Внешний угол треугольника как найти рисунок

Углы треугольника бывают внутренние и внешние. Что такое внешний угол треугольника? Как его найти?

Определение.

Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.

Как построить внешний угол треугольника? Нужно продлить сторону треугольника.vneshniy ugol treugolnika

На рисунке:

∠3 — внешний угол при вершине А,

∠2 — внешний угол при вершине С,

∠1 — внешний угол при вершине В.

Сколько внешних углов у треугольника?

При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. Таким образом получаем 6 внешних углов.

vneshniy uglyi treugolnika Внешние углы каждой пары при данной вершины равны между собой (как вертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.

Чему равен внешний угол?

Теорема (о внешнем угле треугольника)

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

teorema o vneshnem ugle treugolnika

Дано: ∆АВС, ∠1 — внешний угол при вершине С.

Доказать: ∠1=∠А+∠В.

Доказательство:

Так как сумма углов треугольника равна 180º, ∠А+∠В+∠С=180º.

Следовательно, ∠С=180º-(∠А+∠В).

∠1 и ∠С (∠АСВ) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠С=180º-(180º-(∠А+∠В))=180º-180º+(∠А+∠В)=∠А+∠В.

Что и требовалось доказать.

Внешний угол треугольника

  • Сумма внешних углов

Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.

Внешний угол треугольника

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника  ABC,  то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

Внешние углы треугольника

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна  180°:

∠1 + ∠4 = 180°.

Сумма внутренних углов углов любого треугольника тоже равна  180°, значит:

∠2 + ∠3 + ∠4 = 180°.

Из этого следует, что

∠1 + ∠4 = ∠2 + ∠3 + ∠4.

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

∠1 = ∠2 + ∠3.

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна  360°

Рассмотрим треугольник  ABC:

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны  180°.  Все шесть углов (3 внутренних и 3 внешних) вместе равны  540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

∠1 + ∠2 + ∠3 = 540° – (∠4 + ∠5 + ∠6) = 540° – 180° = 360°.

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Основные определения

Прежде чем рассмотреть определение внешнего угла треугольника, напомним несколько основных определений из начального курса геометрии, а именно:

  • угла и треугольника;
  • смежных углов;
  • параллельных прямых.

Угол и треугольник являются геометрическими фигурами. Угол состоит из точки (вершины) и двух лучей (сторон угла), которые исходят из данной точки. Треугольник представляет собой три точки (вершины), соединённые отрезками (сторонами). Треугольник имеет три угла.

Определение 1

Смежными называют два угла, имеющие одну общую сторону, а другие две стороны являются продолжениями друг друга.

На рисунке ниже смежными углами являются углы $ADB$ и $BDC$. $angle ADB + angle BDC = angle ADC = 180^{circ}$.

Смежные углы. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Смежные углы. Автор24 — интернет-биржа студенческих работ

Параллельными называются две непересекающиеся прямые на одной плоскости. Секущей по отношению к двум прямым называется прямая, которая пересекает две прямые в двух точках. Если две прямые параллельны, то в случае пересечения пары этих прямых секущей, получившиеся в результате этого действа накрест лежащие углы равны, а сумма односторонних углов равна $180^{circ}$.

Теорема о сумме углов треугольника

Понятие внешнего угла треугольника встречается в теореме о сумме углов треугольника, которая звучит следующим образом:

Сумма углов треугольника равна $180^{circ}$.

«Внешний угол треугольника: определение и свойство» 👇

Приведём её доказательство.

Пусть дан произвольный $triangle ABC$. Нужно доказать, что $angle A + angle B + angle C=180^{circ}$.

Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Проведём прямую $b$ через вершину $B$, которая будет параллельна стороне $AC$.

Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Видим, что углы 1 и 5 – накрест лежащие углы при пересечении параллельных прямых $b$ и $AC$ секущей $AB$. Углы 3 и 4 также являются накрест лежащими углами при пересечении тех же параллельных прмяых секущей $BC$. Делаем вывод, что: $angle 5 = angle 1, angle 4 = angle 3$.

Очевидно, глядя на рисунок, что сумма углов 2, 4 и 5 равна $180^{circ}$. Отсюда следует, что $angle 1 +angle 2 +angle 3 = 180^{circ}$ или $angle A + angle B + angle C=180^{circ}$. Ч.т.д.

Внешний угол треугольника

В доказательстве теоремы о сумме углов треугольника есть два примера внешнего угла треугольника. Это углы 4 и 5. Дадим определение:

Определение 2

Внешний угол треугольника – это угол, являющийся смежным с каким-нибудь углом данного треугольника.

Имеем теорему:

Теорема 2

Внешний угол треугольника равен сумме двух углов данного треугольника, не являющихся смежным с внешним углом.

Докажем эту теорему.

Рассмотрим следующий рисунок:

Внешний угол треугольника. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Внешний угол треугольника. Автор24 — интернет-биржа студенческих работ

Мы видим, что угол 4 является внешним углом, смежным с 2 углом треугольника. Очевидно, что $angle 4 +angle 2 = 180^{circ}$. По теореме о сумме углов:

$(angle 1 +angle 3)+angle 2=180^{circ}$. Отсюда следует, $angle 4 = angle 1 +angle 3$. Ч.т.д.

Рассмотрим пример задачи на данную тему.

Пример 1

Задача. $triangle ABC$ – равнобедренный. $AC$ – основание этого треугольника. $AC$=37 см, внешний угол при $B$ равняется $60^{circ}$. Нужно найти расстояние от точки $C$ до прямой $AB$.

Решение. Сделаем рисунок:

Треугольник. Автор24 — интернет-биржа студенческих работ

Рисунок 5. Треугольник. Автор24 — интернет-биржа студенческих работ

На рисунке прямая, обозначающая расстояние от точки $C$ до прямой $AB$ обозначена как $CD$. В математике такое расстояние называют высотой. По определению высоты треугольника, прямая высоты перпендикулярна той стороне, на которую опущена. То есть $angle ADC = 90^{circ}$.

По теореме о внешнем угле треугольника находим $angle B$: $angle B=180-60=120^{circ}$. По теореме о сумме углов треугольника получается, что $angle A + angle C = 180-120=60$. Так как треугольник равнобедренный, углы у основания равны по $30^{circ}$.

Рассмотрим $triangle ADC$. Из вышеуказанного следует, что он прямоугольный. Из свойства прямоугольных треугольников известно, что катет такого треугольника, который лежит против угла $30^{circ}$, равен половине гипотенузы. В нашем случае, $СD$ является катетом против угла $30^{circ}$, а $AC$ – гипотенуза. Поэтому справедливо утверждать, что $CD=37/2=18,5$ см.

Ответ: 18,5 см.

Таким образом, в данной статье мы получили полное представление о том, что такое внешний угол треугольника и разобрали сопутствующие теоремы.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

В любом варианте ОГЭ есть задания, с которыми справится каждый. Приносят эти задачи легкий балл. Задачки устные и в одно действие. Так что если в 15 задании вам попались задания связанные с углами треугольника, то это они…самые простые.

Что необходимо знать?

1. Сумма углов треугольника равна 180 градусов

2. Внешний угол при вершине треугольника равен сумме двух других внутренних углов треугольника

На рисунке показан внешний угол треугольника
На рисунке показан внешний угол треугольника

3. Углы при основании равнобедренного треугольника равны

углы при основании равнобедренного тр-ка АВС (АВ=ВС, АС- основание)
углы при основании равнобедренного тр-ка АВС (АВ=ВС, АС- основание)

4. Биссектриса угла – луч, который делит угол угол на два равных угла. Биссектриса треугольника – отрезок выходящий из вершины треугольника, соединяющий ее с противолежащей стороной, принадлежащий биссектрисе угла. (Простыми словами биссектриса делит угол треугольника пополам)

Теперь посмотрим задания из сборника Ященко:

Задание №1

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Для начала сделаем наглядный рисунок:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Т.к. сумма углов треугольника равна 180 градусов, то сумма углов А и С:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Углы А и С – углы при основании равнобедренного треугольника. Они равны.

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Значит искомый угол ВСА равен 29 градусов

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Задание №2

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Для наглядности сделаю рисунок:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Вспоминаем, что внешний угол треугольника равен сумме двух других внутренних:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Получаем 12 градусов.

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

А вот задания с РешуОГЭ.

Задание №3

Банальные задачи ОГЭ. Задание 15. Углы треугольника.
Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Биссектриса делит угол пополам:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.
Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Задание №4

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Рисунок выглядит так:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Искомый угол принадлежит треугольнику MNA, значит найдем углы этого треугольника из определения биссектрисы:

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Зная два угла треугольника легко найти третий (т.к. сумма трех углов треугольника всегда 180 градусов):

Банальные задачи ОГЭ. Задание 15. Углы треугольника.
Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Если вы знаете того, кто готовится к ОГЭ, поделитесь с ним этой информацией. Всегда пригодится.

Продолжение следует…

Не забудь нажать на пальчик вверх после прочтения и подписаться. За это отдельная благодарность

(✿◠‿◠)

Банальные задачи ОГЭ. Задание 15. Углы треугольника.

Внешний угол треугольника

Определение. Внешним углом треугольника называется угол, смежный к любому углу этого треугольника.

На Рис.1 угол 4 внешний так как углы 2 и 4 смежные.

Теорема. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Доказательство. Докажем, что ( small angle 4=angle 1+ angle 3. ) Поскольку сумма углов треугольника равна 180°, то имеем:

. (1)

Так как углы 2 и 4 смежные, то:

. (2)

Вычитая (1) из (2) получим:

,
,
.Конец доказательства

Добавить комментарий