Второй закон кирхгофа как найти у

Для расчета электрической цепи применяют два закона Кирхгофа. (Скорее их можно отнести не к законам, а к правилам. Но в большинстве учебников пишут именно о “законах” Кирхгофа. Поэтому и здесь будем обращаться к законам).

Первый закон Кирхгофа

Первый закон Кирхгофа применяют к узлам электрической цепи и выражают баланс токов в них. Первый закон Кирхгофа гласит:

Алгебраическая сумма токов сходящихся в узле электрической цепи равна 0.

Под словом “алгебраическая” имеется в виду, что учитывается знак перед током: “плюс” или “минус”.

В общем виде первый закон Кирхгофа можно записать как:

Рисунок 1 - Первый закон Кирхгофа
Рисунок 1 – Первый закон Кирхгофа

Для примера возьмем узел, в котором протекают токи, указанные стрелками (далее рассмотрим это все на конкретных схемах).

Рисунок 2 - Узел электрической цепи, в котором сходятся 4 ветви
Рисунок 2 – Узел электрической цепи, в котором сходятся 4 ветви

Токи, втекающие и вытекающие из узла, берутся с противоположными знаками. Втекающие в узел токи берутся со знаком, например, “+”, а вытекающие с “-“ (можно вытекающие брать с “+”, а втекающие с “-“). Главное, чтобы втекающие и вытекающие токи отличались по знаку.

Будем считать токи положительными, если они втекают в узел, а вытекающие из узла – отрицательными. Тогда первый закон Кирхгофа для узла, представленного на рисунке 2, запишется:

I1-I2+I3+I4=0

Это выражение можно записать и в следующем виде:

I2=I1+I3+I4;

Ток I2 мы перенесли за знак равенства, его знак поменялся на противоположный (был с “минусом”, стал с “плюсом”).

Остальные токи мы не переносим, поэтому их знаки не меняются.

Согласно последнему выражению, первый закон Кирхгофа можно сформулировать по-другому:

Сумма токов, втекающих (подходящих) в узел, равна сумме токов, вытекающих (отходящих) из узла.

Все это говорит о том, что в узле эти токи не остаются и заряд в узле не накапливается.

Для более полного понимания, представим электрическую цепь (схему электрической цепи), для которой запишем первый закон Кирхгофа.

Рисунок 3 - Электрическая схема цепи для записи первого закона Кирхгофа
Рисунок 3 – Электрическая схема цепи для записи первого закона Кирхгофа

Запишем для этой цепи первый закон Кирхгофа для узла “a” (о том, как определить количество уравнений по первому и второму законам Кирхгофа, рассмотрим в конце ).

I1+I2-I3=0 или I3=I1+I2.

Второй закон Кирхгофа

Этот закон применяется к контурам электрической цепи и выражает баланс напряжений в них. Второй закон Кирхгофа звучит так:

Алгебраическая сумма ЭДС в замкнутом контуре (с учетом направления обхода контура) равна алгебраической (учитывается знак “+” или “-“) сумме падений напряжений на всех сопротивлениях (элементах) этого контура.

Для того, чтобы правильно составить уравнения по второму закону Кирхгофа, нужно пользоваться следующим правилом:

ЭДС берется со знаком “+”, если ее действие совпадает с направлением обхода контура. Напряжение на элементе контура берется со знаком “+”, если направление тока через данный элемент совпадает с направлением обхода контура. Если не совпадает направление обхода контура с направлением тока через элемент, то напряжение этого элемента берется со знаком “-“.

Запишем второй закон Кирхгофа для цепи, представленной ниже:

Рисунок 4 - Электрическая схема цепи для записи второго закона Кирхгофа(1 пример)
Рисунок 4 – Электрическая схема цепи для записи второго закона Кирхгофа(1 пример)

Выбираем направление обхода контура по часовой стрелке. В данном случае направление тока и направление обхода контура совпадают, поэтому I·R1 и I·R2 взяли со знаком “+”. А также совпадает направление обхода контура и действие ЭДС, поэтому ЭДС также записали со знаком “+”.

Возьмем еще один пример.

Рисунок 5 - Электрическая схема цепи для записи второго закона Кирхгофа(2 пример)
Рисунок 5 – Электрическая схема цепи для записи второго закона Кирхгофа(2 пример)

Запишем для этой цепи второй закон Кирхгофа. Обход выбираем по часовой стрелке (указали обход контура на схеме круговой стрелкой внутри контура). Как видим, направление обхода контура и направление тока I1 совпадают, а ток I2 направлен напротив обхода контура.

Следовательно, падение напряжения на резисторе R1 запишется со знаком “+”, т. е. +I1·R1. А падение напряжения на R2 запишется со знаком “-“, т. е. –I2·R2.

Направление действия ЭДС совпадает с обходом контура, поэтому ЭДС E берем со знаком “+”.

Запишем второй закон Кирхгофа для этой цепи:

I1·R1-I2·R2=E

Ну и напоследок рассмотрим сложную электрическую цепь, состоящую из нескольких источников и резисторов.

Рисунок 6 - Схема сложной электрической цепи
Рисунок 6 – Схема сложной электрической цепи

Введем произвольно направление токов в ветвях, а также укажем на схеме в виде круговых стрелок направление обхода контуров.

Рисунок 7 - Схема сложной электрической цепи с введенными токами, наименованиями узлов и направлением обхода контура
Рисунок 7 – Схема сложной электрической цепи с введенными токами, наименованиями узлов и направлением обхода контура

Токи в ветвях направили произвольно, обход контура выбрали по часовой стрелке, а также узлы в этой схеме обозначили буквами a и b. Для того, чтобы понять, как и сколько уравнений по первому и второму законам Кирхгофа нужно составить для данной цепи, необходимо посчитать количество ветвей, узлов и независимых контуров.

Подробно вышесказанные понятия электрической цепи мы рассмотрим в следующих статьях. А пока вкратце.

Узел – это место соединения трех и более ветвей в электрической цепи (в данном случае таких узлов два. Это узлы “a” и “b”.

Ветвь – это участок электрической цепи, который образуется одним или несколькими последовательно соединенными элементами и через все эти элементы протекает один и тот же ток.

Рисунок 8 - Ветви электрических цепей
Рисунок 8 – Ветви электрических цепей

Контур – это любой замкнутый путь электрической цепи, проходящий по двум или нескольким ветвям.

Рисунок 9 - Схема электрической цепи с введенными обходами контуров
Рисунок 9 – Схема электрической цепи с введенными обходами контуров

Так же есть такое понятие как независимый контур.

Независимый контур должен включать в себя хотя бы одну ветвь, не входящую в другие контуры.

На рисунке 9 будет три контура, два из которых независимые. Если контур 1 независимый, контур 2 независимый(таким образом все три ветви этой схемы цепи вошли в эти независимые контуры). Тогда контур 3 уже независимым не будет, поскольку все ветви “заняты” остальными двумя контурами.

Или если контур 1 независимый (он включает в себя ветви с элементами E и R1). Контур 3 независимый (он включает в себя ветви с элементом E и ветвь с элементом R3. Элемент R3 ранее не входил в первый независимый контур), поэтому контур 3 считается независимым.

Получается, что все ветви “заняты”. Тогда контур 2 независимым уже не будет, поскольку в него не входят ветви или ветвь ранее не входящую в другие контура. Все ветви вошли в ранее независимые контуры 1 и 3.

В цепи на рисунке 9, в общем случае, три ветви, два узла и два независимых контура. Общее количество уравнений по законам(правилам) Кирхгофа составляется столько, сколько ветвей в схеме цепи за вычетом количества ветвей, где есть источник тока (именно источник тока, а не ЭДС). В нашей схеме нет источников тока, следовательно, составляются три уравнения по законам Кирхгофа. Теперь осталось определить, сколько уравнений нужно составить по первому и второму законам Кирхгофа. Общее количество уравнений будет три. Формула для определения количества уравнений по первому закону Кирхгофа следующая:

N1з.к.=Ny-1, где Ny – количество узлов.

Ny=2, тогда

N1.з.к.=Ny-1=2-1=1

Т. е. по первому закону Кирхгофа составляется одно уравнение для данной цепи, а общее количество уравнений – три. Таким образом, мы получаем, что по второму закону Кирхгофа нужно составить два уравнения. Или для определения количества уравнений по второму закону Кирхгофа есть формула:

N2.з.к.=Nв-(Ny-1), где Nв – количество ветвей

Nв=3, тогда:

N2.з.к.=3-(2-1)=2

По второму закону Кирхгофа составляется два уравнения. Составим систему, состоящую из трех уравнений. Одно уравнение по первому закону Кирхгофа (это уравнение составляется для любого узла a или b) и двух уравнений по второму закону Кирхгофа для двух любых независимых контуров, например, составим для контуров 1 и 2.

Рисунок 10 - Система уравнений для схемы цепи, изображенной на рисунке 9
Рисунок 10 – Система уравнений для схемы цепи, изображенной на рисунке 9

Неизвестными в данной системе являются токи I1, I2 и I3. Решая данную систему, находят эти неизвестные.

О том, как решаются задачи с более сложными цепями, мы поговорим в следующих статьях.

Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.

Читайте также:

1. Как электроэнергия передается от электростанций до наших домов;

2. Что такое электрический ток – простыми словами;

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Пра́вила Ки́рхгофа[1] (часто в технической литературе называются Зако́нами Ки́рхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.

Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока[2].

Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей.

Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.

Сформулированы Густавом Кирхгофом в 1845 году[3].

Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле).
Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.

Формулировка правил[править | править код]

Определения[править | править код]

Для формулировки правил Кирхгофа вводятся понятия узел, ветвь и контур электрической цепи. Ветвью называют участок электрической цепи с одним и тем же током, например, на рис. отрезок, обозначенный R1, I1 есть ветвь. Узлом называют точку соединения трех и более ветвей (на рис. обозначены жирными точками). Контур — замкнутый путь, проходящий через несколько ветвей и узлов разветвлённой электрической цепи. Термин замкнутый путь означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.

В терминах данных определений правила Кирхгофа формулируются следующим образом.

Первое правило[править | править код]

Сколько тока втекает в узел, столько из него и вытекает.
i2 + i3 = i1 + i4

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи, равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла.

sum limits _{{j=1}}^{n}I_{j}=0.

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения электрического заряда.

Однако при расчетах следует учитывать, что это правило применимо только в случае пренебрежимо малой емкости узла. В противном случае первое правило может нарушаться, что особенно заметно при высокочастотных токах.

Второе правило[править | править код]

Правило напряжений Кирхгофа
v1 + v2 + v3 +v4 = 0

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

для постоянных напряжений sum _{{k=1}}^{n}E_{k}=sum _{{k=1}}^{m}U_{k}=sum _{{k=1}}^{m}R_{k}I_{k};
для переменных напряжений sum _{{k=1}}^{n}e_{k}=sum _{{k=1}}^{m}u_{k}=sum _{{k=1}}^{m}R_{k}i_{k}+sum _{{k=1}}^{m}u_{{L,k}}+sum _{{k=1}}^{m}u_{{C,k}}.

Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля.

Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае (см. далее).

Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.

Особенности составления уравнений для расчёта токов и напряжений[править | править код]

Если цепь содержит p узлов, то она описывается p-1 уравнениями токов. Это правило может применяться и для других физических явлений (к примеру, система трубопроводов жидкости или газа с насосами), где выполняется закон сохранения частиц среды и потока этих частиц.

Если цепь содержит m ветвей, из которых содержат источники тока ветви в количестве m_i, то она описывается m-m_{i}-(p-1) уравнениями напряжений.

  • Правила Кирхгофа, записанные для p-1 узлов или {displaystyle m-(p-1)} контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и все напряжения.
  • Перед тем, как составить уравнения, нужно произвольно выбрать:
    • положительные направления токов в ветвях и обозначить их на схеме, при этом не обязательно следить, чтобы в узле направления токов были и втекающими, и вытекающими, окончательное решение системы уравнений всё равно даст правильные знаки токов узла;
    • положительные направления обхода контуров для составления уравнений по второму закону, с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке).
  • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), падение напряжения считается положительным, в противном случае — отрицательным.
  • При записи линейно независимых уравнений по второму правилу Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие).
  • В сложных непланарных графах электрических цепей человеку трудно увидеть независимые контуры и узлы, каждый независимый контур (узел) при составлении системы уравнений порождает ещё 1 линейное уравнение в определяющей задачу системе линейных уравнений. Подсчёт количества независимых контуров и их явное указание в конкретном графе развит в теории графов.

Пример[править | править код]

На этом рисунке для каждой ветви обозначен протекающий по ней ток (буквой «I») и напряжение между соединяемыми ею узлами (буквой «U»)

Количество узлов: 3.

p-1=2

Количество ветвей (в замкнутых контурах): 4. Количество ветвей, содержащих источник тока: 0.

m-m_{i}-(p-1)=2

Количество контуров: 2.

Для приведённой на рисунке цепи, в соответствии с первым правилом, выполняются следующие соотношения:

{begin{cases}I_{1}-I_{2}-I_{6}=0\I_{2}-I_{4}-I_{3}=0end{cases}}

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например, здесь токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

Решение полученной линейной системы алгебраических уравнений позволяет определить все токи узлов и ветвей, такой подход к анализу цепи принято называть методом контурных токов.

В соответствии со вторым правилом, справедливы соотношения:

{begin{cases}U_{2}+U_{4}-U_{6}=0\U_{3}+U_{5}-U_{4}=0end{cases}}

Полученные системы уравнений полностью описывают анализируемую цепь, и их решения определяют все токи и все напряжения ветвей. Такой подход к анализу цепи принято называть методом узловых потенциалов.

О значении для электротехники[править | править код]

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простоте формулировки уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

Значение в математике[править | править код]

Первое правило Кирхгофа может быть сформулировано в матричном виде. Именно, пусть электрическая цепь состоит из n узлов. Составим матрицу {displaystyle A={a_{ij}}_{i,j=1}^{n}}, где a_{{ij}} при i neq j есть проводимость ветви, соединяющей узлы с номерами i и j (если они не соединены, можно мысленно соединить их ветвью нулевой проводимости). При этом {displaystyle a_{jj}=sum _{i=1,~ineq j}^{n}(-a_{ij})}. Пусть varphi  — потенциал, который мы рассматриваем как функцию, определённую на множестве узлов (или, что то же самое, вектор {displaystyle mathbf {u} =(varphi _{1},varphi _{2},dots ,varphi _{n})} в n-мерном пространстве mathbb {R} ^{n}). Тогда по определению проводимости имеем {displaystyle I_{ij}=a_{ij}(varphi _{i}-varphi _{j})}, где {displaystyle I_{ij}} — ток в ветви, идущей из вершины i в вершину j. Стало быть, первое правило Кирхгофа для j-того узла можно записать как {displaystyle sum _{i=1,~ineq j}^{n}I_{ij}=sum _{i=1,~ineq j}^{n}a_{ij}(varphi _{i}-varphi _{j})=0}, или же {displaystyle sum _{i=1,~ineq j}^{n}a_{ij}varphi _{i}+left(sum _{i=1,~ineq j}^{n}(-a_{ij})right)varphi _{j}=sum _{i=1,~ineq j}^{n}a_{ij}varphi _{i}+a_{jj}varphi _{j}=0}, или же, учитывая определение диагональных элементов матрицы, как {displaystyle sum _{i=1}^{n}a_{ij}varphi _{i}=0}. В левой части равенства легко узнать координату произведения матрицы A на вектор-столбец mathbf {u} .

Итак, первое правило Кирхгофа в матричном виде гласит:

{displaystyle {begin{Vmatrix}a_{11}&a_{21}&dots &a_{n1}\a_{12}&a_{22}&dots &a_{n2}\...&...&...&...\a_{1n}&a_{2n}&dots &a_{nn}end{Vmatrix}}{begin{Vmatrix}varphi _{1}\varphi _{2}\...\varphi _{n}end{Vmatrix}}=0Leftrightarrow A^{T}mathbf {u} =mathbf {0} }.

В таком виде оно допускает обобщение на проводящие поверхности. У криволинейной поверхности проводимость зависит не только от точки, но и от направления. Иными словами, проводимость является функцией на касательных векторах к поверхности. Если считать, что на касательных пространствах она хорошо приближается положительно определённой квадратичной формой, можно говорить о ней как о римановой метрике g (отличающейся от расстояния на поверхности как геометрической форме, учитывающей неизотропность её электрических свойств). Каждая точка поверхности может служить узлом, и потому потенциал будет уже не вектором, а функцией u на поверхности. Аналогом же матрицы проводимостей будет оператор Лапласа — Бельтрами {displaystyle Delta _{g}} метрики-проводимости, который действует на пространстве гладких функций. Первое правило Кирхгофа для поверхности гласит ровно то же: {displaystyle Delta _{g}u=0}. Иначе говоря, потенциал есть гармоническая функция.

В связи с этим матрицу A, сопоставляемую произвольному взвешенному графу, за исключением диагонали равную матрице смежности, иногда называют дискретным лапласианом. Аналоги теорем о гармонических функциях, такие как существование гармонической функции в области с краем при заданных значениях на крае, получающейся свёрткой с некоторым ядром, имеют место и для дискретных гармонических функций. Обратно, проводящая поверхность может быть приближена сеткой сопротивлений, и дискретные гармонические функции на этой сетке приближают гармонические функции на соответствующей поверхности. На этом обстоятельстве основан интегратор Гершгорина, аналоговая вычислительая машина, использовавшаяся для решения уравнения Лапласа в 30-х — 70-х годах XX века.

В случае проводящей поверхности вместо разности потенциалов имеет смысл говорить об 1-форме {displaystyle du}. Связанное с ней при помощи метрики-проводимости векторное поле {displaystyle mathrm {grad} _{g}(u)} — и есть электрический ток на этой поверхности. Согласно первому правилу Кирхгофа, эта 1-форма тоже гармонична (то есть лежит в ядре ходжева лапласиана, определённого на дифференциальных формах). Это даёт ключ к тому, как правильно формулировать закон Кирхгофа для случая, когда поле не потенциально: именно, 1-форма, получающаяся из тока, рассматриваемого как векторное поле, при помощи проводимости, рассматриваемой как риманова метрика, должна быть гармонична. Зная электродвижущую силу вокруг каждого топологически нетривиального контура на поверхности, можно восстановить силу и направление тока в каждой точке, притом единственным способом. В частности, размерность пространства всевозможных токов равна размерности пространства топологически нетривиальных контуров. Этот факт был одним из оснований для открытия двойственности Пуанкаре; то обстоятельство, что электродвижущие силы определяют однозначно ток (гармоническую 1-форму), является частным случаем теории Ходжа для 1-форм (теория Ходжа утверждает, что на римановом многообразии всякий класс когомологий де Рама представляется гармонической формой, притом только одной).

Закон излучения Кирхгофа[править | править код]

Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

Закон Кирхгофа в химии[править | править код]

Закон Кирхгофа гласит — температурный коэффициент теплового эффекта химической реакции равен изменению теплоёмкости системы в ходе реакции.

Примечания[править | править код]

  1. Статья Ки́рхгофа правила. Большая советская энциклопедия (2-е издание).
  2. Кирхгофа правила — статья из Большой советской энциклопедии. 

  3. Gustav Robert Kirchhoff. Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige. — 1845. — С. 497–514.

Литература[править | править код]

  • Матвеев А. Н. Электричество и магнетизм : учебное пособие. — М.: Высшая школа, 1983. — 463 с.
  • Калашников С. Г. Электричество : учебное пособие. — М.: Физматлит, 2003. — 625 с.
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — 11-е издание. — М.: Гардарики, 2007.
  • Герасимов В. Г., Кузнецов Э. В., Николаева О. В. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Сложная электрическая цепь

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Первый закон Кирхгофа

Рисунок 2. Узел электрической цепи.

Здесь ток I1– ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

I1 = I2 + I3  (1)

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

I1 – I2 – I3 = 0   (2)

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

– ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

– напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Второй закон Кирхгофа

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

E1– Е2 = -UR1 – UR2 или E1 = Е2 – UR1 – UR2   (3)

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Расчет по законам Кирхгофа

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

I = I1 + I2,

так как I1 и I2 втекают в узел А, а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

E1-E2 = Ur1 – Ur2 или E1-E2 = I1*r1 – I2*r2

Для внутреннего левого контура:

E1 = Ur1 + UR или E1 = I1*r1 + I*R

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

I = I1 + I2;

E1-E2 = I1*r1 – I2*r2;

E1 = I1*r1 + I*R.

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

I = I1 + I2;

7 = 0,1I1 – 0,1I2;

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

I2=I – I1;

I2 = I1 – 70;

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

I – I1= I1 – 70;

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

12 = 0,1I1 + 2(2I1 – 70).

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

I1=152/4,1

I1=37,073 (А)

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I – I1

I2=4,146 – 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I2 вытекает из узла А.

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

 Моделирование результатаРисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Схема контура

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический  заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Абстрактный узел

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Формула сумма токов

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Иллюстрация второго правила Кирхгофа

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

Формулы для второго правила киргхофа

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Магнитные контуры цепей

Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Пример для расчёта

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Система уравнений

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Система уравнений

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Привет, мой друг, тебе интересно узнать все про метод кирхгофа, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое
метод кирхгофа, закон кирхгофа , настоятельно рекомендую прочитать все из категории Электротехника, Схемотехника, Аналоговые устройства.

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Правила сформулированы в 1845 году, это не единственное открытие Кирхгофа. Кирхгоф и Бунзен активно изучали спектры излучения химических элементов, используя изобретения Фраунгофера. При помощи призмы или дифракционной решетки свет раскладывался на спектральные составляющие, и ученые наблюдали эффект. Так установлены индивидуальные частоты ряда элементов таблицы Менделеева. Указанные ученые заложили основы спектроскопии. Кирхгоф массу времени посвятил разным отраслям науки. К примеру, нашел ошибку в постановке граничных условий для решения дифференциальных уравнений по колебаниям мембран, представленных на суд публики в 1811 году Софи Жермен. Не нужно думать, что словосочетание
закон кирхгофа
узко ограничено двумя правилами, причем одно прямо приводит к сформулированному ранее закону Ома.

нем. Gustav Robert Kirchhoff
Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн
Дата рождения 12 марта 1824

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Рисунок 1. Сложная электрическая цепь .

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Самый точный метод, но с его помощью можно определять параметры схемы с небольшим количеством контуров (1-3).

Алгоритм:
1. Определить количество узлов q, ветвей p и независимых контуров;
2. Задаться направлениями токов и обходов контуров произвольно;
3. Установить число независимых уравнений по 1-ому закону Кирхгофа (q – 1) и составить их, где q-количество узлов;
4. Определить число уравнений по 2-ому закону Кирхгофа (p – q + 1) и составить их;
5. Решая совместно уравнения, определяем недостающие параметры цепи;
6. По полученным данным производится проверка расчетов, подставляя значения в уравнения по 1-ому и 2-ому законам Кирхгофа или составив и рассчитав баланс мощностей .

Пример:
Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн
Рис 1. Согласно предложенному алгоритму, определим количество узлов и ветвей схемы рис. 1
q = 3, p = 5, следовательно, уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3.

Запишем эти уравнения согласно правилам:
Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Составим уравнения баланса мощностей:
Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Правила и законы Кирхго́фа

Правила Кирхгофа (часто в технической литературе называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.

Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока .

Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчетов сложных электрических цепей.

Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.

Сформулированы Густавом Кирхгофом в 1845 году .

Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с еще двумя законами Кирхгофа в химии и физике.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

[[s|kirgof1.txt]]

Поясним первый закон Кирхгофа на примере рисунка 2.

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Рисунок 2. Узел электрической цепи.

Здесь ток I1– ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

I1 = I2 + I3 (1)

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

I1 – I2 – I3 = 0 (2)

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

[[s|kirgof2.txt]]

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

– ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

– напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Рисунок 3 . Об этом говорит сайт https://intellect.icu . Электрическая цепь, для пояснения второго закона Кирхгофа.

E1– Е2 = -UR1 – UR2 или E1 = Е2 – UR1 – UR2 (3)

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

I = I1 + I2,

так как I1 и I2 втекают в узел А, а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

E1-E2 = Ur1 – Ur2 или E1-E2 = I1*r1 – I2*r2

Для внутреннего левого контура:

E1 = Ur1 + UR или E1 = I1*r1 + I*R

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

I = I1 + I2;

E1-E2 = I1*r1 – I2*r2;

E1 = I1*r1 + I*R.

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

I = I1 + I2;

7 = 0,1I1 – 0,1I2;

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

I2=I – I1;

I2 = I1 – 70;

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

I – I1= I1 – 70;

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

12 = 0,1I1 + 2(2I1 – 70).

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

I1=152/4,1

I1=37,073 (А)

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I – I1

I2=4,146 – 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I2 вытекает из узла А.

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

О значении для электротехники

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приемами и способами ( метод эквивалентного генератора , принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простоте формулировки уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

Закон излучения Кирхгофа

Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн. С другой стороны, каждое нагретое тело излучает энергию по некоторому закону, именуемому излучательной способностью тела Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн.

Величины Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн и Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн могут сильно меняться при переходе от одного тела к другому, однако, согласно закону излучения Кирхгофа, отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

По определению, абсолютно черное тело поглощает все падающее на него излучение, то есть для него Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн. Поэтому функция Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн совпадает с излучательной способностью абсолютно черного тела, описываемой формулой Планка, вследствие чего излучательная способность любого тела может быть найдена, исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую, чем у абсолютно черного тела, излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно черного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно черного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения — куба Лесли.

В теоретических исследованиях для характеристики спектрального состава равновесного теплового излучения удобнее пользоваться функцией частоты Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн. В экспериментальных работах удобнее пользоваться функцией длины волны Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн. Обе функции связаны друг с другом формулой

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

В астрофизике закон Кирхгофа часто применяется в следующем виде:

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн,

где Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — коэффициент излучения (энергия, излучаемая единичным объемом в единичном интервале частот в единичный телесный угол за единицу времени); Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — коэффициент поглощения с учетом вынужденного испускания (Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн, где Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — плотность вещества, а Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн и Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — соответственно непрозрачность и эффективная длина пробега фотонов для частоты Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн); Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — интенсивность излучения абсолютно черного тела.

Закон Кирхгофа справедлив только для случаев теплового равновесия. Однако, его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом и его распределение по частотам существенно отличается от планковского. При этом часто (но не всегда) предположение о термодинамическом равновесии между частицами излучающего вещества оказывается хорошим приближением. Степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового.

Закон Кирхгофа в химии

Закон Кирхгофа гласит — температурный коэффициент теплового эффекта химической реакции равен изменению теплоемкости системы в ходе реакции.

Дифференциальная форма закона:

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Интегральная форма закона:

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

где Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн и Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — изобарная и изохорная теплоемкости, Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — разность изобарных теплоемкостей продуктов реакции и исходных веществ, Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — разность изохорных теплоемкостей продуктов реакции и исходных веществ, а Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн и Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн — соответствующие тепловые эффекты.

Если разница Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн невелика, то можно принять Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн и Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн, соответственно интегральная форма уравнений примет следующий вид:

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

При большой разнице температур необходимо учитывать температурные зависимости теплоемкостей: Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн и Метод Кирхгофа , первый и второй законы Кирхгофа -  онлайн

См. также

  • метод двух узлов ,
  • анализ цепей синусоидального тока , закон ома в комплексной форме ,
  • метод двух узлов ,
  • теорема тевенена ,
  • теорема нортона ,
  • закон ома для участка цепи , закон ома ,

Тебе нравиться метод кирхгофа? или у тебя есть полезные советы и дополнения? Напиши другим читателям ниже. Надеюсь, что теперь ты понял что такое метод кирхгофа, закон кирхгофа
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Электротехника, Схемотехника, Аналоговые устройства

Ответы на вопросы для самопроверки пишите в комментариях,
мы проверим, или же задавайте свой вопрос по данной теме.

Добавить комментарий