Задача как найти число по его части

Время чтения: 15 минут

В задании 3 ты можешь встретить различные задачи на части. Давай разберемся, какие типы задач могут встречаться и как их решать!

Подготовка к ВПР. Задание 3.
Подготовка к ВПР. Задание 3.

В основном существует 2 типа задач: нахождение части от числа и нахождение числа по его части. Подробно разберем каждый из них.

Нахождение части от числа 🍕

Для нахождения части от числа необходимо целое умножить на дробь, соответствующую этой части.

Найти часть от числа
Найти часть от числа

Нахождение числа по его части🍎

Для нахождения числа по его части необходимо часть разделить на соответствующую дробь.

Найти число по его части
Найти число по его части

🚩Сохрани формулы, чтобы не потерять👇

Формулы
Формулы

Изменение числа 📊

Часто встречаются задачи, где исходное число уменьшают/увеличивают НА некоторое число, либо В несколько раз. Что нужно делать в этом случае?

Предлог НА означает операцию сложения или вычитания:

  • Число 5 увеличили на 2: 5 + 2 = 7
  • Число 9 уменьшили на 4: 9 – 4 = 5

Предлог В означает операцию умножения или деления:

  • Число 4 увеличили В 3 раза: 4 * 3 = 12
  • Число 15 уменьшили в 5 раз: 15 : 5 = 3
Изменение числа На/В несколько раз
Изменение числа На/В несколько раз

Решение задач с помощью уравнений👩‍🏫

Встречаются более сложные типы задач, для которых удобнее всего составить уравнение и решить его.

Алгоритм:

  • За неизвестное (x), берут искомое число;
  • Записывают уравнение по условию задачи;
  • Находят значение х.

Задание 1 (см. картинку ниже): Если от задуманного числа отнять 220, то получится число, которое в пять раз меньше задуманного. Найдите задуманное число.

Решение:

  1. Обозначим задуманное число как x.
  2. “Если от задуманного числа отнять 220” – эту фразу можно записать в виде: x – 220.
  3. “Число, которое в пять раз меньше задуманного” – это значит, что задуманное число нужно разделить на 5: x/5.
  4. Получается следующее уравнение: x – 220 = x/5

Аналогичным образом решается Задание 2 (листай карусель ниже)

Разбор заданий из вариантов ВПР🥴

Давай посмотрим, каким типы задач могут встретиться тебе в Задании №3 и как их решать! Ниже представлено несколько примеров для ознакомления.

Больше различных заданий ты найдешь на сайте РЕШУ ВПР: https://math6-vpr.sdamgia.ru/?redir=1

На этом все! Остались вопросы? Напиши о них в комментариях!👇

Обязательно подпишись на канал, чтобы не пропустить больше полезных статей!🧠

#впр #огэ #егэ #математика #репетитор #6класс #алгебра #часть от числа #арифметика #средняяшкола

Составь задачу по схеме и придумай к ней две обратные задачи:
Задание рисунок 1
Как найти:
а) часть числа;
б) число по его части;
в) часть, которую одно число составляет от другого?

reshalka.com

ГДЗ учебник по математике 4 класс Петерсон. 6 урок. Правильные и неправильные части величин. Номер №6

Решение

В мешке было 18 кг картофеля. За день мама израсходовала

2
9

часть картофеля. Сколько кг картофеля израсходовала мама?
Решение:
18 : 9 * 2 = 2 * 2 = 4 (кг) − израсходовала мама.
Ответ: 4 кг.

 
Обратная задача 1.
За день мама израсходовала

2
9

часть картофеля, что составляет 4 кг. Сколько всего было картофеля?
Решение:
4 : 2 * 9 = 2 * 9 = 18 (кг) − картофеля было всего.
Ответ: 18 кг.

 
Обратная задача 2.
В мешке было 18 кг картофеля. За день мама израсходовала 4 кг. Какую часть составляет масса израсходованного картофеля?
Решение:

4
:
18
=

4
18

=

2
9

(картофеля) − израсходовала мама.
Ответ:

2
9

всего картофеля.

 
а) Чтобы найти часть от числа, выраженную дробью, надо это число разделить на знаменатель и умножить на числитель.
б) Чтобы найти число по его части, выраженной дробью, надо эту часть разделить на числитель и умножить на знаменатель.
в) Чтобы выразить дробью часть, которую одно число составляет от другого, надо первое число разделить на второе.

Как найти целое, если известна его часть?

Например, 3/8 торта весит 300 грамм. Как узнать, сколько весит весь торт?

Нахождение целого по его части

Если у нас известна какая-либо часть (доля) от целого, то можно всегда “восстановить” целое.

При этом нужно помнить, что часть от целого числа может быть выражена либо в виде дроби (обычно обыкновенной), либо в виде процента.

Рассмотрим оба случая.


1) Часть числа – это обыкновенная дробь.

В этом случае для нахождения целого нужно число, соответствующее данной части, разделить на дробь.

Для того, чтобы число разделить на обыкновенную дробь, нужно умножить его на знаменатель дроби и разделить на числитель.

_

Пример 1:

Специалист отдела кадров получил премию 2000 рублей, что составляет 1/15 часть от его месячной зарплаты. Требуется узнать, сколько составляет зарплата у данного сотрудника.

Решение:

Зарплата = 2000 / (1/15) = 2000 * 15 = 30000 рублей.

Значит, сотрудник получает зарплату 30000 рублей в месяц.

_

Пример 2:

Было засеяно пшеницей 12 гектаров поля, что составляет 3/5 от его общей площади. Нужно посчитать, чему равна площадь поля.

Решение:

Площадь поля = 12 / (3/5) = 12 * (5/3) = 20 гектаров.


2) Часть числа представлена в процентах.

Если доля от целого является процентом, а не обыкновенной дробью, то подобные задачи можно решать с помощью составления пропорции.

_

Пример:

Цена апельсинов со скидкой равна 120 рублей, величина скидки равна 20%. Нужно узнать, сколько стоили апельсины изначально.

Решение:

Так как скидка = 20%, то от исходной цены апельсинов осталось 100% – 20% = 80%.

80% – 120 рублей.

100% – x рублей.

0,8x = 120 рублей.

x = 120 / 0,8 = 150 рублей.

Таким образом, до скидки апельсины стоили 150 рублей.

модератор выбрал этот ответ лучшим

Алиса в Стран­е
[363K]

3 года назад 

Часть числа может быть выражена в виде десятичной или простой дроби, в виде процентов, что по сути то же самое, что десятичная дробь, всем понятно, что 0,1 это 10%, например.

Если известна часть числа в абсолютном выражении и то, какую часть она составляет от целого, то нет ничего проще, чем определить это целое.

Допустим, 20 яблок это 25 % от всех яблок, надо 20 поделить на 0,25, чтобы определить общее количество яблок, 20/0,25 = 80, вот так мы нашли целое по его части.

Еще один пример разберем, 12 мест в автобусе это 1/3 от всех мест в автобусе, как найти общее число всех мест в автобусе, делим 12 на 1/3, то есть по правилам деления на дробь умножаем 12 на 3, получается 36.

Ну и в итоге решим задачку автора из его вопроса:

300 граммов делим на 3/8 получаем 800 граммов.

smile­6008
[28.5K]

3 года назад 

В математике и жизни бывают случаи, когда необходимо найти число, зная только его часть. Для этого можно использовать различные способы расчётов, использовать дроби , но удобнее всего рассчитать в процентном соотношении.

Итак мы знаем, что 300 грамм составляют 3/8 торта. Нужно узнать сколько же весит торт целиком. Переводим в процентное соотношение, поделим 8 на 3, получим 0,26666 в процентах – это 26,6%. Теперь найдём 100 %, для этого посчитаем пропорцию. 26,6% = 300 ;100 % = x. X = 26,6*300/100.Получае­м 799,8 округляем по закону округление в большую сторону, получаем 800 гр весит весь торт.

[поль­зоват­ель забло­киров­ан]
[3.3K]

5 лет назад 

Для лучшего понимания процесса можно делать так (хотя математически это нерационально).

Узнайте чему равна ОДНА часть. Для этого заданное число разделите на количество заданных частей в дроби, их 3.

300 делим на 3, получаем 300/3=100

Это одна восьмая часть.

Целое – это восемь восьмых, потому предыдущий результат умножаем на 8, получаем 100*8=800

Если же дробь задана, как десятичная, т.е. 0.375, то представляем её, как натуральную (это 375/1000) и поступаем точно так же.

Узнаём, чему равна одна тысячная часть 300/375=0.8

Ну, а далее узнаём чему равно само целое 0.8*1000=800

Эл Лепсо­ид
[139K]

5 лет назад 

В общем случае, конечно, следует прибегнуть к составлению пропорции, поставив в соответствие к имеющейся части ее вес, а к целому (т.е. единице) – неизвестную “х”. Но, поскольку, у нас во второй части пропорции стоит “1”, то решить задачу можно значительно проще: просто разделить на величину известной части. В нашем случае получается: 300/(3/8) = 300*8/3 = 800.

Таким образом, весь торт будет весить 800 грамм.

СТА 1106
[295K]

3 года назад 

3/8- означает, что на три части из восьми приходится 300 грамм. Требуется узнать вес целого, в данном случае, торта. Для этого нужно узнать, что приходится на одну часть. Можно решить методом пропорции, мой любимый метод. Итак:

3 части – 300 грамм.

8 частей – Х грамм.

Решаем пропорцию.

8 × 300 ÷ 3 = 800 грамм.

Общий алгоритм решения следующий. Зная, сколько приходится на долю от целого, нужно определить, сколько приходится на единицу измерения ( грамм, килограмм, метр, час и т.д). Затем зная это, просто умножает на все количество долей, на которое поделён данный предмет. В данном случае- это восемь частей.

Второй вариант решения задачи.

300 : 3 × 8 = 800 грамм.

Ответ. 800 грамм , в обоих вариантах таз решения задачи.

Проще не бывает. Надо число означающее часть разделить на количество этих частей и полученный результат умножить на целое. Получим число выражающее целую часть.

Пример:

Дано 4/15 равняется 40. Делим сорок на четыре и умножаем на 15. Получаем сумму в 150 – это и будет целое.

Или 2/10 равняется 40. Делим сорок на два, получаем двадцать. Умножаем двадцать на десять, получаем двести. Целое число двести.

Maste­r-Marga­rita
[135K]

5 лет назад 

Чтобы узнать, сколько весит торт в данном случае, надо провести следующие арифметический действия: (300*8)/3=800 грамм.

То есть, чтобы найти целое нужно часть умножить на знаменатель дроби и разделить на числитель дроби. В данном случае числитель – 3, а знаменатель – 8.

Рина1­9
[31.2K]

5 лет назад 

Сначала найдём чем у равна 1 часть из всех имеющихся. А затем умножим её на общее число всех частей.

На данном примере.

Известно, что 3/8 торта весит 300 г, т.е. 3 части из 8 на которые был нарезан торт или, по другому, 3 куска торта из 8 нарезанных кусочков весят 300 г.

Тогда 1 кусочек будет весить: 300/3=100 г. Теперь находим чему будет весить все 8 кусков, т.е. весь торт.

100*8=800 г

Бекки Шарп
[71.2K]

3 года назад 

Если 3/8 торта весит 300 грамм, то сначала узнаем сколько весит одна часть. 300/3=100 грамм.

Теперь умножаем на 8 и получаем, что весь торт весит 800 грамм.

Приведем еще пример как найти целое число, если известна часть.

В классе присутствует 27 человек и это 3/4 общего количества. Сколько человек в классе?

Решить задачу можно так:

27 : 3/4 = 36 человек.

Знаете ответ?

Математика

5 класс

Урок № 67

Нахождение части целого и целого по его части

Перечень рассматриваемых вопросов

– нахождение целого по его части;

– нахождение части целого;

– моделирование условий задачи с помощью рисунка.

Тезаурус

Произведение двух дробей – это дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей этих дробей.

Частное дробей – это дробь, которая при умножении на делитель даёт делимое.

Обязательная литература

  1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Мы уже рассмотрели, как выполняют умножение и деление дробей. Сегодня с помощью этих действий мы будем решать задачи.

Рассмотрим две задачи.

Теперь определим, какие условия в задачах одинаковы, а какие различаются.

Общее:

  1. в задачах одинаковые числовые данные;
  2. за целое принята длина всей ленты.

Разное:

  1. в первой задаче целое известно (длина ленты – 18 м);
  2. во второй задаче целое нужно найти.

Значит, в первой задаче нужно найти часть отрезанной ленты, то есть часть от целого; а во второй задаче нужно найти всю длину ленты, то есть целое по его части.

Подобные задачи решаются в соответствие с известными правилами.

  1. Чтобы найти часть от целого, надо целое (соответствующее ему число) умножить на дробь, соответствующую этой части.
  2. Чтобы найти целое по его части, надо часть (соответствующее этой части число) разделить на соответствующую дробь.

Если вы затрудняетесь определить тип задачи, обратите внимание на союз «что» и указательное местоимение «это». Они встречаются в задачах на нахождение целого по его части.

Решение.

Смоделируем условие задачи с помощью рисунка.

После этого мы увидим, что длина целой ленты известна, а длину части следует вычислить. Значит, мы будем находить часть от целого. Используем для этого соответствующее правило. Чтобы найти часть числа, нужно число умножить на дробь. Получим:

Решение.

Опять смоделируем условие задачи с помощью рисунка.

Таким образом, мы увидим, что длина целой ленты неизвестна, а длина части указана в условии. Значит, нам надо вычислить целое по его части. Для этого мы используем подходящее правило. Чтобы найти целое, нужно число, соответствующее части, разделить на дробь.

Получится:

Итак, сегодня на уроке мы научились:

    • моделировать условие задачи с помощью рисунка;
    • устанавливать соответствие между математическим выражением и его текстовым описанием;
    • решать задачи на нахождение части целого и целого по его части.

Рассмотрим старинную индийскую задачу XII века.

Из множества лотосов были подарены: богу Шиве – треть всех цветов, богу Вишну – пятая часть, а Солнцу – шестая, четвёртую долю получила богиня Бхавани, а остальные шесть частей – уважаемый учитель. Сколько было всего лотосов?

Сегодня мы с вами научимся решать такие задачи с применением действий умножения и деления, изученных ранее.

Решение.

Смоделируем условие задачи с помощью рисунка.

Общее количество лотосов обозначим за единицу. Также укажем части (лотосы), которые распределялись между всеми, кто указан в задании.

Известно, что часть, доставшаяся учителю, равна шести лотосам. Значит, если мы будем знать, какая это доля от общего количества лотосов, то придём ко второму типу задачи – вычислению целого по его части.

Итак, найдём, какая часть от общего количества цветков досталась учителю.

Для этого вычислим сначала, сколько составляют все остальные части. Сложим все дроби, соответствующие частям, приведя их к общему знаменателю 60.

Ответ: 120 цветков.

Тренировочные задания

№ 1. Какие части изображены на рисунках?

Правильные ответы:

№ 2. Подставьте в текст нужные слова:

При решении задач на ___ сначала нужно определить ___ задачи, а потом применить соответствующее правило.

Типы задач:

  1. нахождение ___ от целого;
  2. нахождение целого по его ___.

Варианты слов для подстановки в текст: части; тип; целого.

Правильный ответ: при решении задач на части сначала нужно определить тип задачи, а потом применить соответствующее правило.

Типы задач:

  1. нахождение части от целого;
  2. нахождение целого по его части.

Если известно сколько составляет часть от целого, то по известной части можно “восстановить”
целое.

Для этого пользуемся правилом нахождения целого (числа)
по его дроби (части).

Запомните!
!

Чтобы найти число по его части, выраженной дробью, нужно данное число
разделить на дробь.

Пример. Рассмотрим задачу.

Поезд прошёл 240 км, что составило
всего пути.
Какой путь должен пройти поезд?

Решение. 240 км — часть всего пути. Эти же километры
выражены дробью 15/23
от всего пути. Знаменатель дроби говорит о том, что весь путь разделён на 23 части,
и 15 таких частей составляют 240 км
(числитель дроби равен 15).
Значит, можно найти, сколько составляет

часть пути.

240 : 15 = 16 (км)

Весь путь (целое) всегда обозначаем за единицу, которую можно выразить дробью

.

Значит, чтобы найти весь путь (23 части, каждая из которых по
16 км) нужно:

16 · 23 = 368 (км)

Кратко запись решения такой задачи можно сделать следующим образом.

нахождение целого по известной части

Ответ: поезд должен пройти 368 км.

Сложные задачи на нахождение числа по его части

Часто задачи данного типа сложнее, чем рассмотренная задача выше, и более сложные задачи приходиться решать в
несколько действий.

Рассмотрим задачу.

При подготовке к диктанту по английскому языку Оля
выучила четверть всех слов, заданных учителем.
Если бы она выучила ещё 4 слова, то была
бы выучена треть всех слов.
Сколько всего слов надо было выучить Оле?

Решение. Как обычно подчеркнём в условии задачи все важные данные.

Как видно из условия, четыре невыученных слова — это часть от всех слов, которую можно найти в виде
разности дробей.

решение задачи на дроби

Такую часть всех слов составляют 4 слова.

Итак, 4 слова — это

от всех слов (целого). Теперь по правилу нахождения
числа по его части
данное числовое значение разделим на соответствующую ему дробь

.
решения задач на нахождение целого по известной части

Ответ: всего 48 слов надо было выучить к диктанту.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Добавить комментарий