию, коэффициент корреляции, ковариационную матрицу, корреляционную матрицу, если область D ограничена линиями Случайные векторы Случайные векторы Случайные векторы Случайные векторы
Решение. Сначала находим неизвестную константу Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Переходим к ковариации
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Следовательно,
Случайные векторы
Случайные векторы
Далее находим дисперсии
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Случайные векторы
Ковариационная матрица является такой:
Случайные векторы
Корреляционная матрица имеет вид
Случайные векторы

Сходимость случайных величин

Определение. Рассматриваем последовательность случайных величин Случайные векторы Эта последовательность совпадает со случайной величиной ξ, если Случайные векторы
Случайные векторы
или
Случайные векторы
и это обозначают Случайные векторы
Определение. Последовательность случайных величин Случайные векторы сходится к случайной величине ξ в среднеквадратичном, если Случайные векторы Случайные векторы и
Случайные векторы
Это обозначают Случайные векторы
Теорема. Если Случайные векторы и Случайные векторы – непрерывная функция, то Случайные векторы

Закон больших чисел
Рассматриваем последовательность случайных величин Случайные векторы Для нее выполняется закон больших чисел (ЗБЧ) или эта последовательность удовлетворяет закон больших чисел, если
Случайные векторы
Сходимость по вероятности всегда проверять нет смысла, потому что есть теоремы, которые являются достаточными условиями для выполнения закона больших чисел.

Теорема Чебышева. Пусть дана последовательность независимых случайных величин Случайные векторы для которых существуют Случайные векторы Если существует константа С такая, что Случайные векторы Случайные векторы то для этой последовательности выполняется закон больших чисел.

Теорема Хинчина. Пусть дана последовательность независимых одинаково распределенных случайных величин Случайные векторы для которых существует математическое ожидание Случайные векторы тогда для этой последовательности выполняется закон больших чисел.

Теорема Маркова. Пусть дана последовательность произвольных случайных величин Случайные векторы для которых существуют Случайные векторы и выполняется равенство
Случайные векторы
Тогда для этой последовательности выполняется закон больших чисел.

Теорема Бернулли. В схеме независимых испытаний Случайные векторы Тут μ – относительная частота появления события, р – вероятность появления события в одном испытании.

Пример. Дана последовательность независимых случайных величин Случайные векторы
Случайные векторы
Проверить, выполняется ли для этой последовательности закон больших чисел.
Решение. Для проверки используем теорему Чебышева. Независимость дана в условии.
Случайные векторы
Случайные векторы
Случайные векторы
Очевидно, что
Случайные векторы
Поэтому для данной последовательности выполняются условия теоремы Чебышева, а следовательно, выполняется закон больших чисел. ■
Пример. Дана последовательность независимых случайных величин, которые имеют распределение Коши. Проверить, выполняется ли для этой последовательности закон больших чисел Случайные векторы.
Решение. Поскольку для распределения Коши не существует математического ожидания, то речь не идет о выполнении закона больших чисел. ■

Лекции:

  • Биномиальный закон
  • Равномерный закон
  • Закон Пуассона
  • Показательный закон
  • Нормальный закон
  • Теория вероятности: формулы, примеры
  • Схема Бернулли теория вероятности
  • Формула Пуассона теория вероятности
  • Формула лапласа
  • Статистическая вероятность

Добавить комментарий