Векторное произведение векторов как найти синус

Нахождение угла между векторами с помощью скалярного произведения

Косинус угла между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2a12+a22⋅b12+b22.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2a12+a22⋅b12+b22).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}right).

Пример 1

Найти угол между векторами a⃗=(1;−1)vec{a}=(1; -1) и b⃗=(1;2).vec{b}=(1; 2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+(−1)⋅212+(−1)2⋅12+22=1−22⋅5=−110.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+(-1)cdot2}{sqrt{1^{2}+(-1)^{2}}cdot sqrt{1^{2}+2^{2}}}=frac{1-2}{sqrt{2}cdotsqrt{5}}=frac{-1}{sqrt{10}}.

(a⃗,b⃗^)=arccos⁡(−110)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-1}{sqrt{10}} right )=arccosleft ( frac{-sqrt{10}}{10} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-sqrt{10}}{10} right).

Пример 2

Найти угол между векторами a⃗=(2;3)vec{a}=(2; 3) и b⃗=(3;1).vec{b}=(3; 1).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅3+3⋅122+32⋅32+12=6+313⋅10=9130=9130130.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot3+3cdot1}{sqrt{2^{2}+3^{2}}cdot sqrt{3^{2}+1^{2}}}=frac{6+3}{sqrt{13}cdotsqrt{10}}=frac{9}{sqrt{130}}=frac{9sqrt{130}}{130}.

(a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{9sqrt{130}}{130} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccos left ( frac{9sqrt{130}}{130} right ).

Косинус угла между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+ b_{3}^{2}}}right).

Пример 3

Найти угол между векторами a⃗=(1;2;3)иb⃗=(1;−2;3).vec{a}=(1; 2; 3) и vec{b}=(1; -2; 3).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+2⋅(−2)+3⋅312+22+32⋅12+(−2)2+32=1−4+914⋅14=614=37.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+2cdot(-2)+3cdot3}{sqrt{1^{2}+2^{2}+3^{2}}cdot sqrt{1^{2}+(-2)^{2}+3^{2}}}=frac{1-4+9}{sqrt{14}cdotsqrt{14}}=frac{6}{14}=frac{3}{7}.

(a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Пример 4

Найти угол между векторами a⃗=(2;−1;−2)vec{a}=(2; -1; -2) и b⃗=(1;3;−2).vec{b}=(1; 3; -2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅1+(−1)⋅3+(−2)⋅(−2)22+(−1)2+(−2)2⋅12+32+(−2)2=2−3+49⋅14=33⋅14=114=1414.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot1+(-1)cdot3+(-2)cdot(-2)}{sqrt{2^{2}+(-1)^{2}+(-2)^{2}}cdot sqrt{1^{2}+3^{2}+(-2)^{2}}}=frac{2-3+4}{sqrt{9}cdotsqrt{14}}=frac{3}{3cdotsqrt{14}}=frac{1}{sqrt{14}}=frac{sqrt{14}}{14}.

(a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Нахождение угла между векторами с помощью векторного произведения

Синус угла между векторами можно вычислить по формуле: sin⁡(a⃗,b⃗^)=∣a⃗×b⃗∣∣a⃗∣⋅∣b⃗∣.sin(widehat{vec{a},vec{b}})=frac{left | vec{a}times vec{b} right |}{left | vec{a} right |cdotleft | vec{b} right |}.

Пример 1

Найти угол между векторами a⃗=(2;−1;2)vec{a}=(2;-1;2) и b⃗=(3;0;1).vec{b}=(3;0;1).

a⃗×b⃗=∣ijk2−12301∣=(−1−0)i−(2−6)j+(0+3)k=−i+4j+3k.vec{a}times vec{b}=begin{vmatrix}i&j&k\2&-1&2\3&0&1end{vmatrix}=(-1-0)i-(2-6)j+(0+3)k=-i+4j+3k.

∣a⃗×b⃗∣=(−1)2+42+32=1+16+9=26.left | vec{a}times vec{b} right |=sqrt{(-1)^{2}+4^{2}+3^{2}}=sqrt{1+16+9}=sqrt{26}.

∣a⃗∣=22+(−1)2+22=4+1+4=9=3.left | vec{a} right |=sqrt{2^{2}+(-1)^{2}+2^{2}}=sqrt{4+1+4}=sqrt{9}=3.

∣b⃗∣=32+02+12=9+0+1=10.left | vec{b} right |=sqrt{3^{2}+0^{2}+1^{2}}=sqrt{9+0+1}=sqrt{10}.

sin⁡(a⃗,b⃗^)=26310=132325=1335=6515.sin(widehat{vec{a},vec{b}})=frac{sqrt{26}}{3sqrt{10}}=frac{sqrt{13}sqrt{2}}{3sqrt{2}sqrt{5}}=frac{sqrt{13}}{3sqrt{5}}=frac{sqrt{65}}{15}.

(a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Пример 2

Найти угол между векторами a⃗=(1;1;3)vec{a}=(1;1;3) и b⃗=(0;1;1).vec{b}=(0;1;1).

a⃗×b⃗=∣ijk113011∣=(1−3)i−(1−0)j+(1−0)k=−2i−j+k.vec{a}times vec{b}=begin{vmatrix}i&j&k\1&1&3\0&1&1end{vmatrix}=(1-3)i-(1-0)j+(1-0)k=-2i-j+k.

∣a⃗×b⃗∣=(−2)2+(−1)2+12=4+1+1=6.left | vec{a}times vec{b} right |=sqrt{(-2)^{2}+(-1)^{2}+1^{2}}=sqrt{4+1+1}=sqrt{6}.

∣a⃗∣=12+12+32=1+1+9=11.left | vec{a} right |=sqrt{1^{2}+1^{2}+3^{2}}=sqrt{1+1+9}=sqrt{11}.

∣b⃗∣=02+12+12=0+1+1=2.left | vec{b} right |=sqrt{0^{2}+1^{2}+1^{2}}=sqrt{0+1+1}=sqrt{2}.

sin⁡(a⃗,b⃗^)=6112=32112=311=3311.sin(widehat{vec{a},vec{b}})=frac{sqrt{6}}{sqrt{11}sqrt{2}}=frac{sqrt{3}sqrt{2}}{sqrt{11}sqrt{2}}=frac{sqrt{3}}{sqrt{11}}=frac{sqrt{33}}{11}.

(a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Тест по теме “Как найти угол между двумя векторами”

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Определение 1

Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Угол между векторами. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Обозначение: $∠(overline{α},overline{β})$

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Определение 2

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

$overline{δ}overline{β}=|overline{δ}||overline{β}|cos∠(overline{δ},overline{β})$

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Теорема 1

Скалярное произведение двух данных векторов $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

«Как найти угол между векторами» 👇

Обозначение: $overline{δ}cdot overline{β}$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

$cos∠(overline{δ},overline{β})=frac{overline{δ}cdot overline{β}}{|overline{δ}||overline{β}|}$

Из теоремы 1 мы знаем, что $overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{|overline{δ}||overline{β}|}$

Расписывая по формуле длины вектора значения $|overline{δ}|$ и $|overline{β}|$, окончательно получим

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{sqrt{δ_1^2+β_1^2+γ_1^2 } sqrt{δ_2^2+β_2^2+γ_2^2}}$

Найдя значение косинуса, мы легко найдем и значение самого угла.

Пример 1

Найти косинус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline{δ}cdot overline{β}=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$cos⁡∠(overline{δ},overline{β})=frac{11}{3cdot 5}=frac{11}{15}$

Ответ: $frac{11}{15}$.

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Определение 3

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Обозначение: $overline{δ}хoverline{β}$.

Математически это выглядит следующим образом:

  1. $|overline{δ}хoverline{β}|=|overline{δ}||overline{β}|sin⁡∠(overline{δ},overline{β})$
  2. $overline{δ}хoverline{β}⊥overline{δ}$, $overline{δ}хoverline{β}⊥overline{β}$
  3. $(overline{δ}хoverline{β},overline{δ},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)

Векторное произведение. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}$

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

${sin angle left(overrightarrow{delta },overrightarrow{beta }right) }=frac{left|overrightarrow{delta }хoverrightarrow{beta }right|}{left|overrightarrow{delta }right||overrightarrow{beta }|}$

Найдем вектор векторного произведения по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline{δ}|$, $|overline{β}|$ и $|overline{δ}хoverline{β}|$, окончательно получим

$sin∠(overline{δ},overline{β})=frac{sqrt{(δ_2 β_3-δ_3 β_2)^2+(δ_3 β_1-δ_1 β_3)^2+(δ_1 β_2-δ_2 β_1)^2}}{sqrt{δ_1^2+δ_2^2+δ_3^2}sqrt{β_1^2+β_2^2+β_3^2}}$

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Пример 2

Найти синус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\1&-2&2\3&0&4end{vmatrix}=-8overline{i}+2overline{j}+6overline{k}=(-8,1,6)$

Найдем длины этих векторов:

$|overline{δ}хoverline{β}|=sqrt{(-8)^2+2^2+6^2}=sqrt{104}=2sqrt{26}$

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$sin∠(overline{δ},overline{β})=frac{2sqrt{26}}{3cdot 5}=frac{2sqrt{26}}{15}$

Ответ: $frac{2sqrt{26}}{15}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно – 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = – 9 3 · 6 = – 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( – 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = – 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , – 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 2 2 + 0 2 + ( – 1 ) 2 · 1 2 + 2 2 + 3 2 = – 1 70 ⇒ a → , b → ^ = a r c cos ( – 1 70 ) = – a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( – 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 = – 1 cos a → , b → ^ = a → , b → ^ a → · b → = – 1 5 · 14 = – 1 70 ⇒ a → , b → ^ = – a r c cos 1 70

Ответ: a → , b → ^ = – a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , – 1 ) , B ( 3 , 2 ) , C ( 7 , – 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 – 2 , – 2 – ( – 1 ) ) = ( 5 , – 1 ) B C → = ( 7 – 3 , – 2 – 2 ) = ( 4 , – 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( – 1 ) · ( – 4 ) 5 2 + ( – 1 ) 2 · 4 2 + ( – 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 – 2 · O A · O B · cos ( ∠ A O B ) ,

b → – a → 2 = a → + b → – 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 – b → – a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Как найти угол между векторами

Вы будете перенаправлены на Автор24

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Пусть нам даны два вектора $overline<α>$ и $overline<β>$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline<α>=overline$ и $overline<β>=overline$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline<α>$ и $overline<β>$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Скалярное произведение двух данных векторов $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

Готовые работы на аналогичную тему

Обозначение: $overline<δ>cdot overline<β>$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

Из теоремы 1 мы знаем, что $overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

Расписывая по формуле длины вектора значения $|overline<δ>|$ и $|overline<β>|$, окончательно получим

Найдя значение косинуса, мы легко найдем и значение самого угла.

Найти косинус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline<δ>cdot overline<β>=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

В результате, получим

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Математически это выглядит следующим образом:

  1. $|overline<δ>хoverline<β>|=|overline<δ>||overline<β>|sin⁡∠(overline<δ>,overline<β>)$
  2. $overline<δ>хoverline<β>⊥overline<δ>$, $overline<δ>хoverline<β>⊥overline<β>$
  3. $(overline<δ>хoverline<β>,overline<δ>,overline<β>)$ и $(overline,overline,overline)$ одинаково ориентированы (рис. 2)

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

Найдем вектор векторного произведения по формуле:

$overline<δ>хoverline<β>=beginoverline&overline&overline\δ_1&δ_2&δ_3\β_1&β_2&β_3end=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline<δ>|$, $|overline<β>|$ и $|overline<δ>хoverline<β>|$, окончательно получим

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Найти синус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

Найдем длины этих векторов:

В результате, получим

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 20 07 2022

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

http://spravochnick.ru/geometriya/metod_koordinat_v_prostranstve/kak_nayti_ugol_mezhdu_vektorami/

[/spoiler]

Умножаем эти вектора. Их скалярное произведение равно произведению длин этих векторов на косинус угла между ними.
Угол нам неизвестен, зато известны координаты.
Математически запишем это так.
Пусть, даны вектора a{x1;y1} и b{x2;y2}
Тогда

a*b=|a|*|b|*cosA

отсюда

cosA=a*b/|a|*|b|

Рассуждаем.
a*b-скалярное произведение векторов, равно сумме произведений соответствующих координат координат этих векторов, т. е. равно x1*x2+y1*y2

|a|*|b|-произведение длин векторов, равно √((x1)^2+(y1)^2)*√((x2)^2+(y2)^2).

Значит, косинус угла между векторами равен:

cosA=(x1*x2+y1*y2)/√((x1)^2+(y1)^2)*√((x2)^2+(y2)^2)

Зная косинус угла, можем вычислить и его синус. Рассуждаем, как это сделать:

если косинус угла положительный, значит это угол лежит в 1 или 4 четверти, значит его синус либо положительный, либо отрицательный. Но т. к. угол между векторами-меньше или равен 180 градусов, то его синус – положительный. Аналогично рассуждаем, если косинус – отрицательный.

sinA=√(1-cos^2A)=√(1-((x1*x2+y1*y2)/√((x1)^2+(y1)^2)*√((x2)^2+(y2)^2))^2)

вот так))) ) удачи разобраться)))

Содержание:

Векторное и смешанное произведения векторов в векторной алгебре

Векторное произведение

Определение: Тройка векторов Векторное и смешанное произведения векторов с примерами решения

Пример:

Векторное и смешанное произведения векторов с примерами решения

Рис. 13. Правая (а) и левая (б) тройки векторов.

Определение: Векторным произведением векторов Векторное и смешанное произведения векторов с примерами решения называется вектор Векторное и смешанное произведения векторов с примерами решения который:

  • по модулю численно равен площади параллелограмма, построенного на векторах Векторное и смешанное произведения векторов с примерами решения
  • перпендикулярен плоскости, в которой лежат вектора Векторное и смешанное произведения векторов с примерами решения
  • тройка векторов Векторное и смешанное произведения векторов с примерами решения является правой.

Замечание: Из определения векторного произведения следует, что направление вектора Векторное и смешанное произведения векторов с примерами решенияопределяется по правилу правого винта: при вращении вектора Векторное и смешанное произведения векторов с примерами решенияк вектору Векторное и смешанное произведения векторов с примерами решенияправый винт движется в направлении вектора Векторное и смешанное произведения векторов с примерами решения Вычислим площадь параллелограмма, построенного на векторах Векторное и смешанное произведения векторов с примерами решения (Рис. 14): Векторное и смешанное произведения векторов с примерами решения

Рис. 14. Площадь параллелограмма, определяющего длину вектора Векторное и смешанное произведения векторов с примерами решения из треугольника АВС высота Векторное и смешанное произведения векторов с примерами решения тогда Векторное и смешанное произведения векторов с примерами решения следовательно, длина вектора Векторное и смешанное произведения векторов с примерами решения равнаВекторное и смешанное произведения векторов с примерами решения где Векторное и смешанное произведения векторов с примерами решения-угол между векторами Векторное и смешанное произведения векторов с примерами решения

Векторное произведение векторов обладает следующими свойствами:

Замечание: Свойство 4. определяет второе условие коллинеарности векторов.

Формула для векторного произведения векторов через проекции перемножаемых векторов

Теорема: Пусть Векторное и смешанное произведения векторов с примерами решения и Векторное и смешанное произведения векторов с примерами решения. Тогда Векторное и смешанное произведения векторов с примерами решения

Доказательство: Запишем вектора Векторное и смешанное произведения векторов с примерами решения в декартовом базисе: Векторное и смешанное произведения векторов с примерами решения и Векторное и смешанное произведения векторов с примерами решения Для доказательства формулы теоремы составим таблицу векторных произведений ортов осей:

Векторное и смешанное произведения векторов с примерами решения

Используя эту таблицу, вычислим векторное произведение векторов Векторное и смешанное произведения векторов с примерами решения

Векторное и смешанное произведения векторов с примерами решения

Векторное и смешанное произведения векторов с примерами решения

Отсюда следует, что Векторное и смешанное произведения векторов с примерами решения Для запоминания этих формул существует мнемоническое правило: надо запомнить переход проекций от одной к другой (Рис. 15):

Векторное и смешанное произведения векторов с примерами решения

Рис. 15. Циклический переход от одной координаты к другой.

Для нахождения, например проекции Векторное и смешанное произведения векторов с примерами решения надо взять компонент у первого вектора и умножить на компоненту z второго вектора, а затем вычесть их произведение, обменяв местами обозначение компонент. Аналогично поступают при нахождении двух других проекций вектора Векторное и смешанное произведения векторов с примерами решения С другой стороны, полученную формулу можно записать в виде

Векторное и смешанное произведения векторов с примерами решения

Полученное выражение представляет собой раскрытие определителя III порядка по элементам первой строки, то есть окончательно можно записать, что Векторное и смешанное произведения векторов с примерами решения

Пример:

Найти, при каком значении параметра m вектор Векторное и смешанное произведения векторов с примерами решения коллинеарен вектору Векторное и смешанное произведения векторов с примерами решения

Решение:

Согласно свойству 4. для векторного произведения (пункт 1 Лекция № 6) найдем векторное произведение заданных векторов Векторное и смешанное произведения векторов с примерами решения

Так как вектор Векторное и смешанное произведения векторов с примерами решения должен быть нулевым, то все его проекции должны быть равными нулю, следовательно, m = 2.

  • Заказать решение задач по высшей математике

Пример:

Найти векторное произведение векторов Векторное и смешанное произведения векторов с примерами решения

Решение:

Векторное и смешанное произведения векторов с примерами решения

Пример:

Найти векторное произведение векторов Векторное и смешанное произведения векторов с примерами решения

Решение:

Векторное и смешанное произведения векторов с примерами решения

Приложения векторного произведения

1. Физика. Пусть точка начала вектора Векторное и смешанное произведения векторов с примерами решения закреплена, а к его концу приложена сила Векторное и смешанное произведения векторов с примерами решения тогда момент этой силы будет равен Векторное и смешанное произведения векторов с примерами решения (Рис. 16). Векторное и смешанное произведения векторов с примерами решения Рис. 16. Момент силы Векторное и смешанное произведения векторов с примерами решения

2. Геометрия. Пусть даны три разные точки Векторное и смешанное произведения векторов с примерами решения и Векторное и смешанное произведения векторов с примерами решения Требуется вычислить площадь треугольника Векторное и смешанное произведения векторов с примерами решения

Введем в рассмотрение вектора Векторное и смешанное произведения векторов с примерами решения (Рис. 17).

Векторное и смешанное произведения векторов с примерами решения

Рис. 17. Площадь треугольника Векторное и смешанное произведения векторов с примерами решения

Проекции этих векторов равны:

Векторное и смешанное произведения векторов с примерами решения

Так как площадь треугольника составляет половину от площади параллелограмма, площадь которого равна модулю векторного произведения векторов Векторное и смешанное произведения векторов с примерами решения то Векторное и смешанное произведения векторов с примерами решения

Пример:

Даны три точки Векторное и смешанное произведения векторов с примерами решения Вычислить площадь треугольника Векторное и смешанное произведения векторов с примерами решения

Решение:

Введем в рассмотрение вектора Векторное и смешанное произведения векторов с примерами решения вычислим их векторное произведение Векторное и смешанное произведения векторов с примерами решения Следовательно, площадь треугольника равна Векторное и смешанное произведения векторов с примерами решения

3. Тригонометрия. Выведем формулу для Векторное и смешанное произведения векторов с примерами решения

Пусть в плоской декартовой системе координат даны векторы Векторное и смешанное произведения векторов с примерами решения которые образуют с положительным направлением оси Ох углы Векторное и смешанное произведения векторов с примерами решениясоответственно (Рис. 18):

Векторное и смешанное произведения векторов с примерами решения

Рис. 18. Синус суммы двух углов.

Проекции векторов равны Векторное и смешанное произведения векторов с примерами решения Используя формулу для векторного произведения векторов и свойство 4. для определителей (см. Лекция № 7), получим Векторное и смешанное произведения векторов с примерами решения Раскрыв этот определитель по элементам третьего столбца, имеем Векторное и смешанное произведения векторов с примерами решения

Длина этого вектора равна Векторное и смешанное произведения векторов с примерами решения По определению векторного произведения его длина равна Векторное и смешанное произведения векторов с примерами решения Сравнивая две полученные формулы, получаем формулу для синуса суммы двух углов. В частности, при Векторное и смешанное произведения векторов с примерами решения получаем, что синус удвоенного угла равен Векторное и смешанное произведения векторов с примерами решения

Смешанное произведение векторов

Определение: Смешанным произведением векторов Векторное и смешанное произведения векторов с примерами решения называется число равное векторному произведению Векторное и смешанное произведения векторов с примерами решения умноженному скалярно на вектор Векторное и смешанное произведения векторов с примерами решения т.е. Векторное и смешанное произведения векторов с примерами решения

Получим формулу для вычисления смешанного произведенияВекторное и смешанное произведения векторов с примерами решения

Векторное и смешанное произведения векторов с примерами решенияВекторное и смешанное произведения векторов с примерами решения

Обменяв местами первую строку со второй, а затем и с третьей, получим окончательную формулу Векторное и смешанное произведения векторов с примерами решения

Таким образом, смешанное произведение векторов представляет собой определитель III порядка, откуда следуют его свойства:

1. Векторное и смешанное произведения векторов с примерами решения, т.е. вектора, входящие в смешанное произведение, можно циклически перестав.!ять местами, поэтому зачастую смешанное произведение пишут без знаков abc.

2. Смешанное произведение векторов Векторное и смешанное произведения векторов с примерами решения равно объему параллелепипеда, построенного на этих векторах, взятого со знаком «+», если тройка векторов правая, и со знаком «-», если тройка векторов левая (Рис. 19):

Векторное и смешанное произведения векторов с примерами решения

Векторное и смешанное произведения векторов с примерами решения

Рис. 19. Объем параллелепипеда, построенного на векторахВекторное и смешанное произведения векторов с примерами решения

Так как Векторное и смешанное произведения векторов с примерами решения

Векторное и смешанное произведения векторов с примерами решения

3. Если вектора Векторное и смешанное произведения векторов с примерами решения, Векторное и смешанное произведения векторов с примерами решенияи Векторное и смешанное произведения векторов с примерами решениякомпланарны (лежат в одной плоскости или параллельных плоскостях), то их смешанное произведение равно нулю, т.е. Векторное и смешанное произведения векторов с примерами решения.

Замечание: Свойство 3. определяет условие компланарности трех векторов, т.е. если Векторное и смешанное произведения векторов с примерами решения то вектора Векторное и смешанное произведения векторов с примерами решения и Векторное и смешанное произведения векторов с примерами решения лежат в одной плоскости или параллельных плоскостях.

Пример:

Доказать, что вектора Векторное и смешанное произведения векторов с примерами решения компланарны.

Решение:

Согласно формуле, определяющей смешанное произведение векторов, имеем Векторное и смешанное произведения векторов с примерами решения

Пример:

Даны 4 точки Векторное и смешанное произведения векторов с примерами решения Вычислить объем параллелепипеда.

Решение:

Составим векторы Векторное и смешанное произведения векторов с примерами решения Вычислим объем параллелепипеда Векторное и смешанное произведения векторов с примерами решения Положительность вычисленного объема указывает на то, что вектора Векторное и смешанное произведения векторов с примерами решения и Векторное и смешанное произведения векторов с примерами решенияобразуют правую тройку.

Пример:

Чему равен объём пирамиды с вершинами А, В, С и D (координаты точек А, В, С и D взять из VIII.). Найти длину высоту, которая опущена из точки А на основание BCD.

Решение:

Объём пирамиды равен Векторное и смешанное произведения векторов с примерами решения Используя векторы Векторное и смешанное произведения векторов с примерами решения из VIII., которые имеют координаты Векторное и смешанное произведения векторов с примерами решения вычислим объём параллелепипедаВекторное и смешанное произведения векторов с примерами решения Векторное и смешанное произведения векторов с примерами решения Следовательно, объём пирамиды с вершинами А, В, С и D равен

Векторное и смешанное произведения векторов с примерами решения

С другой стороны, её объём по формуле из средней школы равен

Векторное и смешанное произведения векторов с примерами решения

Вычислим площадь треугольника BCD, лежащего в основании пирамиды: Векторное и смешанное произведения векторов с примерами решения Вычислим векторное произведение этих векторов Векторное и смешанное произведения векторов с примерами решения Найдём длину этого вектора Векторное и смешанное произведения векторов с примерами решения Следовательно, площадь треугольника BCD равна Векторное и смешанное произведения векторов с примерами решения Тогда длина высоты, опущенной из точки А на основание BCD, равна

Векторное и смешанное произведения векторов с примерами решения

  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Замечательные пределы
  • Непрерывность функций и точки разрыва
  • Матричный метод
  • Экстремум функции
  • Методы решения систем линейных алгебраических уравнений (СЛАУ)
  • Скалярное произведение и его свойства

Добавить комментарий