Как найти высоту четырёхугольной призмы
Призмой называют объемную фигуру, составленную из некоторого количества прямоугольных боковых граней и двух параллельных друг другу оснований. Основания могут иметь форму любого многоугольника, включая и четырехугольник. Высотой этой фигуры называют перпендикулярный основаниям отрезок между плоскостями, в которых они лежат. Его длина в общем случае определяется углом наклона боковых граней к основаниям призмы.
Инструкция
Если в условиях задачи приведен объем (V) пространства, ограниченного гранями призмы, и площадь ее основания (s), для вычисления высоты (H) используйте формулу, общую для призм с основанием любой геометрической формы. Разделите объем на площадь основания: H=V/s. Например, при объеме в 1200 см³ и площади основания, равной 150 см², высота призмы должна быть равна 1200/150=8 см.
Если четырехугольник, лежащий в основании призмы, имеет форму какой-либо правильной фигуры, вместо площади в вычислениях можно использовать длины ребер призмы. Например, при квадратном основании площадь в формуле предыдущего шага замените второй степенью длины его ребра (a):H=V/a². А в случае прямоугольника в ту же формулу подставьте произведение длин двух смежных ребер основания (a и b):H=V/(a*b).
Для вычисления высоты (H) правильной четырехугольной призмы может оказаться достаточным знания полной площади поверхности (S) и длины одного ребра основания (a). Так как общая площадь складывается из площадей двух оснований и четырех боковых граней, а в таком многограннике основанием является квадрат, площадь одной боковой поверхности должна быть равна (S-a²)/4. Эта грань имеет два общих ребра с квадратными основаниями известного размера, значит, для вычисления длины другого ребра разделите полученную площадь на сторону квадрата: (S-a²)/(4*a). Так как рассматриваемая призма является прямоугольной, то ребро вычисленной вами длины примыкает к основаниям под углом 90°, т.е. совпадает с высотой многогранника: H=(S-a²)/(4*a).
В правильной четырехугольной призме для вычисления высоты (H) достаточно знания длины диагонали (L) и одного ребра основания (a). Рассмотрите треугольник, образуемый этой диагональю, диагональю квадратного основания и одним из боковых ребер. Ребро здесь – неизвестная величина, совпадающая с искомой высотой, а диагональ квадрата, основываясь на теореме Пифагора, равна произведению длины стороны на корень из двойки. В соответствии с той же теоремой выразите искомую величину (катет) через длины диагонали призмы (гипотенузы) и диагонали основания (второй катет): H=√(L²-(a*V2)²)=√(L²-2*a²).
Источники:
- четырехугольная призма
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Download Article
Download Article
A prism is a three-dimensional solid with two parallel bases, or faces, that are congruent.[1]
The shape of the base determines what type of prism you have, such as a rectangular or triangular prism. Because it is a 3D shape, finding the volume (space inside) of a prism is a common task; however, sometimes you will need to find the height of a prism. Finding the height is possible if you have enough information already given: either the volume, or the surface area and perimeter of the base. The formulas described in these methods can work for prisms with bases of any shape, provided you know the formula for finding the area of that shape.
-
1
-
2
Plug the volume into the formula. If you do not know the volume, you cannot use this method.
Advertisement
-
3
Find the area of the base. To find the area, you need to know the length and width of the base (or of one side, if the base is a square). Use the formula . To find the area of a rectangle.[3]
-
4
Plug the area of the base into the volume of a prism formula. Make sure you are substituting for the variable .
- For example, if you found the area of the base to be 16 square meters, then your formula will look like this:
- For example, if you found the area of the base to be 16 square meters, then your formula will look like this:
-
5
Solve the equation for . This will give you the height of your prism.
Advertisement
-
1
-
2
Plug the volume into the formula. If you do not know the volume, you cannot use this method.
-
3
Find the area of the base. To find the area, you need to know the length of the triangle’s base and the height of the triangle. Use the formula to find the area of a triangle.[5]
-
4
Plug the area of the base into the volume of a prism formula. Make sure you are substituting for the variable .
- For example, if you found the area of the base to be 42 square meters, then your formula will look like this:
- For example, if you found the area of the base to be 42 square meters, then your formula will look like this:
-
5
Solve the equation for . This will give you the height of your prism.
Advertisement
-
1
-
2
Plug the surface area of the prism into the formula. If you do not know the surface area, this method will not work.
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
-
3
Find the area of the base. To find the area, you need to know the length and width of the base (or of one side, if the base is a square). Use the formula . To find the area of a rectangle.[7]
-
4
Plug the area of the base into the formula for the surface area of a prism and simplify. Make sure you are substituting for the letter .
-
5
Find the perimeter of the base. To find the perimeter of a rectangle, add up the length of all four sides, or, for a square, multiply the length of one side by 4.
-
6
Plug the perimeter of the base into the formula for the surface area of a prism. Make sure you are substituting for the letter .
- For example, if you found the perimeter of the base to be 20, your formula will look like this:
- For example, if you found the perimeter of the base to be 20, your formula will look like this:
-
7
Solve the equation for . This will give you the height of your prism.
Advertisement
-
1
-
2
Plug the surface area of the prism into the formula. If you do not know the surface area, this method will not work.
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
-
3
Find the area of the base. To find the area, you need to know the length of the triangle’s base and the height of the triangle. Use the formula . To find the area of a triangle.[9]
-
4
Plug the area of the base into the formula for the surface area of a prism and simplify. Make sure you are substituting for the letter .
-
5
Find the perimeter of the base. To find the perimeter of a triangle, add up the length of all three sides.
-
6
Plug the perimeter of the base into the formula for the surface area of a prism. Make sure you are substituting for the letter .
- For example, if you found the perimeter of the base to be 21, your formula will look like this:
- For example, if you found the perimeter of the base to be 21, your formula will look like this:
-
7
Solve the equation for . This will give you the height of your prism.
Advertisement
Add New Question
-
Question
How do I find the height of a cylinder given the volume?
You can use Method 1 and the formula V = Ah. The base of a cylinder is a circle, so A will equal the area of the circle, which is pi x r^2. As long as you know the radius of the circle, you should be able to solve for h.
-
Question
How can I find the height of a rectangular prism with the width, length and area of base?
You also need to know the volume, in which case, you would divide the volume by the area.
-
Question
How do I find the width of a rectangular prism?
Assuming you know the volume, divide the volume by the height, then divide by the length.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
Thanks for submitting a tip for review!
Things You’ll Need
- Pen/pencil and paper or calculator (optional)
References
About This Article
Article SummaryX
To find the height of a rectangular prism with a known volume, use the formula V=Ah, where V equals volume, A equals the area of one side, and h equals height. If you don’t have the area, multiply the width and length of one side to get that value. For triangular prisms with a known value, you use the same formula V=AH, but finding the area of one side is different. Use the formula A = 1/2bh, where b equals base and h equals height to get the area so you can solve for the height of the prism. To learn how to find the height of a triangular prism using the surface area, scroll down!
Did this summary help you?
Thanks to all authors for creating a page that has been read 378,388 times.
Did this article help you?
В школьном курсе стереометрии одной из самых простых фигур, которая имеет не нулевые размеры вдоль трех пространственных осей, является четырехугольная призма. Рассмотрим в статье, что это за фигура, из каких элементов она состоит, а также как можно рассчитать площадь ее поверхности и объем.
Понятие о призме
В геометрии призмой полагают пространственную фигуру, которая образована двумя одинаковыми основаниями и боковыми поверхностями, которые соединяют стороны этих оснований. Отметим, что оба основания переходят друг в друга с помощью операции параллельного переноса на некоторый вектор. Такое задание призмы приводит к тому, что все ее боковые стороны всегда являются параллелограммами.
Количество сторон основания может быть произвольным, начиная от трех. При стремлении этого числа к бесконечности, призма плавно переходит в цилиндр, поскольку ее основание становится кругом, а боковые параллелограммы, соединяясь, образуют цилиндрическую поверхность.
Как и любой полиэдр, призма характеризуется сторонами (плоскости, которые ограничивают фигуру), ребрами (отрезки, по которым пересекаются две любые стороны) и вершинами (точки встречи трех сторон, для призмы две из них являются боковыми, а третья – основанием). Количества названных трех элементов фигуры связаны между собой следующим выражением:
Р = С + В – 2
Здесь Р, С и В – это число ребер, сторон и вершин, соответственно. Это выражение является математической записью теоремы Эйлера.
Выше приведен рисунок, где показаны две призмы. В основании одной из них (A) лежит правильный шестиугольник, и стороны боковые перпендикулярны основаниям. Рисунок B демонстрирует другую призму. Ее боковые стороны уже не перпендикулярны основаниям, а основание представляет собой правильный пятиугольник.
Что такое призма четырехугольная?
Как понятно из описания выше, тип призмы в первую очередь определяется видом многоугольника, который образует основание (оба основания одинаковые, поэтому речь можно вести об одном из них). Если этим многоугольником является параллелограмм, то мы получаем четырехугольную призму. Таким образом, все стороны этого вида призмы являются параллелограммами. Четырехугольная призма имеет собственное название – параллелепипед.
Количество сторон параллелепипеда равно шести, причем каждая сторона имеет аналогичную параллельную ей. Поскольку основания параллелепипеда – это две стороны, то оставшиеся четыре являются боковыми.
Количество вершин параллелепипеда равно восьми, в чем легко убедиться, если вспомнить, что вершины призмы образуются только на вершинах базовых многоугольников (4х2=8). Применяя теорему Эйлера, получаем число ребер:
Р = С + В – 2 = 6 + 8 – 2 = 12
Из 12-ти ребер, только 4 образованы самостоятельно боковыми сторонами. Остальные 8 лежат в плоскостях оснований фигуры.
Далее в статье речь пойдет только о четырехугольных призмах.
Виды параллелепипедов
Первый тип классификации заключается в особенности параллелограмма, лежащего в основании. Он может быть следующего вида:
- обычный, у которого углы не равны 90o;
- прямоугольник;
- квадрат – правильный четырехугольник.
Второй тип классификации заключается в угле, при котором боковая сторона пересекает основание. Здесь возможно два разных случая:
- этот угол не является прямым, тогда призму называют косоугольной или наклонной;
- угол равен 90o, тогда такая призма является прямоугольной или просто прямой.
Третий тип классификации связан с высотой призмы. Если призма является прямоугольной, и в основании лежит либо квадрат, либо прямоугольник, тогда ее называют прямоугольным параллелепипедом. Если же в основании находится квадрат, призма является прямоугольной, а ее высота равна длине стороны квадрата, то мы получаем всем известную фигуру куб.
Поверхность призмы и ее площадь
Совокупность всех точек, которые лежат на двух основаниях призмы (параллелограммах) и на ее боковых сторонах (четыре параллелограмма), образуют поверхность фигуры. Площадь этой поверхности может быть вычислена, если рассчитать площадь основания и эту величину для боковой поверхности. Тогда их сумма даст искомое значение. Математически это записывается так:
S = 2*So + Sb
Здесь So и Sb – площадь основания и боковой поверхности, соответственно. Цифра 2 перед So появляется в виду того, что оснований два.
Отметим, что записанная формула справедлива для любой призмы, а не только для площади четырехугольной призмы.
Полезно напомнить, что площадь параллелограмма Sp вычисляется по формуле:
Sp = a*h
Где символы a и h обозначают длину одной из его сторон и высоту, проведенную к этой стороне, соответственно.
Площадь прямоугольной призмы с квадратным основанием
В правильной четырехугольной призме основание представляет собой квадрат. Обозначим для определенности его сторону буквой a. Чтобы рассчитать площадь правильной четырехугольной призмы, следует знать ее высоту. Согласно определению для этой величины, она равна длине перпендикуляра, опущенного из одного основания на другое, то есть равна расстоянию между ними. Обозначим ее буквой h. Поскольку все боковые грани перпендикулярны основаниям для рассматриваемого типа призмы, то высота правильной четырехугольной призмы будет равна длине ее бокового ребра.
В общей формуле для площади поверхности призмы стоит два слагаемых. Площадь основания в данном случае рассчитать просто, она равна:
So = a2
Чтобы вычислить площадь боковой поверхности, рассуждаем следующим образом: эта поверхность образована 4-мя одинаковыми прямоугольниками. Причем стороны каждого из них равны a и h. Это означает, что площадь Sb буде равна:
Sb = 4*a*h
Заметим, что произведение 4*a – это периметр квадратного основания. Если обобщить это выражение на случай произвольного основания, тогда для прямоугольной призмы боковую поверхность можно рассчитать так:
Sb = Po*h
Где Po – периметр основания.
Возвращаясь к задаче расчета площади правильной четырехугольной призмы, можно записать итоговую формулу:
S = 2*So + Sb = 2*a2 + 4*a*h = 2*a*(a+2*h)
Площадь косоугольного параллелепипеда
Вычислить ее несколько сложнее, чем для прямоугольного. В этом случае площадь основания четырехугольной призмы вычисляется по той же формуле, что и для параллелограмма. Изменения касаются способа определения площади боковой поверхности.
Для этого используется та же формула через периметр, что приведена в пункте выше. Только теперь в ней появятся несколько иные множители. Общая формула для Sb в случае косоугольной призмы имеет вид:
Sb = Psr*c
Здесь с – это длина бокового ребра фигуры. Величина Psr является периметром прямоугольного среза. Строится этот сред следующим образом: необходимо плоскостью пересечь все боковые грани таким образом, чтобы она была перпендикулярна всем им. Образованный прямоугольник и будет искомым срезом.
На рисунке выше приведен пример косоугольного параллелепипеда. Заштрихованное его сечение с боковыми сторонами образует прямые углы. Периметр сечения равен Psr. Он образован четырьмя высотами боковых параллелограммов. Для этой четырехугольной призмы площадь боковой поверхности рассчитывается по указанной выше формуле.
Длина диагонали прямоугольного параллелепипеда
Диагональ параллелепипеда – это отрезок, который соединяет две вершины, не имеющие общих сторон, которые их образуют. В любой четырехугольной призме диагоналей всего четыре. Для прямоугольного параллелепипеда, в основании которого расположен прямоугольник, длины всех диагоналей равны друг другу.
Ниже на рисунке приведена соответствующая фигура. Красный отрезок является ее диагональю.
Рассчитать ее длину очень просто, если вспомнить о теореме Пифагора. Каждый школьник может получить искомую формулу. Она имеет следующую форму:
D = √(A2 + B2 + C2)
Здесь D – длина диагонали. Остальные символы – это длины сторон параллелепипеда.
Многие путают диагональ параллелепипеда с диагоналями его сторон. Ниже приводится рисунок, где цветными отрезками изображены диагонали сторон фигуры.
Длина каждой из них также определяется по теореме Пифагора и равна квадратному корню из суммы квадратов соответствующих длин сторон.
Объем призмы
Помимо площади правильной четырехугольной призмы или других видов призм, для решения некоторых геометрических задач следует знать и их объем. Эта величина для абсолютно любой призмы вычисляется по следующей формуле:
V = So*h
Если призма является прямоугольной, тогда достаточно вычислить площадь ее основания и умножить его на длину ребра боковой стороны, чтобы получить объем фигуры.
Если призма является правильной четырехугольной, тогда ее объем будет равен:
V = a2 *h.
Легко видеть, что эта формула преобразуется в выражение для объема куба, если длина бокового ребра h равна стороне основания a.
Задача с прямоугольным параллелепипедом
Для закрепления изученного материала решим следующую задачу: имеется прямоугольный параллелепипед, стороны которого равны 3 см, 4 см и 5 см. Необходимо рассчитать площадь его поверхности, длину диагонали и объем.
Для определенности будем считать, что основанием фигуры является прямоугольник со сторонами 3 см и 4 см. Тогда его площадь равна 12 см2, а период составляет 14 см. Используя формулу для площади поверхности призмы, получаем:
S = 2*So + Sb = 2*12 + 5*14 = 24 + 70 = 94 см2
Для определения длины диагонали и объема фигуры можно непосредственно воспользоваться приведенными выше выражениями:
D = √(32+42+52) = 7,071 см;
V = 3*4*5 = 60 см3.
Задача с косоугольным параллелепипедом
Ниже на рисунке изображена косоугольная призма. Ее стороны равны: a=10 см, b = 8 см, с = 12 см. Необходимо найти площадь поверхности этой фигуры.
Сначала определим площадь основания. Из рисунка видно, что острый угол равен 50o. Тогда его площадь равна:
So = h*a = sin(50o)*b*a
Для определения площади боковой поверхности, следует найти периметр заштрихованного прямоугольника. Стороны этого прямоугольника равны a*sin(45o) и b*sin(60o). Тогда периметр этого прямоугольника равен:
Psr = 2*(a*sin(45o)+b*sin(60o))
Полная площадь поверхности этого параллелепипеда равна:
S = 2*So + Sb = 2*(sin(50o)*b*a + a*c*sin(45o) + b*c*sin(60o))
Подставляем данные из условия задачи для длин сторон фигуры, получаем ответ:
S = 458,5496 см3
Из решения этой задачи видно, что для определения площадей косоугольных фигур используются тригонометрические функции.
Правильная четырехугольная призма
Определение.
Правильная четырехугольная призма – это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники
Боковое ребро – это общая сторона двух смежных боковых граней
Высота призмы – это отрезок, перпендикулярный основаниям призмы
Диагональ призмы – отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани
Диагональная плоскость – плоскость, которая проходит через диагональ призмы и ее боковые ребра
Диагональное сечение – границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
Перпендикулярное сечение (ортогональное сечение) – это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам
Элементы правильной четырехугольной призмы
На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:
- Основания ABCD и A1B1C1D1 равны и параллельны друг другу
- Боковые грани AA1D1D, AA1B1B, BB1C1C и CC1D1D, каждая из которых является прямоугольником
- Боковая поверхность – сумма площадей всех боковых граней призмы
- Полная поверхность – сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
- Боковые ребра AA1, BB1, CC1 и DD1.
- Диагональ B1D
- Диагональ основания BD
- Диагональное сечение BB1D1D
- Перпендикулярное сечение A2B2C2D2 .
Свойства правильной четырехугольной призмы
- Основаниями являются два равных квадрата
- Основания параллельны друг другу
- Боковыми гранями являются прямоугольники
- Боковые грани равны между собой
- Боковые грани перпендикулярны основаниям
- Боковые ребра параллельны между собой и равны
- Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
- Углы перпендикулярного сечения – прямые
- Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
- Перпендикулярное (ортогональное сечение) параллельно основаниям
Формулы для правильной четырехугольной призмы
Указания к решению задач
При решении задач на тему “правильная четырехугольная призма” подразумевается, что:
Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия – призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом в форуме. Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .
Задача.
В правильной четырёхугольной призме площадь основания 144 см2, а высота 14 см. Найти диагональ призмы и площадь полной поверхности.
Решение.
Правильный четырехугольник – это квадрат.
Соответственно, сторона основания будет равна
√144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√( 122 + 122 ) = √288 = 12√2
Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√( ( 12√2 )2 + 142 ) = 22 см
Ответ: 22 см
Задача
Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.
Решение.
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
a2 + a2 = 52
2a2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
h2 + 12,5 = 42
h2 + 12,5 = 16
h2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
S = 2a2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см2 .
Ответ: 25 + 10√7 ≈ 51,46 см2 .
15306.1214
Прямая призма |
Описание курса
| Куб
девcтвенница
Ученик
(50),
закрыт
13 лет назад
если боковая поверхность равна 8,а полная поверхность-40
Удачник
Высший разум
(141069)
13 лет назад
Правильная 4-угольная призма – это прямоугольный параллелепипед, в основании которого лежит квадрат со стороной а.
Боковая поверхность S(бок) = 4*a*h = 8, a*h = 2.
Полная поверхность S = S(бок) + 2*S(осн) = 8 + 2*S(осн) = 40, S(осн) = a^2 = (40-8) / 2 = 16, a = 4 – сторона основания.
Поскольку a*h = 2, a = 4, то h = 0,5.