Задачи по физике как найти объем газа

Решение задач по теме «Уравнение состояния идеального газа»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ТЕМА: Решение задач по теме «Уравнение состояния идеального газа»

Учебная: Диагностика степени усвоения знаний по теме «Уравнение состояния идеального газа» и формирование практических умений по их применению .

Развивающая: Развивать интерес к физике, развивать практические умения учащихся при решении задач.

Воспитательная : воспитывать сознательное отношение к учебе и заинтересованность в изучении физики.

Тип урока: урок комплексного применения знаний

I. Организационно – мотивационный этап

1) Организация начала урока

2) Проверка домашнего задания

II. Организационно – мотивационный этап

3) Актуализация имеющихся знаний.

4) Закрепление знаний и способов действия

6) Первоначальная проверка понимания

III. Рефлексийна – заключальны этап

7) Подведение итогов занятия. Выставление оценок

8) Домашнее задание

I. Организационно – мотивационный этап

1) Организация начала урока

Приветствие учащихся и учителя. Проверить подготовленность учащихся к уроку, правильную организацию рабочего места. Отметить отсутствующих в журнале.

2) Проверка домашнего задания

Фронтальная проверка выполнения домашнего задания. Обсуждения результатов выполнения

II. Операционно – познавательный этап.

3) Актуализация имеющихся знаний.

А) Фронтальный опрос

– Перечислите макроскопические параметры состояния идеального газа ( Р,V,Т)

– Какое уравнение называют уравнением состояния? (Уравнение, выражающее связь между макроскопическими параметрами состояния вещества)

-В чем заключается основная задача МКТ? ( Установление связи между макроскопическими параметрами, т.е. нахождение уравнения состояния того или иного тела)

-Сформулировать и доказать закон Дальтона (Давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов, p=p1 +…рn )

-Записать уравнение Клапейрона. При каких условиях оно справедливо? (PVT=P0V0\T0, m=const, M=const)

– Записать уравнение Менделеева – Клапейрона.

4) Закрепление знаний и способов действия

Задачи решаются на доске:

1. Определить массу водорода, находящегося в баллоне вместимостью 20 л при давлении 830 кПа, если температура газа равна 17 °С.

Дано: V = 20 л, р = 830 кПа, t = 17 ° C , М = 2·10-3 кг/моль, R = 8,31 Дж/(моль·К).

Решение Выведем размерность искомой физической величины:

Ответ: m = 1,38·10 -2 кг.

2 . Газ при давлении 0,2 МПа и температуре 15 0 С имеет объем 5 л. Чему будет равен объем этой массы газа при нормальных условиях?

3. В баллоне находится газ под давлением 40 Па и при температуре 27 °С. Когда из баллона выпустили 3/5 газа, содержавшегося в нем, его температура понизилась до -33 °С. Определить давление газа, оставшегося в сосуде.

Дано: V – const , р1 = 40 МПа, t 1 = 27 °С, t 2 = -33 °С, m 2 = 2/5 m 1

Решение

Ответ: р2 = 12,8 Па.

4. При уменьшении объема газа в 2 раза давление увеличилось на 120 кПа, а абсолютная температура возросла на 10 %. Каким было первоначальное давление?

6) Первоначальная проверка понимания

Задачи решаются самостоятельно учениками

1. Определите температуру кислорода массой 64 г, находящегося в сосуде объёмом 1 л при давлении 5 • 10 6 Па. Молярная масса кислорода М = 0,032 кг/моль.

Р е ш е н и е. Согласно уравнению Менделеева—Клапейрона Отсюда температура кислорода.

2. Найти плотность водорода при температуре 15 0 С и давлении 9,8·10 4 Па. (0,085 кг/м 3 )

3. В баллоне находится газ при температуре 15 0 С. Во сколько раз уменьшится давление газа, если 40 % его выйдет из баллона, а температура при этом понизится на 8 0 С?

( Ответы : m=16 кг ; Р =249300 Па ; V=0,03 м 3; Т =150 К )

III. Рефлексийно – заключительный этап

7) Подведение итогов занятия. Выставление оценок

8) Домашнее задание упр.3(5-7). Подготовится к проверочной работе

9) Рефлексия: Ребята высказываются одним предложением, выбирая начало фразы из рефлексивного экрана на доске: Сегодня я узнал… Было интересно… Было трудно… Я понял, что…

Решение задач по теме «Уравнение состояния идеального газа»

1. Определить массу водорода, находящегося в баллоне вместимостью 20 л при давлении 830 кПа, если температура газа равна 17 °С.

2 . Газ при давлении 0,2 МПа и температуре 15 0 С имеет объем 5 л. Чему будет равен объем этой массы газа при нормальных условиях?

3. В баллоне находится газ под давлением 40 Па и при температуре 27 °С. Когда из баллона выпустили 3/5 газа, содержавшегося в нем, его температура понизилась до -33 °С. Определить давление газа, оставшегося в сосуде.

4. При уменьшении объема газа в 2 раза давление увеличилось на 120 кПа, а абсолютная температура возросла на 10 %. Каким было первоначальное давление?

1. Определите температуру кислорода массой 64 г, находящегося в сосуде объёмом 1 л при давлении 5 • 10 6 Па. Молярная масса кислорода М = 0,032 кг/моль.

2. Найти плотность водорода при температуре 15 0 С и давлении 9,8·10 4 Па. (0,085 кг/м 3 )

3. В баллоне находится газ при температуре 15 0 С. Во сколько раз уменьшится давление газа, если 40 % его выйдет из баллона, а температура при этом понизится на 8 0 С?

Решение задач по теме «Уравнение состояния идеального газа»

1. Определить массу водорода, находящегося в баллоне вместимостью 20 л при давлении 830 кПа, если температура газа равна 17 °С.

2 . Газ при давлении 0,2 МПа и температуре 15 0 С имеет объем 5 л. Чему будет равен объем этой массы газа при нормальных условиях?

3. В баллоне находится газ под давлением 40 Па и при температуре 27 °С. Когда из баллона выпустили 3/5 газа, содержавшегося в нем, его температура понизилась до -33 °С. Определить давление газа, оставшегося в сосуде.

4. При уменьшении объема газа в 2 раза давление увеличилось на 120 кПа, а абсолютная температура возросла на 10 %. Каким было первоначальное давление?

1. Определите температуру кислорода массой 64 г, находящегося в сосуде объёмом 1 л при давлении 5 • 10 6 Па. Молярная масса кислорода М = 0,032 кг/моль.

2. Найти плотность водорода при температуре 15 0 С и давлении 9,8·10 4 Па. (0,085 кг/м 3 )

3. В баллоне находится газ при температуре 15 0 С. Во сколько раз уменьшится давление газа, если 40 % его выйдет из баллона, а температура при этом понизится на 8 0 С?

Задачи с решениями уравнение состояния идеального газа

Если при сжатии объём идеального газа уменьшился в 2 раза, а давление газа увеличилось в 2 раза, то во сколько раз изменилась при этом абсолютная температура газа?

Согласно уравнению Клапейрона — Менделеева, давление, объём и абсолютная температура идеального газа связаны соотношением

Следовательно, при уменьшении объёма газа в 2 раза и увеличении его давления в 2 раза абсолютная температура не изменится.

Во сколько раз изменяется давление идеального газа при уменьшении объёма идеального газа в 2 раза и увеличении его абсолютной температуры в 4 раза?

Согласно уравнению Клапейрона — Менделеева, давление, объем и абсолютная температура идеального газа связаны соотношением

Следовательно, при уменьшении объёма газа в 2 раза и увеличении его абсолютной температуры в 4 раза давление газа увеличится в 8 раз.

а при решении можно было использовать формулу pV/T=const?

Да, можно и так сказать. Все газовые законы — следствия уравнения Клапейрона-Менделеева, написанный Вами закон выполняется для фиксированного количества вещества. Поскольку в задаче количество газа не изменяется, для решения можно использовать и это соотношение.

А почему в 8 раз, а не в 2?

Запишем уравнение состояние для обоих случаев: , .

Согласно условию, , .

При температуре и давлении один моль идеального газа занимает объем Во сколько раз больше объём двух молей газа при том же давлении и температуре ?

Идеальный газ подчиняется уравнению состояния Клапейрона — Менделеева:

Таким образом, искомый объем V равен

Уравнение состояния идеального газа

Содержание:

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона». Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Уравнение состояния идеального газа

Уравнение состояния идеального газа – это p = nkT называется уравнением Менделеева Клапейрона и оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа давления, объёма и температуры. Поэтому уравнение Менделеева Клапейрона называется ещё уравнением состояния идеального газа.

Термодинамические параметры газа

В предыдущих главах было показано, что при описании свойств газа можно пользоваться величинами, характеризующими молекулярный мир (микромир), например энергией молекулы, скоростью ее движения, массой и т. п. Числовые значения таких величин мы можем определять только с помощью расчета. Все такие величины принято называть микроскопическими (от греческого «микрос» — малый).

Однако для описания свойств газов можно пользоваться и такими величинами, числовые значения которых находят простым измерением с помощью приборов, например давлением, температурой и объемом газа. Значения таких величин определяются совместным действием огромного числа молекул, поэтому они называются макроскопическими (от греческого «макрос» — большой).

Соотношение (4.1): устанавливает связь между микроскопическими и макроскопическими величинами для газов. Поэтому формулу (4.1) называют основным уравнением молекулярно-кинетической теории газов. Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа. Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Если взять определенную массу газа т, то при постоянных р, V и Т газ будет находиться в равновесном состоянии. Когда происходят изменения этих параметров, то в газе протекает тот или иной процесс. Если этот процесс состоит из ряда непрерывно следующих друг за другом равновесных состояний газа, то он называется равновесным процессом. Равновесный процесс должен протекать достаточно медленно, так как при быстром изменении параметров давление и температура не могут иметь соответственно одинаковые значения во всем объеме газа. В этой главе рассматриваются только равновесные процессы в газах, при которых масса газа остается постоянной.

Когда процесс в газе заканчивается, то газ переходит в новое состояние, а его параметры приобретают новые постоянные числовые значения, вообще говоря, отличные от их значений в начале процесса. Если же при постоянной массе газа значения всех его параметров в начале и в конце процесса окажутся одинаковыми, то процесс называется круговым или замкнутым.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом. Газовый закон, выражающий связь между всеми тремя параметрами газа, называется объединенным газовым законом.

Отметим еще, что такого процесса в газе, при котором изменялся бы только один параметр газа, не существует, так как значения этих параметров взаимосвязаны. Примером сказанного является закон Шарля, выражающий связь между р и Т.

Объединенный газовый закон. Приведение объема газа к нормальным условиям

Связь между давлением, объемом и температурой определенной массы газа устанавливается с помощью соотношения (4.9):

Поскольку обозначает число молекул в единице объема газа, то , где N — общее число молекул, V — объем газа. Тогда получим

Так как при постоянной массе газа N остается неизменным, — постоянное число, т. е.

Поскольку значения р, V и Т в (5.2) относятся к одному и тому же состоянию газа, можно следующим образом сформулировать объединенный газовый закон: при постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Следовательно, если числовые значения параметров в начале процесса, происходящего с какой-либо определенной массой газа, обозначить через р1 , V1 и Т1, а их значения в конце процесса соответственно через р2 , V2 и Т2, то

Формулы (5.2) и (5.3) представляют собой математическое выражение объединенного газового закона.

На практике иногда нужно установить, какой объем V0 займет имеющаяся масса газа при нормальных условиях, т. е. при Т0=273 К и при р0=1,013 . 10 5 Па. Если значения параметров для этой массы газа в каком-либо произвольном состоянии, отличном от нормального, обозначить через р, V и Т, то на основании (5.3) получаем , или

Формула (5.4) позволяет приводить объем заданной массы газа к нормальным условиям.

Молярная газовая постоянная. Определение числового значения постоянной Больцмана

Формула (5.1) справедлива для любой массы газа, в которой содержится N молекул. Если применить эту формулу к одному молю какого-либо газа, то N нужно заменить постоянной Авогадро NA, а V — объемом одного моля Vмоль

Так как в одном моле любого газа содержится одно и то же число молекул NA, то произведение имеет одинаковое значение для всех газов, т. е. не зависит от природы газа. Произведение обозначается R и называется молярной газовой постоянной. Таким образом,

Числовое значение R можно найти, если применить (5.5) к состоянию одного моля газа при нормальных условиях, так как при этом м 3 /моль (§ 3.6). Действительно,

Это числовое значение R в СИ необходимо запомнить, так как им часто пользуются при расчетах и при решении задач.

Теперь легко найти числовое значение постоянной Больнмана . Из (5.6) получаем . Подставляя сюда числовые значения R и , вычисляем :

Уравнение Клапейрона — Менделеева. Плотность газа

Выясним, как будет выглядеть соотношение (5.1), если в него ввести молярную газовую постоянную R. Так как N — полное число молекул в массе газа т, а — число молекул в одном моле, то

где — число молей в массе газа /т. Поэтому

Поскольку , а равно массе газа т, деленной на массу одного моля газа , то получаем

Соотношение (5.7) называется уравнением Клапейрона — Менделеева или уравнением состояния для произвольной массы идеального газа. Для одного моля идеального газа уравнение Клапейрона — Менделеева принимает вид

С помощью формулы (5.7) легко выяснить, какими величинами определяется плотность газа. Так как , то из (5.7) имеем

Зависимость средней квадратичной скорости молекул газа от температуры

Выясним теперь, как можно с помощью вычислений находить среднюю квадратичную скорость движения молекул газа . Поскольку средняя кинетическая энергия поступательного движения молекул газа равна (3/2) , то можно написать , откуда

Отметим, что под т в формуле (5.10) подразумевается масса одной молекулы в кг. Так как , получим . Поскольку а есть масса одного моля газа (§ 3.6), имеем

Наконец, из (5.9) следует, что , поэтому

Среднюю квадратичную скорость можно находить по любой из формул (5.10)—(5.12). Из функции Максвелла можно получить формулы для средней арифметической скорости и наивероятнейшей скорости. Средняя арифметическая скорость

Наконец, наивероятнейшую скорость вычисляют так:

(Используя график функции Максвелла (рис. 3.3), поясните, почему меньше , а меньше

Изохорический процесс

Процессы, при которых масса газа и один из его параметров остаются постоянными, называются изопроцессами (от греческого «изос» — равный, одинаковый). Поскольку имеется три параметра газа, существует три различных изопроцесса. Первый из них (изохорический) рассмотрен выше (§ 4.3). Процесс в газе, который происходит при постоянной массе и неизменном объеме, называется изохорическим (от греческого «хора» — пространство). Графики для этого процесса называются изохорами (рис. 4.3).

Отметим, что к любому изопроцессу применим объединенный газовый закон и формулы (5.3), (5.7) и (5.8) с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объем V, поэтому формула (5.3) после сокращения на V принимает вид

Итак, изохорический процесс подчиняется закону Шарля: при постоянной-массе газа и неизменном объеме давление газа прямо пропорционально его абсолютной температуре. Это видно и из уравнения Клапейрона — Менделеева (5.7):

Так как V, т, и R остаются постоянными, то из (5.7) следует, что р пропорционально Т. Отметим, что закон Шарля можно формулировать и так, как это было сделано в § 4.3.

Изобарический- процесс

Процесс в газе, который происходит при постоянной массе и неизменном давлении, называется изобарическим (от греческого «барос» — тяжесть). Этот процесс был изучен французским физиком Л. Гей-Люссаком в 1802 г.

Поскольку при изобарическом процессе р постоянно, то после сокращения на р формула (5.3) принимает вид

Формула (5.16) является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объем газа прямо пропорционален его абсолютной температуре. (Это видно и из уравнения Клапейрона — Менделеева (5.7): так как р, т, и R постоянны, то объем V пропорционален Т.)

На рис. 5.1 схематически изображен опыт Гей-Люссака. Колба с газом помещается в сосуд с водой и льдом.

В пробку вставлена трубка, изогнутая таким образом, что свободный конец ее горизонтален. Газ в колбе отделен от окружающего воздуха небольшим столбиком ртути в трубке. Температуру газа определяют по термометру, а объем — по положению столбика ртути. Для этого на трубке нанесены деления, соответствующие определенному внутреннему объему трубки (при градуировке трубки можно учесть и расширение сосуда при нагревании, но оно сравнительно мало’).

Сначала по положению столбика ртути 1 определяют — объем газа при 0°С. Затем газ нагревают (столбик ртути перемещается в положение 2), в процессе нагревания записывают значения объема и температуры и строят график, который называется изобарой.

Оказывается, что изобара представляет собой прямую линию (рис. 5.2, а), которая пересекается с осью абсцисс в точке А.

Из подобия треугольников на рис. 5.2, а следует

Обозначив через , получим

Здесь — коэффициент объемного расширения газа (гл. 13).

Если повторять этот опыт для разных газов или для разных масс газа, то все графики будут пересекаться в точке А, соответствующей t=—273°С (рис. 5.2, б), т. е. коэффициент одинаков для всех газов. Это означает, что расширение газа при изобарическом процессе не зависит от его природы.

Отметим, что для газов коэффициенты и в формулах (4.2а) и (5.17) численно одинаковы, поэтому обычно пользуются одним .

Изотермический процесс

Процесс в газе, который происходит при постоянной температуре, называется изотермическим.

Изотермический процесс в газе был изучен английским ученым Р. Бойлем и французским ученым Э. Мариоттом. Установленная ими опытным путем связь получается непосредственно из формулы (5.3) после сокращения на Т:

Формула (5.18) является математическим выражением закона Бойля — Мариотта: при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объема газа на соответствующее давление есть величина постоянная:

Соотношение (5.19) можно получить и из (5.7) или (5.8), так как при постоянном Г справа в формулах (5.7) и (5.8) стоит постоянная величина. График зависимости р от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рис. 5.3 изображены три изотермы для одной и той же массы газа, но при разных температурах Т.

Отметим еще, что из формулы (5.9) непосредственно вытекает, что при изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

(Подумайте, как проверить закон Бойля — Мариотта на опыте.)

Внутренняя энергия идеального газа

Как отмечалось, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия идеального газа представляет собой только сумму знамений кинетической энергии хаотического движения всех его молекул:

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением(4.8): , то внутренняя энергия одного моля одноатомного идеального газа выразится формулой , где — постоянная Авогадро. Если учесть, что , то получим:

Для произвольной массы одноатомного идеального газа имеем

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одно-атомного при той же температуре:

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле (5.22)?)

Работа газа при изменении его объема

Физический смысл молярной газовой постоянной. Опыт показывает, что сжатый газ в процессе своего расширения может выполнять работу. Приборы и агрегаты, действия которых основаны на этом свойстве газа, называют пневматическими. На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и т. д.

Представим себе цилиндр с подвижным поршнем, заполненный газом (рис. 5.4).

Пока давление газа внутри цилиндра и окружающего наружного воздуха одинаковы, поршень неподвижен. Пусть при этом температура газа и окружающей среды равна а давление равно р.

Будем теперь медленно нагревать газ в цилиндре до температуры . Газ при этом начинает изобарически расширяться (внешнее давление р остается постоянным), и поршень переместится из положения 1 в положение 2 на расстояние . При этом газ совершит работу против внешней силы. Сила F, совершающая эту работу, будет равна рS, где S — площадь сечения цилиндра. Из механики известно, что работа выражается формулой , или . Так как есть приращение объема газа в процессе его изобарического нагревания от до , имеем

Нетрудно сообразить, что при изохорическом процессе работа газа равна нулю, так как никакого изменения объема, занятого газом, в этом случае не происходит. Вообще следует помнить, что газ выполняет работу только в процессе изменения своего объема, т. е. при . Отметим, что при расширении газа работа газа положительна; при сжатии газа положительную работу выполняют внешние силы, а работа газа в этом случае отрицательна.

Выясним, как можно определить работу газа по графику зависимости р от V в том или ином газовом процессе. При изобарическом процессе график зависимости р от V представляет собой прямую линию, параллельную оси абсцисс, так как р постоянно. Из рис. 5.5 видно, что работа газа в этом случае численно равна заштрихованной площади.

Выясним, как найти работу газа при изотермическом процессе. На рис. 5.6 изображена изотерма идеального газа. При таком процессе газ выполняет работу, так как в этом случае отлично от нуля. Формулу (5.25) здесь применять нельзя, так как она верна при постоянном давлении р, а в изотермической процессе р изменяется. Однако можно взять такое малое приращение объема , при котором изменением давления можно пренебречь. Тогда приближенно можно считать, что при увеличении объема газа на давление остается постоянным. Работу при этом можно вычислять по формуле . На рис. 5.6 она выражается заштрихованной площадью.

Разбивая интервал на множество интервалов , настолько малых, что работу на каждом из них можно вычислять по формуле , полную работу газа найдем как сумму элементарных работ . Это означает, что работа газа будет равна сумме площадей, подобных заштрихованной площади на рис. 5.6. Следовательно, работа газа при изотермическом процессе выражается площадью, ограниченной двумя ординатами и , отрезком оси абсцисс и графиком зависимости р от V.

Можно строго доказать, что работа газа при любом процессе выражается площадью, ограниченной двумя ординатами, отрезком оси абсцисс и графиком того процесса в координатах V и р.

Выясним теперь физический смысл молярной газовой постоянной R. Применяя формулу (5.25) к одному молю идеального газа, получим

Но из уравнения Клапейрона — Менделеева (5.8) для одного моля можно записать для двух состояний газа:

Подставляя это выражение в (5.26), будем иметь , или

Из (5.27) следует, что молярная газовая постоянная численно равна работе, совершаемой одним молем идеального газа при его изобарическом нагревании на один кельвин.

Из соотношения видно, что постоянная Больцмана показывает, сколько работы в среднем приходится на одну молекулу идеального газа при изобарическом нагревании на один кельвин.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

[spoiler title=”источники:”]

http://phys-ege.sdamgia.ru/test?theme=353

http://natalibrilenova.ru/uravnenie-sostoyaniya-idealnogo-gaza/

[/spoiler]

Уравнение Менделеева-Клапейрона .

( PV=nu RT )


( P ) – Давление газа (Паскали)

( V ) – Объем газа

( nu ) – Количество вещества

( R ) – Универсальная газовая посиоянная

( T ) – Температура в Кельвинах


Репетитор по физике

8 916 478 10 32


Задача 1.

В баллоне находится газ под давлением (P= 8,31 cdot 10^6 ; Па ), температура газа (T=300 К ).
Количество вещества газа ( nu=100 Моль ).
Найти объем баллона
Универсальная газовая постоянная ( R=8,31 frac{Дж}{Моль cdot K} )

Дать ответ в литрах.


Показать ответ
Показать решение
Видеорешение



Задача 2.

Давление сжатого воздуха в баллоне (P= 1,662 cdot 10^7 ; Па ; ), а его температура (T=400 К )
Количество вещества газа ( nu=50 Моль )

Найти объем баллона
Универсальная газовая постоянная ( R=8,31 frac{Дж}{Моль cdot K} )

Дать ответ в литрах.


Показать ответ
Показать решение
Видеорешение



Задача 3.

Найти давление газа, находящегося в баллоне вместимостью (V=41,55 литров ) при ( T=273 К ; ), если количество
вещества этого газа ( nu=10 моль . )
Универсальная газовая постоянная ( R=8,31 frac{Дж}{Моль cdot K} )
Дать ответ в килопаскалях.


Показать ответ
Показать решение
Видеорешение



Задача 4.

Каково давление кислорода, если объем занимаемый газом (V=66,48 л) при (t=27^0C ), если
его количество вещества ( nu=30 моль ? )

Универсальная газовая постоянная ( R=8,31 frac{Дж}{Моль cdot K} )
Дать ответ в килопаскалях.


Показать ответ
Показать решение
Видеорешение



Задача 5.

Какое количество вещества воздуха содержится в куполе воздушного шара, если при давлении (P=10^5 Па ) и температуре (t=57^0C ) его объем
(V=150 м^3 ? )

Ответ округлить до целых

Универсальная газовая постоянная ( R=8,31 frac{Дж}{Моль cdot K} )


Показать ответ
Показать решение
Видеорешение


Задача 6.

Вычислить температуру ( nu = 0,5 моль ) воздуха , если при давлении (P=9 cdot 10^5 Па)
его объем (V=950 см^3 )

Ответ округлить до целых

Универсальная газовая постоянная ( R=8,31 frac{Дж}{Моль cdot K} )


Показать ответ
Показать решение
Видеорешение


Примеры решения задач по теме «Уравнение состояния идеального газа»

Подробности
Обновлено 13.08.2018 14:14
Просмотров: 1190

«Физика – 10 класс»

При решении задач по данной теме надо чётко представлять себе начальное состояние системы и какой процесс переводит её в конечное состояние.
Одна из типичных задач на использование уравнения состояния идеального газа: требуется определить параметры системы в конечном состоянии по известным макроскопическим параметрам в её начальном состоянии.

Задача1.

Воздух состоит из смеси газов (азота, кислорода и т. д.).
Плотность воздуха ρ0 при нормальных условиях (температура t0 = 0 °С и атмосферное давление р0 = 101 325 Па) равна 1,29 кг/м3.
Определите среднюю (эффективную) молярную массу М воздуха.

Р е ш е н и е.

Уравнение состояния идеального газа при нормальных условиях имеет вид
Здесь R = 8,31 Дж/(моль • К) и Т0 = 0 °С + 273 °С = 273 К, М — эффективная молярная масса воздуха.
Эффективная молярная масса смеси газов — это молярная масса такого воображаемого газа, который в том же объёме и при той же температуре оказывает на стенки сосуда то же давление, что и смесь газов, в данном случае воздух.
Отсюда

Задача2.

Определите температуру кислорода массой 64 г, находящегося в сосуде объёмом 1 л при давлении 5 • 106 Па.
Молярная масса кислорода М = 0,032 кг/моль.

Р е ш е н и е.

Согласно уравнению Менделеева—Клапейрона

Отсюда температура кислорода

Задача3.

Определите плотность азота при температуре 300 К и давлении 2 атм.
Молярная масса азота М = 0,028 кг/моль.

Р е ш е н и е.

Запишем уравнение Менделеева—Клапейрона:

Разделив на объём левую и правую части равенства, получим

Задача4.

Определите, на сколько масса воздуха в комнате объёмом 60 м3 зимой при температуре 290 К больше, чем летом при температуре 27 °С.
Давление зимой и летом равно 105 Па.

Р е ш е н и е.

Запишем уравнение Менделеева—Клапейрона:

Из этого уравнения выразим массу газа: где T принимает значения Т1 и Т2 — температуры воздуха зимой и летом.
Молярная масса воздуха М = 0,029 кг/моль. Температура воздуха летом Т2 = 27 °С + 273 °С = 300 К.

Таким образом,

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основные положения МКТ. Тепловые явления – Физика, учебник для 10 класса – Класс!ная физика

Почему тепловые явления изучаются в молекулярной физике —
Основные положения молекулярно-кинетической теории. Размеры молекул —
Примеры решения задач по теме «Основные положения МКТ» —
Броуновское движение —
Силы взаимодействия молекул. Строение газообразных, жидких и твёрдых тел —
Идеальный газ в МКТ. Среднее значение квадрата скорости молекул —
Основное уравнение молекулярно-кинетической теории газов —
Примеры решения задач по теме «Основное уравнение молекулярно-кинетической теории» —
Температура и тепловое равновесие —
Определение температуры. Энергия теплового движения молекул —
Абсолютная температура. Температура — мера средней кинетической энергии молекул —
Измерение скоростей молекул газа —
Примеры решения задач по теме «Энергия теплового движения молекул» —
Уравнение состояния идеального газа —
Примеры решения задач по теме «Уравнение состояния идеального газа» —
Газовые законы —
Примеры решения задач по теме «Газовые законы» —
Примеры решения задач по теме «Определение параметров газа по графикам изопроцессов»

План решения задач на газовые законы

  1. Если
    в задаче рассматривается одно состояние
    газа и требуется найти какой-либо
    параметр этого состояния, нужно
    воспользоваться уравнением Менделеева
    – Клапейрона.

  2. Если
    значения давления и объема явно не
    заданы, их нужно выразить через заданные
    величины, подставить в записанное
    уравнение и, решив его, найти неизвестный
    параметр.

  3. В
    том случае, когда в задаче рассматриваются
    два различных состояния газа, нужно
    установить, изменяется ли масса газа
    при переходе из одного состояния в
    другое. Если масса остается постоянной,
    можно применить уравнение Клапейрона.
    Если же при постоянной массе в данном
    процессе не изменяется какой-либо из
    параметров ( р,V или Т), применяются
    уравнение соответствующего закона
    (Гей-Люссака, Шарля или Бойля-Мариотта).

  4. Если
    в двух состояниях масса газа разная,
    то для каждого состояния записывают
    уравнение Менделеева-Клапейрона. Затем
    систему уравнений решают относительно
    искомой величины.

Примеры решения задач

Пример 3.1. Определите
число молекул воды в бутылке вместимостью
0,33л. Молярная масса воды М=18∙10
-3
кг/моль, плотность воды ρ=1г/см
3.

Дано:
V=0,33л=0,33∙10-3
м3;
М=18∙10-3
кг/моль; ρ=1г/см3=
1∙103
кг/м3;

Найти:
N.

Решение:
Масса
воды, занимающей объём V,

m=ρV,
(1)

где
ρ – плотность воды.

Масса
молекулы

,
(2)

где
М – молярная масса; NA=6,02∙
1023моль-1

постоянная Авогадро.

Число
молекул в бутылке

(3)

Подставляя
в выражение (3) формулы (1) и (2), получим
искомое число молекул:

.

Ответ:
N=1,1∙1025.

Пример 3.1. Узкая
цилиндрическая трубка, закрытая с одного
конца, содержит воздух, отделённый от
наружного воздуха столбиком ртути.
Когда трубка обращена закрытым концом
кверху, воздух внутри неё занимает длину
ℓ, когда же трубка обращена кверху
открытым концом, то воздух внутри неё
занимает длину ℓ’ < ℓ. Длина ртутного
столбика h мм. Определить атмосферное
давление
.

Дано:
ℓ; ℓ’ < ℓ; h.

Найти:
Р.

Решение:
В данном процессе
изменяются давление и объём воздуха, а
температура остаётся постоянной.
Следовательно, если начальные параметры
воздуха обозначить Р1
и V1,
а конечные как Р2
и V2 получаем
следующее соотношение:

Р1V1
= Р2V2

Когда
трубка обращена закрытым концом кверху,
воздух в ней находится под давлением
Р1=
Ратм
– h ( здесь и далее измеряем в мм.рт. ст.).
Если же трубку перевернуть, давление
воздуха в ней будет равно Р2
= Ратм
+ h .

Учитывая,
что V1 =
Sℓ1,
V2 =
Sℓ2,
где S – площадь сечения трубки, получаем:

атм
– h) Sℓ =
атм
+ h) Sℓ’,

Отсюда
находим атмосферное давление

Ответ.

Пример
3.2.
В сосуде находится
смесь m = 7 г азота и m = 11г углекислого
газа при температуре Т = 290 К и давлении
Р = 1 атм. Найти плотность этой смеси,
считая газа идеальными.

Дано:
m1=7
г=7∙10-3кг;
m2=11
г=11∙10-3кг;
Т=290К; Р=1атм=105Па.

Найти:
ρ.

Решение:
Давление газов в сосуде
известно. Если через Р1
обозначить давление
азота, если бы углекислого газа не было,
а через Р2 давление
углекислого газа, если бы не было азота
(так называемые парциальными давления),
то давление смеси газов Р будет согласно
закону Дальтона Р =
Р1 +
Р2.
Учитывая, что температура каждого газа
Т запишем для азота и кислорода уравнение
Менделеева-Клапейрона:

Складывая
эти выражения, получаем:

Отсюда
находим объём, занимаемый смесью газов

Плотность
смеси газов вычисляется по формуле

Ответ:

Пример
3.3.
Кислород массой
m=10г
находится под давлением 200кПа при
температуре 280К. В результате изобарного
расширения газ занял объём 9л. Определите:
1) объём газа
V1
до расширения; 2) температуру газа
T2
после расширения; 3) плотность газа ρ
2
после расширения.

Дано:
M=32∙10-3кг/моль;
m=10г=10∙10-3кг;
р=200кПа=2∙105Па=const;
Т1=280К;
V2=9г=9∙10-3м3.

Найти:
1) V1;
2) Т2;
3) ρ2.

Решение:
Объём газа до расширения найдём, согласно
уравнению Клапейрона-Менделеева,

,

откуда

Записав уравнение Клапейрона-Менделеева
для конечного состояния газа:

,

найдём искомую температуру

Плотность газа после расширения газа

.

Ответ:
1) V1=3,64
л; 2) Т2=693
К; 3) ρ2=1,11
кг/м3.

Пример 3.3. В
цилиндре с площадью основания 100 см
2
находится воздух. Поршень расположен
на высоте 50 см от дна цилиндра. На поршень
кладут груз массой 50 кг, при этом он
опускается на 10 см. Найти температуру
воздуха после опускания поршня, если
до его опускания давление было равно
101 кПа, а температура 12
С.

Дано: S=100см2=1∙10-2м2;h1=50см=0,5
м;m=50кг; Δh=10см=0,1
мt;P1=101∙103Па; Т1=12С=285
К.

Найти:
Т2.

Решение:

Рассмотрим два состояния воздуха под
поршнем: до опускания поршня и после
его опускания. До опускания поршня
состояние воздуха характеризуется
параметрами Р1,
V1,
T1,
после опускания поршня – параметрами
Р2,
V2,
T2,
где V1=Sh1,
Р20+Р,

,
V2=Sh2,
или, поскольку h2=h1
Δh,

V2=S(h1
Δh).

Применим
к этим двум состояниям формулу Клапейрона:

,

откуда

(1)

Подставим
в формулу (1) выражения для Р1,
V1,
Р2
и V2:

;

Ответ:
Т2=338К

Пример 3.3. Имеются
два сосуда с газом: один вместимостью
3 л, другой 4 л. В первом сосуде газ
находится под давлением 202 кПа, а во
втором 101 кПа. Под каким давлением будет
находиться газ, если эти cосуды соединить
между собой? Считать, что температура
в сосудах одинакова и постоянна.

Дано: V1=3л=3∙103м3;V2=4л=4∙103м31=202кПа=202∙103Па; Р2=101кПа=101∙103Па.

Найти:
Р.

Решение:

По закону Дальтона,

Р
= Р3
+ Р4 (1)

Так
как процесс изотермический, то парциальное
давление газа в каждом сосуде можно
найти по закону Бойля-Мариотта:

Р1V1
=
Р3V,
Р2V2
=
Р4V,

где
V=V1+V2.
Тогда парциальное давление газа в каждом
из сосудов после их соединения

,

, (2)

Подставляем
выражения (2) в (1):

Ответ:
Р=141 Па

Пример 3.3. В
баллоне содержатся сжатый газ при
температуре t
1
= 27
С
и давлении p
1
= 4 МПа. Каково будет давление, если из
баллона выпустить

Δm
= 0,4
m
массы газа, а температуру понизить до
t
2
= 17
С?

Дано: Т1=27С
=300 К;Р1=4МПа=4∙106
Па;Δm
= 0,4m;
Т2=17С
=290 К Найти:
Р.

Решение: Рассмотрим
два состояния газа: до разрежения и
после, когда осталось1-n массы m газа.
Параметры каждого из этих состояний
связаны уравнением Менделеева-Клапейрона:

,

где
Р1,
Т1,
Р2,
Т2
– соответственно давление и температура
газа до и после выпуска; m – масса газа;
М – молярная масса; V – объем.

Разделив
почленно первое равенство на второе,
получим:

,

oткуда

(1)

Ответ:
Р2
= 2,3106
Па = 2,3 МПа.

Пример
3.3.
Найти максимально
возможную температуру идеального газа
в процессе P = P
0
– αV
2,
где P
0,
α – положительные постоянные
.

Дано:
P = P0
– αV2;
P0, α
– const

Найти:
Tmax.

Решение:
Для нахождения максимальной температуры
необходимо получить явную зависимость
последней от параметров и исследовать
эту зависимость на экстремум. Так как
газ является идеальным, выразим давление
из уравнения Менделеева-Клапейрона и
подставим его в уравнение процесса

Отсюда
выражаем температуру

Условие экстремума
,
которое сводится к выражению.

Решая
данное уравнение, получаем значение
объёма, при котором температура принимает
экстремальное значение
.
Исследуя знак второй производной, приходим к выводу, что при данном
значении объёма температура газа будет
идеальной. Подставляя выражение для
объёма в выражение для температуры при
данном процессе, получаем:

Ответ:

Пример
3.3.
В сосуде
вместимостью
V=5л
находится кислород массой
m=15г.
определите: 1) концентрацию молекул
кислорода в сосуде; 2) число
N
молекул газа в сосуде.

Дано:
V=5л=5∙10-3м3;
M=32∙10-3кг/моль;
m=15г=1,5∙10-2кг.

Найти:
1) n; 2) N.

Решение:
Записав
уравнение Клапейрона-Менделеева

(1)

И
уравнение состояния идеального газа

Р=nkT
(2)

И
поделив (1) на (2), найдём искомую концентрацию
молекул кислорода в сосуде

.

Концентрация
молекул

,

Откуда
искомое число молекул газа в сосуде

N=nV.

Ответ:
1)
n=5,64∙1025
м-3;
2) N=2,82∙1023.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

  1. Свойства газов
  2. Давление газов
  3. Зависимость между объёмом и давлением газа. Закон Еойля — Мариотта
  4. Зависимость между плотностью газа и его давлением
  5. Зависимость объёма газа от температуры. Закон Гей-Люссака
  6. Зависимость давления газа от температуры. Закон Шарля
  7. Абсолютная шкала температур
  8. Зависимость между объёмом, давлением и температурой газа
  9. Физическая сущность понятия абсолютного нуля
  10. Изменение температуры газа при быстром расширении и сжатии
  11. Применение сжатых газов

Газ – это одно из трёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Свойства газов

Главные свойства газов – это подвижность и хаотичное движение частиц, направление которых меняется при столкновении. Газ – одно из 4 агрегатных состояний веществ, которые на сегодняшний день известны науке.

Давление газов

Всякий газ производит давление на оболочку, внутри которой он находится.

Давление, производимое газом на стенки сосуда, объясняется ударами движущихся молекул.

При ударе о стенку молекулы газа отдают ей определённое количество движения; стенка испытывает при этом действие некоторой силы.

Удар каждой отдельной молекулы о стенку сосуда производит очень небольшое действие. Но молекул газа очень много, удары о стенки сосуда происходят беспрерывно, поэтому в результате получается значительное давление.

Хаотичность движения молекул приводит к тому, что давление газа одинаково во всех направлениях.

При нагревании давление газа увеличивается. Так как при этом число молекул газа не изменяется, то увеличение давления можно объяснить только тем, что удары молекул о стенки заключающего газ сосуда делаются при нагревании чаще и что каждый удар становится сильнее. Удары же могут стать чаще и сильнее, если увеличивается скорость движения молекул. Это подтверждается, как мы видели (гл. V), многочисленными опытами.

Зависимость между объёмом и давлением газа. Закон Еойля — Мариотта

Состояние газа определяется его объёмом, давлением и температурой. С изменением этих величин меняется и состояние газа. Мы будем рассматривать последовательно процессы, при которых одна из величин, характеризующих состояние газа, постоянна, а две другие меняются.

Изучим сначала такой процесс, при котором давление и объём газа изменяются, а температура остаётся постоянной. Такой процесс называется изотермическим 1.

1 От греч. слов: изос — равный, термос — тёплый.

Итак, рассмотрим, как изменяется давление данной массы газа при изменении его объёма, если температура газа не меняется.

Опыты, устанавливающие эту зависимость, можно произвести на приборе, три положения которого изображены на рисунке 134.

Свойства газов в физике

Рис. 134. Прибор для установления зависимости между объёмом и давлением газа (в трёх положениях).

В этом приборе стеклянная трубка А соединяется резиновой трубкой с другой стеклянной трубкой В. Трубка А вверху снабжена краном Свойства газов в физике обе трубки наполняются ртутью.

Откроем кран Свойства газов в физике и установим трубку В так, чтобы уровень ртути в трубке А был, например, на середине трубки (положение I). Давление над ртутью в обеих трубках атмосферное; допустим, что оно равно 76 см рт. ст. Закроем теперь кран, отделив этим массу воздуха в трубке А от атмосферного воздуха. Таким образом, в этой стадии опыта мы будем иметь в трубке А определённую массу воздуха, находящегося под давлением p1 = 76 см рт. ст.

Поднимем теперь трубку В вверх на столько, чтобы объём воздуха в трубке А уменьшился вдвое (положение II). Уровень ртути в трубке В при этом значительно поднимется над уровнем в трубке А.

Рассмотрим теперь, чему будет равно давление воздуха в трубке А. Это давление уравновешивает атмосферное давление и давление всего столба ртути в трубке В, стоящего выше уровня n1 высота этого столба n1n оказывается равной 76 см. Таким образом, давление воздуха в трубке А уравновешивает не одну, как в первом случае, а две атмосферы 2 = 2 am).

Значит, с уменьшением объёма данной массы газа в два раза давление его увеличивается в два раза. Если уменьшить объём газа в 1,5; 2,5; 3 раза, то соответственно в 1,5; 2,5; 3 раза увеличится его давление.

Опустим теперь трубку В так, чтобы масса воздуха в трубке А заняла вдвое больший объём (положение III). Уровень ртути в трубке А при этом понизится. Атмосферное давление теперь уравновешивает давление воздуха в трубке А и давление столба ртути от уровня n в трубке А до уровня в трубке В. Измерения показывают, что высота этого столба ртути равна 38 см. Давление, производимое воздухом в трубке А, найдём, вычтя из атмосферного давления давление столба ртути: р3 = 76 см—38 см = 38 см; следовательно, р3 = 0,5 am.

Итак, при увеличении объёма газа в два раза его давление уменьшается в два раза.

Перемещая трубку В в различные положения и отсчитывая каждый раз объём и давление воздуха в трубке А, найдём, что при уменьшении объёма исследуемой массы воздуха в некоторое число раз давление его увеличивается во столько же раз. Температура воздуха при всех опытах остаётся постоянной.

Опыты, проведённые с другими газами, дали те же результаты.

Изучая на опыте зависимость давления газа от его объёма, английский учёный Бойль (1627—1691) и французский учёный Мариотт (1620—1684) независимо один от другого открыли следующий закон.

Давление данной массы газа при неизменной температуре обратно пропорционально объёму газа.

Этот закон называется законом Бойля — Мариотта.

Выразим закон Бойля — Мариотта математически. Пусть температура некоторой массы газа постоянная и пусть:

V1 — объём газа при давлении р1,

V2  » » » » р2.

Согласно закону Бойля — Мариотта можно написать:

Свойства газов в физике

Из этой формулы следует, что:

Свойства газов в физике

Полученное равенство можно рассматривать как новое выражение закона Бойля — Мариотта.

Произведение объёма данной массы газа на его давление при неизменной температуре есть величина постоянная.

Изобразим графически изотермическое изменение состояния газа. Для этого по оси абсцисс будем откладывать значения объёмов газа, а по оси ординат соответствующие им значения давлений. Выберем масштаб так, чтобы начальные значения объёма и давления были равны 1. Тогда начальное состояние газа будет изображено точкой А (рис. 135). Если давление увеличится вдвое, объём уменьшится в два раза, состояние газа изобразится на графике точкой В. При уменьшении первоначального давления вдвое объём удвоится, получим точку С. Беря далее давления в три, четыре и т. д. раза больше или меньше начального, а объёмы соответственно в три, четыре и т. д. раза меньше или больше, получим ряд точек, изображающих различные состояния одной и той же массы газа при одинаковой температуре.

Свойства газов в физике

Рис. 135. График изотермического процесса.

Проведя через эти точки линию, получим кривую, которая называется изотермой.

Тщательными исследованиями установлено, что для реально существующих газов закон Бойля — Мариотта имеет лишь приближённое значение. Так, например, если произведение pV при 1 am равно единице, то при 2 am оно имеет следующие значения:

для воздуха ………………………0,99977

» водорода …………………….. 1,00026

» окиси углерода………………….. 0,99974

» двуокиси углерода………………… 0,99720

При очень больших давлениях (в сотни и тысячи атмосфер) закон Бойля — Мариотта становится совершенно неприменимым; в таких случаях зависимость между объёмом и давлением газа выражается более сложными уравнениями.

Зависимость между плотностью газа и его давлением

Плотность газа численно равна массе, заключённой в единице объёма.

Масса газа не меняется при его сжатии или расширении, но объём меняется; следовательно, меняется и плотность газа.

Пусть при постоянной температуре: D1 — плотность газа при объёме V1 и давлении p1 a D2 —  плотность газа при объёме V2 и давлении p2.

Если масса газа равна m, то можно написать:

Свойства газов в физике

откуда:

Свойства газов в физике

Но Свойства газов в физике на основании закона Бойля — Мариотта; поэтому

Свойства газов в физике

При постоянной температуре плотность газа прямо пропорциональна его давлению.

Нетрудно понять справедливость этого вывода, исходя из молекулярно-кинетической теории. В самом деле, давление газа обусловлено ударами его молекул. Если объём газа уменьшится вдвое, то в новом объёме , плотность газа станет вдвое больше. Вдвое увеличится и число ударов молекул о стенки, т. е. давление газа возрастёт в два раза.

Зависимость объёма газа от температуры. Закон Гей-Люссака

Как и все тела, газы при нагревании расширяются, причём весьма заметно даже при незначительном нагревании. Это легко обнаружить на следующем простом опыте (рис. 136).

Свойства газов в физике

Рис. 136. Установка для наблюдения расширения газа при нагревании.

Колба А соединяется с расположенной горизонтально трубкой CD, которая укреплена вдоль шкалы. Внутри этой трубки находится небольшой столбик ртути. Достаточно к колбе прикоснуться рукой, как столбик ртути в трубке CD начнёт двигаться.

При охлаждении колбы столбик ртути перемещается влево, а при нагревании — вправо; следовательно, газ при охлаждении сжимается, а при нагревании расширяется. Зная объём колбы и диаметр трубки, можно измерить увеличение объёма газа.

Постепенно нагревая газ в колбе, можно установить, что при постоянном давлении изменение объёма данной массы газа пропорционально изменению температуры. Поэтому тепловое расширение газа, так же как и других тел, можно охарактеризовать при помощи коэффициента объёмного расширения.

Пусть при температуре 0°С объём газа равен V0 , а при температуре t объём Vt. Увеличение объёма, приходящееся на каждую единицу объёма, взятого при 0°С, при нагревании на один градус будет равно:

Свойства газов в физике

откуда: Свойства газов в физике (1)

Величина Свойства газов в физике входящая в писанные выше формулы, называется коэффициентом объёмного расширения газа.

Свойства газов в физике

Жозеф Луи Гей-Люссак (1778—1850)— один из выдающихся французских химиков и физиков. Он открыл ряд важных химических и физических законов, из которых в физике широко известен закон одинакового расширения газов и паров при одинаковом повышении температуры.

Французский учёный Гей-Люссак, исследуя на опыте тепловое расширение газов, открыл, что, коэффициент объёмного расширения у всех газов при постоянном давлении одинаков и численно равен Свойства газов в физике

В этом отношении расширение газов при нагревании отличается от расширения твёрдых и жидких тел, где, как мы видели (см. § 81 и 82), коэффициент объёмного расширения зависит от химического состава тел.

Положим в формуле (1): Свойства газов в физике

получим: Свойства газов в физике откуда следует, что при нагревании на 1° под постоянным давлением объём данной массы газа увеличивается на Свойства газов в физике того объёма, который газ занимал при 0°С.

Этот закон получил название закона Гей-Люссака. Процессы, подобные рассмотренному, протекающие при постоянном давлении, называются изобарными1.

1 От греч. слов: изос — равный, барос — тяжесть, вес.

Формула (1) показывает, что объём газа при температуре равен произведению его объёма, взятого при 0°С, на двучлен объёмного расширения Свойства газов в физике

Пример. 1. Объём некоторой массы газа при 0°С равен 10 л. Найти объём его при t=273°С, если давление постоянно.

По условиям задачи нам известен объём газа при 0°С, т. е. V0 = 10 л; подставляя числовые данные задачи в формулу Свойства газов в физике найдем, что

Свойства газов в физике

Пример 2. При температуре 273°С объём некоторой массы газа равен 10 л. Чему будет равняться объём этого газа при температуре 546°С, если давление постоянно?

Нам известен объём газа при температуре 273°С; чтобы определить объём этого газа при t2 = 546°С, надо предварительно найти его объём при 0°.

Этот объём найдётся из равенства:

Свойства газов в физике

откуда:

Свойства газов в физике

Найдём теперь объём газа при 546°:

Свойства газов в физике

Зависимость давления газа от температуры. Закон Шарля

Нагревая газ в закрытом цилиндре, например в папиновом котле (рис. 136а), можно по манометру заметить, что давление газа увеличивается. Следя по термометру за повышением температуры, легко установить, что при постоянном объёме давление газа возрастает пропорционально повышению температуры.

Свойства газов в физике

Рис. 136а. При нагревании газа в закрытом цилиндре давление его повышается.

Аналогично тому, как для характеристики теплового расширения газов мы ввели коэффициент объёмного расширения, введём величину, характеризующую изменение давления газа при изменении его температуры.

Обозначим буквой р0 давление газа при 0°С, a pt — давление при. Увеличение давления, приходящееся на каждую единицу начального давления при нагревании на 1°С, будет равно:

Свойства газов в физике  (1)

Величина Свойства газов в физике (греч. «гамма») называется термическим коэффициентом давления газа.

Измерения показывают, что величина термического коэффициента давления для всех

газов одинакова и равна Свойства газов в физике

Определяя из формулы (1) величину pt получим:

Свойства газов в физике   (2)

Положим в формуле (2) Свойства газов в физикетогда Свойства газов в физике

Отсюда следует, что давление данной массы газа при нагревании на 1° при постоянном объеме увеличивается на Свойства газов в физике того давления, которым обладал газ при 0°C. 

Этот закон называется законом Шарля, по имени французского учёного, открывшего его в 1787 г.

Из закона Шарля следует, что термический коэффициент давления газа Свойства газов в физике равен коэффициенту объёмного расширения Свойства газов в физике Это равенство вытекает из закона Бойля — Мариотта. Докажем это.

Пусть некоторая масса газа заключена в цилиндре под поршнем (рис. 137, а) и пусть температура её в этом начальном состоянии равна 0°, объём V0 и давление р0. Закрепим поршень АВ и нагреем газ до температуры (рис. 137, б); тогда давление газа увеличится и станет равным рt объём же его останется прежним.

По закону Шарля: Свойства газов в физике

Будем теперь газ нагревать от 0 до (рис. 137, в), предоставив поршню свободно перемещаться. Давление газа останется таким же, каким было в начальном его состоянии, т. е. р, объём же увеличится до Vt. По закону Гей-Люссака:

Свойства газов в физике

Свойства газов в физике

Рис. 137.

а)    начальное состояние газа: 0°, V0, р0;

б)    состояние газа, определяемое величинами: Свойства газов в физике

в)    состояние газа, определяемое величинами: Свойства газов в физике

Итак, имеем: при температуреобъём данной массы газа V0 и давление Свойства газов в физике при той же температуре: давление ри объём Свойства газов в физике По закону Бойля— Мариотта:

Свойства газов в физике

После упрощения этого выражения получаем равенство:

Свойства газов в физике

Выразим сначала в виде таблицы, а потом графически зависимость давления газа от температуры. Для этого воспользуемся уравнением:

Свойства газов в физике

Свойства газов в физике

Рис. 138. График изменения давления газа от температуры.

Отложим по оси абсцисс в некотором условном масштабе температуры газа, а по оси ординат соответствующие этим температурам давления, взятые из написанной выше таблицы.

Соединяя на графике отмеченные точки, получим прямую LM (рис. 138), представляющую собой график зависимости давления газа от температуры при постоянном объёме.

Процесс изменения состояния газа, происходящий при неизменном объёме газа, называется  изохорным 1 процессом, а линия LM, изображающая изменение давления газа при постоянном объеме в зависимости от температуры, называется изохорой.

1 От греч. слов: изос — разный, хорема — вместимость.

Пример 1. Давление газа при 0°С равно 780 мм рт. ст. Определить давление этого газа при температуре 273°С.

По формуле Свойства газов в физике найдем, что

Свойства газов в физике

Пример 2. Чему будет равно давление газа при температуре 546°, если давление его при температуре 273° равно 780 мм рт. cm.?

В этой задаче прежде всего надо определить давление газа при 0°С. По формуле Свойства газов в физике находим:

Свойства газов в физике

Теперь можно определить давление газа при t = 546°:

Свойства газов в физике

Законы Гей-Люссака и Шарля так же, как и закон Бойля — Мариотта, лишь приближённо отражают свойства газов. Это можно видеть хотя бы. из того факта, что для разных газов величины Свойства газов в физике и Свойства газов в физике несколько различаются между собой (см. таблицу).

Свойства газов в физике      

Точные измерения показывают, что для каждого данного газа значения Свойства газов в физикеи Свойства газов в физикеполучаются разные в зависимости от того, в каком температурном интервале и при каком давлении они определены. Однако эти различия очень незначительны, они учитываются лишь при весьма точных расчётах.

Абсолютная шкала температур

Вернёмся ещё раз к графику изменения давления газа с температурой (рис. 138).

Продолжим прямую LM на этом графике до пересечения её с горизонтальной осью, по которой откладываются температуры газа, она пересечёт эту ось в точке K. Отрезок ОК будет изображать на этом графике такую температуру газа, при которой давление его равно нулю. Чему равна эта температура?

Обратимся к уравнению Свойства газов в физике Положим в этом уравнении pt = 0, т. е. напишем следующее равенство:

Свойства газов в физике

Так как давление газа при 0°С не равно нулю Свойства газов в физике то из написанного равенства следует, что:

Свойства газов в физике

откуда: Свойства газов в физике или, так как

Свойства газов в физике

Итак, давление газа равняется нулю при температуре —273°С.

Свойства газов в физике

Вильям Томсон (Кельвин) (1824— 1907) — выдающийся английский физик. Ему принадлежат важные открытия в области теории электричества и теплоты и изобретения, из которых наиболее значительным было усовершенствование телеграфной связи. Он ввёл в физику понятие об абсолютной температуре. Его именем названы градусы шкалы абсолютных температур — градусы Кельвина.

Английский учёный Вильям Томсон (Кельвин) предложил такую шкалу температур, при которой за нуль градусов принята температура — 273°. Эта шкала получила название абсолютной шкалы температур, или шкалы Кельвина, а нуль градусов этой шкалы, равный — 273°, называется абсолютным нулём температур.

В шкале Кельвина величина градуса та же, что и в стоградусной шкале.

Будем обозначать температуру по шкале Кельвина буквой Т.

При нормальном атмосферном давлении температура таяния льда по шкале Кельвина Т0 = 273°, температура же кипения воды = 373°.

Всякая другая температура стоградусной шкалы связана с абсолютной температурой Т соотношениями:

Свойства газов в физике

Зависимость между объёмом, давлением и температурой газа

Объединённый закон газового состояния. Мы рассмотрели процессы, в которых одна из трёх величин, характеризующих состояние газа (объём, давление и температура), не меняется.

Вы видели, что если не меняется температура, то давление и объём газа связаны друг с другом законом Бойля —- Мариотта. При постоянном давлении объём газа изменяется с изменением температуры по закону Гей-Люссака, и, наконец, при постоянном объёме давление газа меняется с изменением температуры по закону Шарля.

Однако в природе часто имеют место процессы, когда одновременно меняются все три величины, характеризующие состояние газа. Установим теперь, какая связь существует между объёмом, давлением и температурой.

Пусть для двух каких-либо произвольных состояний некоторой массы газа эти величины будут:

Свойства газов в физике

Из этих состояний изменением величин р, V или t газ можно перевести в любые другие состояния. Будем, например, сохраняя постоянным давление, переводить газ из состояний 1) и 2) в состояния, при которых температура газа будет равна 0°С.

По закону Гей-Люссака объём газа V1 после уменьшения температуры от до 0° будет равен Свойства газов в физике объём V2, после уменьшения температуры от t2 до 0° будет Свойства газов в физике

Новые состояния газа выразятся так:

Свойства газов в физике

В обоих этих состояниях температура газа одинакова, поэтому на основании закона Бойля — Мариотта можно написать:

Свойства газов в физике  (1)

Так как величины р, V, t, характеризующие состояние рассматриваемого газа и обозначенные индексами 1 и 2, выбраны были нами произвольно, то равенство (1) справедливо для любых состояний этого газа. Поэтому можно утверждать, что:

Свойства газов в физике  (2)

Для данной массы газа произведение давления газа на его объём, делённое на двучлен объёмного расширения, есть величина постоянная.

Выведенная нами зависимость между объёмом, давлением и температурой газа называется объединённым законом газового состояния, а равенство (1) или (2) — уравнением состояния газа.

Уравнение состояния газа можно упростить, введя в него вместо температуры t по стоградусной шкале температуру Т по абсолютной шкале температур. Для этого преобразуем уравнение:

Свойства газов в физике

Введя в него значение Свойства газов в физике получим:

Свойства газов в физике

что после сокращения на 273 даст:

Свойства газов в физике

Но Свойства газов в физике и Свойства газов в физике; следовательно, можно написать:

Свойства газов в физике

Это означает, что для данной массы газа произведение давления на объём, делённое на абсолютную температуру, постоянно при всех температурах: Свойства газов в физике

В частности, если при температуре Т = 273° объём газа равен V0 и давление его р, то можно написать:

Свойства газов в физике

Физическая сущность понятия абсолютного нуля

Мы уже отмечали, что реальные газы лишь приближённо следуют законам Гей-Люссака, Шарля и Бойля — Мариотта. Однако можно представить себе газ, для которого эти законы выполнялись бы в точности. Молекулы такого газа можно представить себе в виде упругих шариков исчезающе малого объёма, взаимодействие между которыми осуществляется только через их столкновения друг с другом. В физике такой газ принято называть идеальным газом.

Из уравнения Свойства газов в физике следует, что при t = —273°, т. е. при абсолютном нуле, давление газа равно нулю. Но ведь давление газа есть результат ударов движущихся молекул о стенки сосуда. Следовательно, при температуре абсолютного нуля должно прекратиться тепловое движение молекул идеального газа.

Опыт показывает, что при малых давлениях свойства реальных газов очень близки к свойствам идеального газа. Следовательно, при приближении к температуре абсолютного нуля должно прекратиться тепловое движение молекул и реального газа. Этот вывод относится не только к газам, но и к твёрдым и жидким телам.

Физикой установлено, что такое состояние вещества недостижимо, но к нему можно подойти очень близко. В настоящее время достигнута температура, которая выше абсолютного нуля всего на несколько стотысячных долей градуса.

Изменение температуры газа при быстром расширении и сжатии

Опыты показывают, что при быстром сжатии температура газа повышается, а при быстром расширении понижается.

Увеличение температуры газа при сжатии можно показать на следующем простом опыте. Возьмём толстостенный цилиндрический стеклянный сосуд, внутри которого может двигаться поршень (рис. 139). При быстром сжатии воздух в сосуде сильно нагревается, и легко воспламеняющееся вещество (например, ватка, смоченная эфиром), положенное на дно сосуда, вспыхивает. Такого рода явление используется, например, в двигателях внутреннего сгорания —дизелях: при сжатии воздуха в цилиндре двигателя горючая смесь, введённая в цилиндр, нагревается до температуры воспламенения (работа двигателя описана в § 131).

Свойства газов в физике

Рис. 139. При быстром сжатии воздух в цилиндре сильно нагревается и легко воспламеняющееся вещество вспыхивает.

При быстром же расширении газа температура его понижается. Это можно наблюдать на следующем опыте. Будем накачивать воздух в прочную закрытую пробкой стеклянную банку, содержащую пары воды. При достижении определённого давления пробка выскочит; при этом воздух, расширяясь, совершит работу и охладится, вследствие чего водяной пар превратится в туман (рис. 140).

Свойства газов в физике

Рис. 140. Сжатый в сосуде воздух, выбрасывая пробку, расширяется. Совершая при этом работу, он охлаждается, вследствие чего водяной пар в сосуде превращается в туман.

Понижение температуры при быстром расширении газа используется для получения сжиженных газов; об этом будет рассказано в § 122.

Изменение температуры тела, как было установлено в § 71, связано с изменением внутренней энергии тела. Так как при быстром сжатии температура газа повышается, то внутренняя энергия его при этом увеличивается. Увеличение внутренней энергии газа происходит в результате работы, совершённой при его сжатии. Расширяясь же, газ совершает работу; при этом внутренняя энергия его уменьшается, и если расширение происходит быстро, то температура газа, как мы видели в наших опытах, понижается.

Процесс, происходящий в теле без теплообмена с окружающими его другими телами, называется адиабатным процессом.

Все быстро протекающие процессы практически могут считаться адиабатными.

Применение сжатых газов

Многие сжатые газы в настоящее время находят широкое применение в технике.

Сжатый воздух, например, применяется в работе различных пневматических инструментов: отбойных молотков, заклёпочных молотков, в разбрызгивателях краски и др.

На рисунке 141 показана схема устройства отбойного молотка. Сжатый воздух подаётся в молоток по шлангу М. Золотники Z, аналогичные применяемым в паровых машинах, направляют его поочерёдно то в заднюю, то в переднюю часть цилиндра. Поэтому воздух давит на поршень Р то с одной, то с другой стороны, что вызывает быстрое возвратно-поступательное движение поршня и пики молотка В. Последняя наносит быстро следующие друг за другом удары, внедряется в уголь и откалывает куски его от массива.

Свойства газов в физике

Рис. 141. Схема устройства отбойного молотка.

Существуют также пескоструйные аппараты, которые дают сильную струю воздуха, смешанную с песком. Эти аппараты применяются, например, для очистки стен. Сейчас нередко можно видеть работу специальных аппаратов, применяемых для окраски стен, где краска распыляется сжатым воздухом. Сжатым воздухом открываются двери вагонов метро и троллейбусов. Сжатый воздух используется в работе тормозов на транспорте. Схематическое устройство одного из видов пневматического тормоза железнодорожного вагона изображено на рисунке 142.

Компрессор подаёт воздух по магистрали в стальной резервуар А. Поршень В тормозного цилиндра оказывается под одинаковым давлением справа и слева; поэтому соединённая с ним тормозная колодка D отжата от колеса. Если открыть тормозной кран М, то находящийся в магистрали под давлением воздух устремится в атмосферу; клапан К захлопнется, и, таким образом, стальной резервуар изолируется от магистрали. Теперь давление на поршень В справа станет больше, чем давление слева, вследствие чего тормозная колодка прижмётся к ободу колеса. Если теперь кран М закрыть и снова подать в магистраль сжатый воздух, то восстановится первоначальное положение.

Свойства газов в физике

Рис. 142. Схема устройства железнодорожного пневматического тормоза.

В технике применяется не только сжатый воздух, но и некоторые другие газы, так, например, водород, ацетилен и кислород применяются при газовой сварке; аммиак используется в холодильном деле. Чтобы газы было удобно перевозить, их помещают в прочные стальные баллоны, накачивая до давления 60—200 am.

Свойства газов в физике

Рис. 142а. Внешний вид мощного компрессора.

Сжатие газов осуществляется с помощью мощных нагнетательных насосов — компрессоров.

На рисунке 143, а, б дана схема работы компрессора.

Компрессор состоит из цилиндра с поршнем и двумя клапанами; один из них входной, другой выходной. При движении поршня вниз (рис. 143, б) открывается входной клапан и в цилиндр поступает воздух из помещения; при движении поршня вверх (рис. 143, а) входной клапан закрывается, вошедший воздух сжимается поршнем и через выходной клапан поступает в стальной баллон для хранения сжатого газа.

Существуют так называемые многоступенчатые компрессоры, в которых газ последовательно  

сжимается в трёх или четырёх цилиндрах. Такие компрессоры позволяют получить газ, сжатый до давления в тысячи атмосфер. На рисунке 142а изображён внешний вид одного из типов многоступенчатых компрессоров.

Свойства газов в физике

Рис. 143, а, б. Схема работы компрессора.

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Масса
  7. Взаимодействия тел
  8. Механическая энергия
  9. Импульс
  10. Вращение твердого тела
  11. Криволинейное движение тел
  12. Колебания
  13. Колебания и волны
  14. Механические колебания и волны
  15. Бегущая волна
  16. Стоячие волны
  17. Акустика
  18. Звук
  19. Звук и ультразвук
  20. Движение жидкости и газа
  21. Молекулярно-кинетическая теория
  22. Молекулярно-кинетическая теория строения вещества
  23. Молекулярно – кинетическая теория газообразного состояния вещества
  24. Теплота и работа
  25. Температура и теплота
  26. Термодинамические процессы
  27. Идеальный газ
  28. Уравнение состояния идеального газа
  29. Изменение внутренней энергии
  30. Переход вещества из жидкого состояния в газообразное и обратно
  31. Кипение, свойства паров, критическое состояние вещества
  32. Водяной пар в атмосфере
  33. Плавление и кристаллизация
  34. Тепловое расширение тел
  35. Энтропия
  36. Процессы перехода из одного агрегатного состояния в другое
  37. Тепловое расширение твердых и жидких тел
  38. Свойства жидкостей
  39. Свойства твёрдых тел
  40. Изменение агрегатного состояния вещества
  41. Тепловые двигатели
  42. Электрическое поле
  43. Постоянный ток
  44. Переменный ток
  45. Магнитное поле
  46. Электромагнитное поле
  47. Электромагнитное излучение
  48. Электрический заряд (Закон Кулона)
  49. Электрический ток в металлах
  50. Электрический ток в электролитах
  51. Электрический ток в газах и в вакууме
  52. Электрический ток в полупроводниках
  53. Электромагнитная индукция
  54. Работа, мощность и тепловое действие электрического тока
  55. Термоэлектрические явления
  56. Распространение электромагнитных волн
  57. Интерференционные явления
  58. Рассеяние
  59. Дифракция рентгеновских лучей на кристалле
  60. Двойное лучепреломление
  61. Магнитное поле и электромагнитная индукция
  62. Электромагнитные колебания и волны
  63. Природа света
  64. Распространение света
  65. Отражение и преломление света
  66. Оптические приборы и зрение
  67. Волновые свойства света
  68. Действия света
  69. Линзы и получение изображений с помощью линз
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома

Добавить комментарий