Векторы как найти расстояние между двумя точками

Skip to content

Длина вектора в пространстве

Длиной (или модулем) вектора называется расстояние между началом и концом вектора.

Длина вектора a{X,Y,Z} выражается через его координаты следующей формулой:

длина вектора формула

Пример  
Длина вектора $aleft{ { — 2,3,sqrt 3 } right}$ равна

$left| a right| = sqrt {{X^2} + {Y^2} + {Z^2}}  = $

$sqrt {{{left( { — 2} right)}^2} + {3^2} + {{left( {sqrt 3 } right)}^2}}  = sqrt {16}  = 4$


Расстояние между двумя точками в пространстве

Расстояние d между точками в пространстве A1{x1;y1;z1}, A2{x2;y2;z2} представляется формулой

Расстояние между двумя точками формула


Пример 
Расстояние между точками A1{4;-6;3} и A2 {-1;5;-4}

$d = sqrt {{{left( {{x_2} — {x_1}} right)}^2} + {{left( {{y_2} — {y_1}} right)}^2} + {{left( {{z_2} — {z_1}} right)}^2}} =  $

$=sqrt {{{left( { — 1 — 4} right)}^2} + {{left( {5 — left( { — 6} right)} right)}^2} + {{left( { — 4 — 3} right)}^2}} =$

$  =sqrt {25 + 121 + 49}  = sqrt {195}  approx 14$

12647


Расстояние d между точками в пространстве A11;y1;z1>, A22;y2;z2> представляется формулой

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 8

Оценок пока нет. Поставьте оценку первым.

3 комментария

найти расстояние между точками с(-2;1;-2) д (-1;2;1) м (-1;0;2) н (1;-1;2) найти 3 вектора сд — 2 вектора мн

Расстояние от точки до точки: формулы, примеры, решения

В данной статье рассмотрим способы определить расстояние от точки до точки теоретически и на примере конкретных задач. И для начала введем некоторые определения.

Расстояние между точками – это длина отрезка, их соединяющего, в имеющемся масштабе. Задать масштаб необходимо, чтобы иметь для измерения единицу длины. Потому в основном задача нахождения расстояния между точками решается при использовании их координат на координатной прямой, в координатной плоскости или трехмерном пространстве.

Расстояние между точками на координатной прямой

Исходные данные: координатная прямая O x и лежащая на ней произвольная точка А . Любой точке прямой присуще одно действительное число: пусть для точки А это будет некое число х A , оно же – координата точки А .

В целом можно говорить о том, что оценка длины некого отрезка происходит в сравнении с отрезком, принятым за единицу длины в заданном масштабе.

Если точке А соответствует целое действительное число, отложив последовательно от точки О до точки по прямой О А отрезки – единицы длины, мы можем определить длину отрезка O A по итоговому количеству отложенных единичных отрезков.

К примеру, точке А соответствует число 3 – чтобы попасть в нее из точки О , необходимо будет отложить три единичных отрезка. Если точка А имеет координату – 4 – единичные отрезки откладываются аналогичным образом, но в другом, отрицательном направлении. Таким образом в первом случае, расстояние О А равно 3 ; во втором случае О А = 4 .

Если точка A имеет в качестве координаты рациональное число, то от начала отсчета (точка О ) мы откладываем целое число единичных отрезков, а затем его необходимую часть. Но геометрически не всегда возможно произвести измерение. К примеру, затруднительным представляется отложить на координатной прямой дробь 4 111 .

Вышеуказанным способом отложить на прямой иррациональное число и вовсе невозможно. К примеру, когда координата точки А равна 11 . В таком случае возможно обратиться к абстракции: если заданная координата точки А больше нуля, то O A = x A (число принимается за расстояние); если координата меньше нуля, то O A = – x A . В общем, эти утверждения справедливы для любого действительного числа x A .

Резюмируя: расстояние от начала отсчета до точки, которой соответствует действительное число на координатной прямой, равно:

  • 0, если точка совпадает с началом координат;
  • x A , если x A > 0 ;
  • – x A , если x A 0 .

При этом очевидно, что сама длина отрезка не может быть отрицательной, поэтому, используя знак модуля, запишем расстояние от точки O до точки A с координатой x A : O A = x A

Верным будет утверждение: расстояние от одной точки до другой будет равно модулю разности координат. Т.е. для точек A и B , лежащих на одной координатной прямой при любом их расположении и имеющих соответственно координаты x A и x B : A B = x B – x A .

Расстояние между точками на плоскости

Исходные данные: точки A и B , лежащие на плоскости в прямоугольной системе координат O x y с заданными координатами: A ( x A , y A ) и B ( x B , y B ) .

Проведем через точки А и B перпендикуляры к осям координат O x и O y и получим в результате точки проекции: A x , A y , B x , B y . Исходя из расположения точек А и B далее возможны следующие варианты:

– если точки А и В совпадают, то расстояние между ними равно нулю;

– если точки А и В лежат на прямой, перпендикулярной оси O x (оси абсцисс), то точки и совпадают, а | А В | = | А y B y | . Поскольку, расстояние между точками равно модулю разности их координат, то A y B y = y B – y A , а, следовательно A B = A y B y = y B – y A .

– если точки A и B лежат на прямой, перпендикулярной оси O y (оси ординат) – по аналогии с предыдущим пунктом: A B = A x B x = x B – x A

– если точки A и B не лежат на прямой, перпендикулярной одной из координатных осей, найдем расстояние между ними, выведя формулу расчета:

Мы видим, что треугольник А В С является прямоугольным по построению. При этом A C = A x B x и B C = A y B y . Используя теорему Пифагора, составим равенство: A B 2 = A C 2 + B C 2 ⇔ A B 2 = A x B x 2 + A y B y 2 , а затем преобразуем его: A B = A x B x 2 + A y B y 2 = x B – x A 2 + y B – y A 2 = ( x B – x A ) 2 + ( y B – y A ) 2

Сформируем вывод из полученного результата: расстояние от точки А до точки В на плоскости определяется расчётом по формуле с использованием координат этих точек

A B = ( x B – x A ) 2 + ( y B – y A ) 2

Полученная формула также подтверждает ранее сформированные утверждения для случаев совпадения точек или ситуаций, когда точки лежат на прямых, перпендикулярных осям. Так, для случая совпадения точек A и B будет верно равенство: A B = ( x B – x A ) 2 + ( y B – y A ) 2 = 0 2 + 0 2 = 0

Для ситуации, когда точки A и B лежат на прямой, перпендикулярной оси абсцисс:

A B = ( x B – x A ) 2 + ( y B – y A ) 2 = 0 2 + ( y B – y A ) 2 = y B – y A

Для случая, когда точки A и B лежат на прямой, перпендикулярной оси ординат:

A B = ( x B – x A ) 2 + ( y B – y A ) 2 = ( x B – x A ) 2 + 0 2 = x B – x A

Расстояние между точками в пространстве

Исходные данные: прямоугольная система координат O x y z с лежащими на ней произвольными точками с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить расстояние между этими точками.

Рассмотрим общий случай, когда точки A и B не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки A и B плоскости, перпендикулярные координатным осям, и получим соответствующие точки проекций: A x , A y , A z , B x , B y , B z

Расстояние между точками A и B являет собой диагональ полученного в результате построения параллелепипеда. Согласно построению измерения этого параллелепипеда: A x B x , A y B y и A z B z

Из курса геометрии известно, что квадрат диагонали параллелепипеда равен сумме квадратов его измерений. Исходя из этого утверждения получим равенство: A B 2 = A x B x 2 + A y B y 2 + A z B z 2

Используя полученные ранее выводы, запишем следующее:

A x B x = x B – x A , A y B y = y B – y A , A z B z = z B – z A

A B 2 = A x B x 2 + A y B y 2 + A z B z 2 = x B – x A 2 + y B – y A 2 + z B – z A 2 = = ( x B – x A ) 2 + ( y B – y A ) 2 + z B – z A 2

Итоговая формула для определения расстояния между точками в пространстве будет выглядеть следующим образом:

A B = x B – x A 2 + y B – y A 2 + ( z B – z A ) 2

Полученная формула действительна также для случаев, когда:

– лежат на одной координатной оси или прямой, параллельной одной из координатных осей.

Примеры решения задач на нахождение расстояния между точками

Исходные данные: задана координатная прямая и точки, лежащие на ней с заданными координатами A ( 1 – 2 ) и B ( 11 + 2 ) . Необходимо найти расстояние от точки начала отсчета O до точки A и между точками A и B .

Решение

  1. Расстояние от точки начала отсчета до точки равно модулю координаты этой точки, соответственно O A = 1 – 2 = 2 – 1
  2. Расстояние между точками A и B определим как модуль разности координат этих точек: A B = 11 + 2 – ( 1 – 2 ) = 10 + 2 2

Ответ: O A = 2 – 1 , A B = 10 + 2 2

Исходные данные: задана прямоугольная система координат и две точки, лежащие на ней A ( 1 , – 1 ) и B ( λ + 1 , 3 ) . λ – некоторое действительное число. Необходимо найти все значения этого числа, при которых расстояние А В будет равно 5 .

Решение

Чтобы найти расстояние между точками A и B , необходимо использовать формулу A B = ( x B – x A ) 2 + y B – y A 2

Подставив реальные значения координат, получим: A B = ( λ + 1 – 1 ) 2 + ( 3 – ( – 1 ) ) 2 = λ 2 + 16

А также используем имеющееся условие, что А В = 5 и тогда будет верным равенство:

λ 2 + 16 = 5 λ 2 + 16 = 25 λ = ± 3

Ответ: А В = 5 , если λ = ± 3 .

Исходные данные: задано трехмерное пространство в прямоугольной системе координат O x y z и лежащие в нем точки A ( 1 , 2 , 3 ) и B – 7 , – 2 , 4 .

Решение

Для решения задачи используем формулу A B = x B – x A 2 + y B – y A 2 + ( z B – z A ) 2

Подставив реальные значения, получим: A B = ( – 7 – 1 ) 2 + ( – 2 – 2 ) 2 + ( 4 – 3 ) 2 = 81 = 9

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vektory/rasstojanie-mezhdu-tochkami/

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

[/spoiler]

 Если
нам известны координаты точек (естественно,
в заданной системе координат), то
однозначно известно их положение.
Поэтому можно найти любые геометрические
характеристики их взаимного расположения.
Получим формулы, позволяющие по известным
координатам двух точек вычислить
расстояние между ними.

 В
простейшем случае, когда две
точки А1 и А2 находятся
на одной оси, расстояние между ними
определяется формулой

s
= |x
2 −
x
1|,
(3)

где х1х2 −
координаты точек А1 и А2 соответственно.

 Очевидно,
что расстояние от А1 до А2 равно
расстоянию от А2 до А1,
что и привело у к тому, что в формуле (3)
появился знак модуля числа.

 Пусть
на плоскости задана система координат ХОY,
в которой координаты точки А1 равны х1 и у1,
а координаты точки А2,
соответственно, равны х2 и у2 (рис.
8).

рис.
8

 В
прямоугольном треугольнике А1А2В длина
стороны А2В равна 2 −
х
1|,
а длина стороны А1В
= |у
2 −
у
1|,
поэтому расстояние между точками А1 и А2 можно
найти по теореме Пифагора:

s
= √{(x
2 −
x
1)2 +
(y
2 −
y
1)2}.
(4)

26. Линейные операции над векторами. Линейные операции над векторами

Сложение
векторов

Пусть
даны два вектора 
 и 
.
Приложим вектор 
 к
точке 
 (концу
вектора 
)
и получим вектор 
 (рис.1.7,а;
здесь и далее равные векторы отмечены
одинаковыми засечками).
Вектор 
 называется суммой
векторов
 
 и 
 и
обозначается 
.
Это нахождение суммы называется правилом
треугольника
.

Сумму
двух неколлинеарных векторов 
 и 
 можно
найти по правилу
параллелограмма
.
Для этого откладываем от любой
точки 
векторы 
 и 
,
а затем строим параллелограмм 
 (рис.
1.7,6). Диагональ 
 параллелограмма
определяет сумму: 
.

Для
нахождения суммы нескольких векторов
можно построить ломаную из равных им
векторов. Тогда замыкающий
вектор
,
соединяющий начало первого вектора
ломаной с концом последнего ее вектора,
равен сумме всех векторов ломаной. На
рис.1.7,в изображена сумма 
 четырех
векторов 
.
Таким способом (правило
ломаной
)
можно сложить любое конечное число
векторов. Заметим, что сумма векторов
не зависит от точек приложения слагаемых
и от порядка суммирования. Например,
“выстраивая цепочку” векторов для
суммы в виде 
,
получим вектор, равный вектору 
.
Если ломаная получилась замкнутой, то
сумма равна нулевому вектору.

Вычитание
векторов

Вектор 
 называется противоположным вектору 
,
если их сумма равна нулевому вектору: 
.
Противоположный вектор 
 имеет
длину 
,
коллинеарен и противоположно направлен
вектору 
 (рис.1.8,а,б).
Нулевой вектор является противоположным
самому себе.

Разностью
векторов
 
 и 
 называется
сумма вектора 
 с
вектором 
,
противоположным вектору 
:

Для
нахождения разности векторов 
 и 
 приложим
к произвольной точке 
 векторы 
,
а также вектор 
,
противоположный вектору 
 (рис.1.9,а).
Искомую разность находим по правилу
параллелограмма:

Для
нахождения разности проще использовать
правило треугольника (рис. 1.9,6). Для этого
прикладываем к произвольной
точке 
 векторы 
.
Вектор 
 при
этом равен искомой разности 
.

Вычитание
векторов — действие, обратное сложению
— можно определить также следующим
образом: разностью
векторов
 
 и 
называется
такой вектор 
,
который в сумме с вектором 
 дает
вектор 
 (рис.1.9,в),
т.е. разность 
 —
это решение уравнения 
.

Пример
1.2.
 Для
векторов на рис. 1.6 найти следующие суммы
и разности:

Решение. Учитывая
равенство 
,
получаем по правилу треугольника 
.

Поскольку 
 и 
,
то 
.

По
правилу параллелограмма 
.

Так
как 
 и 
,
находим 

Умножение
вектора на число

Произведением
ненулевого вектора а на действительное
число
 
 называется
вектор 
,
удовлетворяющий условиям:

1)
длина вектора 
 равна 
,
т.е. 
;

2)
векторы 
 и 
 коллинеарные 
;

3)
векторы 
 и 
 одинаково
направлены, если 
,
и противоположно направлены, если 
.

Произведение
нулевого вектора на любое число 
 считается
(по определению) нулевым вектором: 
;
произведение любого вектора на число
нуль также считается нулевым вектором: 
.
Из определения произведения следует,
что:

а)
при умножении на единицу 
 вектор
не изменяется: 
;

б)
при умножении вектора на 
 получается
противоположный вектор: 
;

в) деление
вектора на отличное от нуля число
 
 сводится
к его умножению на число 
,
обратное 
.

г)
при делении ненулевого вектора 
 на
его длину, т.е. при умножении 
 на
число 
 получаем
единичный вектор, одинаково направленный
с вектором 
.

Действительно,
длина вектора 
 равна
единице: 
.

Вектор 
 коллинеарен
и одинаково направлен с вектором 
,
так как 
;

д)
при умножении единичного вектора на
число 
 получаем
коллинеарный ему вектор, длина которого
равна 
.

На
рис.1.10 изображены векторы, получающиеся
в результате умножения данного
вектора 
 на 
 и 
,
а также противоположный вектор 
.

Свойства
линейных операций над векторами

Сложение
векторов и умножение вектора на число
называются линейными
операциями над векторами
.

Для
любых векторов 
 и
любых действительных чисел 
 справедливы
равенства:

Свойства
1, 2 выражают коммутативность и
ассоциативность операции сложения
векторов, свойство 5 — ассоциативность
операции умножения на число, свойства
6,7 — законы дистрибутивности, свойство
8 называется унитарностью.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ТЕМА 7.3 ДЛИНА
ВЕКТОРА, РАССТОЯНИЕ МЕЖДУ ДВУМЯ ТОЧКАМИ.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Содержание учебного материала:

Изучение
свойств векторных величин и скалярного произведения векторов:

1.Длина
радиус-вектора.

2.Расстояние
между двумя точками.

3.
Координаты точки середины отрезка.

4.
Координаты точки, делящей отрезок в заданном отношении.

5.Скалярное
произведение двух векторов и его свойства.

6.Координатная
форма скалярного произведения.

7.Условие
коллинеарности векторов в пространстве.

8.Условие
ортогональности векторов в пространстве.

1. Длина вектора {х; у; z} вычисляется по формуле:

|| = .

2. Расстояние между точками А 1; у1;
z1)
и В(х2; у2;
z2) вычисляется по формуле:

|АВ| =

3. Координаты середины С(х; у; z) отрезка АВ, где А 1;
у1;
z1)  и В(х2; у2; z2) вычисляются по формулам:

х = ;      у = ;       z = .

4. Координаты точки С(х; у; z), делящей отрезок АВ в заданном отношении  , где коэффициент пропорциональности, А 1; у1;
z1),
В(х2; у2;
z2), вычисляются по формулам:

х = ;   у = ;   z = .

5. Скалярное произведение векторов.

Определение. Скалярным произведением векторов

 = (х1; у1;
z1) и  (х2; у2; z2)
(рис.1) называется число, равное произведению их длин на косинус угла между
ними:

 ∙  = ||∙||∙ .

6. Скалярное произведение векторов в координатной
форме
равно:

 ∙  = х1х2 + у1у2
+
z1z2,

Из определения
скалярного произведения векторов находим угол

между векторами:

 =  ;  = .

Свойства скалярного произведения для векторов ,  и  и любого числа k:

·   
  =   (переместительный
закон
);

·   
 +   =   +  (распределительный
закон
).

·       = ( )  (сочетательный закон).

7.Условие коллинеарности векторов в
пространстве
.

Два вектора а = 1;
у1;
z1), b = (х2; у2;
z2)
являются
коллинеарными, если
пропорциональны их соответствующие координаты:

8.Условие ортогональности векторов в
пространстве
.

Два вектора а = 1;
у1;
z1), b = (х2; у2;
z2)
являются
ортогональными, если их
скалярное произведение равно нулю:

 

Простейшие задачи в координатах

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

К простейшим задачам в координатах относятся следующие задачи:

  1. Вычисление координат вектора по координатам его начала и конца.

  2. Нахождение координат середины отрезка.

  3. Вычисление длины вектора.

  4. Вычисление расстояние между двумя точками.

Рассмотрим далее решение этих задач.

Вычисление координат вектора по координатам его начала и конца

Перед тем, как ввести данную задачу напомним понятие радиус вектора данной точки.

Определение 1

Пусть точка $M$ дана в заданной системе координат с началом в точке $O$. Тогда вектор $overrightarrow{OM}$ называется радиус-вектором для точки $M$.

Напомним, что при этом, если $M={x,y}$ в данной системе координат, то вектор $overrightarrow{OM}={x,y}$ в этой системе координат.

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Пример 1

Даны точки $A$ и $B$ имеющие координаты $left{x_1, y_1right}$ и ${x_2, y_2}$ соответственно. Найти координаты вектора $overrightarrow{AB}.$

Решение.

Рассмотрим рисунок по данной задаче (Рис. 1).

Связь между координатами вектора и координатами его начала и конца

Рисунок 1. Связь между координатами вектора и координатами его начала и конца

По определению разности двух векторов, имеем

[overrightarrow{AB}=overrightarrow{OB}-overrightarrow{OA}]

Следовательно,

[overrightarrow{AB}=left{x_2, y_2right}-left{x_1, y_1right}={x_2-x_1, y_2-y_1}]

Ответ: $overrightarrow{AB}={x_2-x_1, y_2-y_1}$.

Координаты середины отрезка

Пример 2

Даны точки $A$ и $B$ имеющие координаты $left{x_1, y_1right}$ и ${x_2, y_2}$ соответственно. $C$ — середина отрезка $AB$. Найти координаты точки $C.$

Решение.

Обозначим координаты точки $C$ через $left{x, yright}$. Рассмотрим рисунок 2.

Середина отрезка

Рисунок 2. Середина отрезка

Из правила параллелограмма, получим

[overrightarrow{OC}=frac{1}{2}(overrightarrow{OA}+overrightarrow{OB})]

Так как векторы $overrightarrow{OC}, overrightarrow{OA} и overrightarrow{OB}$ – радиус-векторы точек $C, A и B$ соответственно, то получим

[overrightarrow{OC}=left{x, yright}, overrightarrow{OA}=left{x_1, y_1right}, overrightarrow{OB}={x_2, y_2}]

Следовательно,

[x=frac{x_1+x_2}{2}, y=frac{y_1+y_2}{2}]

Ответ: $C=left{frac{x_1+x_2}{2}, frac{y_1+y_2}{2}right}$

«Простейшие задачи в координатах» 👇

Вычисление длины вектора по его координатам

Пример 3

Дан вектор $overrightarrow{a}$ с координатами $left{x, yright}$. Найти длину этого вектора.

Решение.

Рассмотрим систему координат $xOy$. Отложим от ее начала координат вектор $overrightarrow{OA}=overrightarrow{a}$. Проведем через точку $A$ перпендикуляры к осям координат $OA_1$ и $OA_2$ (рис. 3).

Вычисление длины вектора

Рисунок 3. Вычисление длины вектора

Так как вектор $overrightarrow{OA}$ – радиус вектор точки $A$, то $A=left{x, yright}$, следовательно,

[OA_1=x, OA_2=y]

Найдем теперь длины вектора по теореме Пифагора:

[{|overrightarrow{a}|}^2={OA_1}^2+{OA_2}^2] [{|overrightarrow{a}|}^2=x^2+y^2] [left|overrightarrow{a}right|=sqrt{x^2+y^2}]

Ответ: $sqrt{x^2+y^2}$.

Расстояние между двумя точками

Пример 4

Даны точки $A$ и $B$ имеющие координаты $left{x_1, y_1right}$ и ${x_2, y_2}$ соответственно.Найти $d$ — расстояние между точками $A$ и $B$ через их координаты.

Решение.

Рассмотрим рисунок 4.

Расстояние между точками

Рисунок 4. Расстояние между точками

[ d=|overrightarrow{AB}|]

Используя задачу 1, получим, что вектор $overrightarrow{AB}$ имеет координаты

[overrightarrow{AB}={x_2-x_1, y_2-y_1}]

Найдем длину данного вектора. По задаче 3, имеем

[d=left|overrightarrow{AB}right|=sqrt{{(x_2-x_1)}^2+{(y_2-y_1)}^2}]

Ответ: $d=sqrt{{(x_2-x_1)}^2+{(y_2-y_1)}^2}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 05.04.2023

Добавить комментарий