Закон менделеева клапейрона формула как найти объем

Уравне́ние состоя́ния идеа́льного га́за (иногда уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

{displaystyle pV=nu RT},

где

Уравнение состояния идеального газа можно записать в виде:

{displaystyle pcdot V={frac {m}{M}}Rcdot T} ,

где m — масса, M — молярная масса, (так как количество вещества {displaystyle nu ={frac {m}{M}}}):

или в виде

p=nkT,

где n=N/V — концентрация частиц (атомов или молекул) N – количество частиц, k={frac  {R}{N_{A}}} — постоянная Больцмана.

Эта форма записи носит имя уравнения (закона) Клапейрона — Менделеева.

Уравнение, выведенное Клапейроном, содержало некую неуниверсальную газовую постоянную {displaystyle r,} значение которой необходимо было измерять для каждого газа:

{displaystyle pcdot V=rcdot T.}

Менделеев обнаружил, что r прямо пропорциональна nu , коэффициент пропорциональности R он назвал универсальной газовой постоянной.[источник не указан 1458 дней]

Связь с другими законами состояния идеального газа[править | править код]

В случае постоянной массы газа уравнение можно записать в виде:

frac{pcdot V}{T}=nucdot R,
frac{pcdot V}{T}=mathrm{const}.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:

T=mathrm{const}Rightarrow pcdot V=mathrm{const} — закон Бойля — Мариотта — Изотермический процесс.
p=mathrm{const}Rightarrowfrac{V}{T}=mathrm{const} — Закон Гей-Люссака — Изобарный процесс.
V=mathrm{const}Rightarrowfrac{p}{T}=mathrm{const} — закон Шарля (второй закон Гей-Люссака, 1808 г.) — Изохорный процесс

В форме пропорции frac{p_1cdot V_1}{T_1}= frac{p_2cdot V_2}{T_2} этот закон удобен для расчёта перевода газа из одного состояния в другое.

С точки зрения химика этот закон может звучать несколько иначе: объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

{displaystyle {ce {H2 + Cl2 -> 2HCl}}}.

1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

{displaystyle {ce {N2 + 3H2 -> 2NH3}}}.
Закон Бойля — Мариотта

Закон Бойля — Мариотта

T=mathrm{const}Rightarrow pcdot V=mathrm{const}

назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году.

В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

p=(gamma-1)rhovarepsilon,

где gamma  — показатель адиабаты, varepsilon  — внутренняя энергия единицы массы вещества.

Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. Это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение {displaystyle Pcdot V} немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение {displaystyle Pcdot V} увеличивается.

См. также[править | править код]

  • Совершенный газ
  • Реальный газ
  • Уравнение состояния реального газа

Примечания[править | править код]

Литература[править | править код]

  • Стромберг А. Г., Семченко Д. П. Физическая химия: Учеб. для хим. спец. вузов / Под ред. А. Г. Стромберга. — 7-е изд., стер. — М.: Высшая школа, 2009. — 527 с. — ISBN 978-5-06-006161-1.

Закон Менделеева-Клапейрона можно записать в виде PV  =  νRT, где P  — давление (в паскалях), V  — объём (в м3), ν  — количество вещества (в молях), T  — температура (в градусах Кельвина), а R  — универсальная газовая постоянная, равная 8,31 Дж/(К⋅моль). Пользуясь этой формулой, найдите объём V (в м3), если T  =  250 К, P  =  23 891,25 Па, ν  =  48,3 моль.

Спрятать решение

Решение.

Выразим объём из закона Клапейрона-Менделеева: PV=nu RT равносильно V= дробь: числитель: nu RT, знаменатель: P конец дроби . Подставляя, получаем:

V= дробь: числитель: 48,3 умножить на 8,31 умножить на 250, знаменатель: 23891,25 конец дроби = дробь: числитель: 48,3 умножить на 831 умножить на 250, знаменатель: 2389125 конец дроби = дробь: числитель: 48,3 умножить на 831 умножить на 2, знаменатель: 19113 конец дроби = дробь: числитель: 48,3 умножить на 2, знаменатель: 23 конец дроби =4,2.

Ответ: 4,2.

Вы хотите познавать химию с удовольствием? Тогда вам сюда! Репетитор-профессионал, автор методики системно-аналитического изучения химии и биологии, кандидат биологических наук Богунова В.Г. делится секретами мастерства, раскрывает тайны решения задач, помогает подготовиться к ОГЭ, ЕГЭ, ДВИ и олимпиадам.

Ну как? Выдержите еще немного газовой атаки, или уже сил нет? Совсем чуть-чуть. Самую капельку. Только легенькое уравнение Менделеева-Клапейрона. И все! Что? Неинтересно?! Давайте внесем струю драйва в нашу тяжелую долю и позовем кого-нибудь в гости! Не знаю, как вы, а я уже звоню Алисе, в Страну Чудес.

Алиса удивилась, как это она не удивилась, но ведь удивительный день еще только начался и нет ничего удивительного в том, что она еще не начала удивляться.

— Если бы у меня был свой собственный мир, в нем все было бы чепухой. Ничего не было бы тем, что есть на самом деле, потому что все было бы тем, чем оно не является, и наоборот, оно не было бы тем, чем есть, а чем бы оно не было, оно было.

Что-то мне перехотелось приглашать Алису в гости. Лучше уж уравнение Менделеева-Клапейрона в классических задачах с любыми условиями протекания реакций. Давайте подумаем, в какие задачи ЕГЭ может легко вписаться и Менделеев, и Клапейрон, и ненормальные условия? Я вижу две позиции – задание 29 (количество вещества и объем газа для любых условий) и задание 35 (определение реальной молярной массы газообразного вещества в любых условиях). Пока авторы заданий ЕГЭ ограничиваются нормальными условиями (0 С, 1 атм). Но это пока…

Чтобы не было так грустно думать о приближающемся конце света ЕГЭ-шного происхождения, в конце статьи я немного повеселю вас еще одним разговором с Сири. На этот раз моя интеллектуальная помощница расскажет о своих чувствах к виртуальному объекту Облака. Не верите? Дочитайте статью до конца, решите задачи, и вы тоже услышите чувственные тайны робота. А пока – ненормальные условия газов в расчетных химических задачах.

Уравнение Менделеева-Клапейрона

Газы часто бывают реагентами и продуктами в химических реакциях, поэтому возникла необходимость определять число молей газов в любых условиях. Для этого используют уравнение Менделеева-Клапейрона – формулу, устанавливающую зависимость между давлением, молярным объёмом и абсолютной температурой газа.

Секретная шпаргалка по химии. 4.7. Уравнение Менделеева-Клапейpона

Молярный объём – объём одного моля газа (или смеси газов) при данной температуре и давлении.

Абсолютная температура – температура, отсчитываемая от абсолютного нуля. Понятие абсолютной температуры было введено У. Томсоном (Кельвином) , в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры – кельвин (К) .

Абсолютный ноль – это температура -273,15 градусов Цельсия, минимальный предел температуры, которую может иметь физическое тело во Вселенной, когда тепловое движение останавливается.

Решим несколько задач, условия в которых отличаются от нормальных и подразумевают использование уравнения Менделеева-Клапейрона для расчетов количества вещества или объема газа. В процессе решения проводим анализ протекающих процессов и особенностей алгоритмических приемов. Читайте внимательно и записывайте, затем попробуйте решить задачи самостоятельно. Итак, поехали!

Задача 1

При растворении в серной кислоте 10 г сплава цинка с магнием выделилось 5,2 л водорода, измеренного при 26С и давлении 920 мм рт.ст. Определить массовые доли металлов в смеси.

Вначале, как всегда, химический экскурс. Как реагируют металлы с кислотами? Металлы, стоящие в ряду активности левее (Н), реагируют с кислотами-неокислителями с выделением водорода. Металлы, правее (Н), с кислотами-неокислителями не реагируют.

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Sb Bi Cu Hg Ag Pt Au

И цинк, и магний реагируют с серной кислотой (очевидно, разбавленной) с выделением водорода. Это – классическая задача на смеси, решается по Четырем Заповедям. Определим последовательность действий по Третьей Заповеди (предварительные расчеты):

1) По уравнению Менделеева-Клапейрона определяем количество вещества водорода.

2) Принимаем количества вещества цинка и магния за неизвестные – X и Y соответственно, записываем досье для каждого участника (количество вещества, молярная масса, масса)

3) Делаем расчеты по уравнениям реакций.

4) Составляем систему уравнений. Одно уравнение – закрываем на количестве вещества водорода, второе – на общей массе сплава. Решаем уравнения, находим неизвестные, записываем их значения в досье.

5) Определяем массовые доли по стандартной формуле.

Секретная шпаргалка по химии. 4.7. Уравнение Менделеева-Клапейpона

Задача 2

Смесь цинка и меди массой 1 г поместили в пробирку с избытком соляной кислоты. Выделилось 200 мл водорода, измеренного при температуре 27С и давлении 740 мм рт.ст. Рассчитайте массовую долю меди в исходной смеси металлов.

Напомню еще раз: металлы, стоящие в ряду активности левее (Н), реагируют с кислотами-неокислителями с выделением водорода. Металлы, правее (Н), с кислотами-неокислителями не реагируют.

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Sb Bi Cu Hg Ag Pt Au

Цинк реагирует с соляной кислотой (он стоит левее водорода), медь – правее водорода, с соляной кислотой не реагирует. Задача решается по Четырем Заповедям. Определим последовательность действий по Третьей Заповеди (предварительные расчеты):

1) По уравнению Менделеева-Клапейрона определяем количество вещества водорода.

2) Делаем расчеты по уравнению реакции (по водороду определяем количество вещества цинка).

3) Определяем массовую долю цинка по стандартной формуле, а массовую долю меди – как оставшуюся разницу (обе массовые доли в сумме составляют 1 или 100%)

Секретная шпаргалка по химии. 4.7. Уравнение Менделеева-Клапейpона

Задача 3

Какой объем водорода, измеренный при температуре 21С и давлении 765 мм рт.ст. необходимо использовать для восстановления оксида меди (II) массой 16 г?

Экскурс в теоретическую химию. Водородом можно восстановить железо и остальные металлы правее него в ряду активности.

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Sb Bi Cu Hg Ag Pt Au

В литературе имеется информация о восстановлении водородом металлов от магния до железа, но при очень высоких температурах. Основной недостаток восстановления водородом – низкий коэффициент использования водорода (на практике водорода нужно в 2 раза больше, чем рассчитано по уравнению реакции).

Задача решается по Четырем Заповедям. Последовательность действий по Третьей Заповеди (предварительные расчеты):

1) Составляем досье на оксид меди (масса, молярная масса, количество вещества)

2) Делаем расчеты по уравнению реакции (по оксиду меди определяем количество вещества водорода)

3) По уравнению Менделеева-Клапейрона определяем объем водорода

Секретная шпаргалка по химии. 4.7. Уравнение Менделеева-Клапейpона

Задача 4

При действии на 10 г смеси меди и алюминия избытком соляной кислоты выделился газ объемом 5,44 л при 20С и 168 кПа. Вычислите массовую долю меди в исходной смеси.

Напомню еще раз: металлы, стоящие в ряду активности левее (Н), реагируют с кислотами-неокислителями с выделением водорода. Металлы, правее (Н), с кислотами-неокислителями не реагируют.

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Sb Bi Cu Hg Ag Pt Au

Алюминий реагирует с соляной кислотой (он стоит левее водорода), медь – правее водорода, с соляной кислотой не реагирует. Задача решается по Четырем Заповедям. Определим последовательность действий по Третьей Заповеди (предварительные расчеты):

1) По уравнению Менделеева-Клапейрона определяем количество вещества водорода.

2) Делаем расчеты по уравнению реакции (по водороду определяем количество вещества алюминия).

3) Определяем массовую долю алюминия по стандартной формуле, а массовую долю меди – как оставшуюся разницу (обе массовые доли в сумме составляют 1 или 100%)

Секретная шпаргалка по химии. 4.7. Уравнение Менделеева-Клапейpона

Ну как? Получили удовольствие от решения задач? Это был риторический вопрос. По этому поводу у меня есть забавная история из моей практики.

Более десяти лет назад я работала с учеником Сашей (фамилия слишком известная, поэтому ее не назову, даже если пытать будете). Саша пришел ко мне с очень слабыми знаниями. За год работы у мальчика прорезался интерес к решению задач по химии, и мы подружились. Нам приходилось работать 5 дней в неделю, по 4 часа в день (это было требование отца Саши, очень влиятельного чиновника). К концу года мы оба (я и Саша) изрядно устали от такой напряженной работы. На последнее занятие мальчик пришел с огромным букетом орхидей, который едва протиснулся в дверной проем. Мне никогда еще не дарили такой шикарный и, видимо, очень дорогой букет. Я поблагодарила Сашу примерно такими словами: “Сашуля, большое спасибо! Такой роскошный букет – это подарок за большую, сложную и результативную работу, которую мы с тобой проделали!” Сашин ответ сразил меня наповал: “Валентина Георгиевна! За этот год вы стали для меня второй мамой. Я вас очень люблю. Но букет этот я дарю вам за то, что, слава Богу, сегодня последнее занятие по химии!” Мы оба смеялись до слез 😂😂😂😂😂

На закуску – тайные признания виртуального робота Сири. Смотрите, слушайте, можете попробовать сами поиграть со своими гаджетами. Только запаситесь терпением – перлы начинают появляться только после долгого доставания программы.

Вы готовитесь к ЕГЭ и хотите поступить в медицинский? Обязательно посетите мой сайт Репетитор по химии и биологии. Здесь вы найдете огромное количество задач, заданий и теоретического материала, познакомитесь с моими учениками, многие из которых уже давно работают врачами. Звоните мне +7(903) 186-74-55. Приходите ко мне на курс, на Мастер-классы “Решение задач по химии” – и вы сдадите ЕГЭ с высочайшими баллами, и станете студентом престижного ВУЗа!

PS! Если вы не можете со мной связаться из-за большого количества звонков от моих читателей, пишите мне в личку ВКонтакте или на Facebook. Я обязательно отвечу вам.

Репетитор по химии и биологии кбн В.Богунова

Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа).

Уравнение Клапейрона-Менделеева (1834 г) устанавливает связь между объемом V, давлением P и абсолютной температурой Т для газа:

n – число молей газа ;

P – давление газа, Па;

V – объем газа, м 3 ;

T – абсолютная температура газа, К;

R – универсальная газовая постоянная 8,314 Дж/моль×K.

Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:

Из уравнения Клапейрона-Менделеева следует три закона:

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Примеры задач на уравнение Менделеева-Клапейрона

В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
Вопрос: сколько молей кислорода содержится в колбе?

  • Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)
  • В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

    Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

    Теперь немного формул.

    где
    P — давление газа (например, в атмосферах)
    V — объем газа (в литрах);
    T — температура газа (в кельвинах);
    R — газовая постоянная (0,0821 л·атм/моль·K).
    Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

    Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также

    где n — число молей газа

    И как нетрудно заметить, соотношение

    есть величина постоянная для одного и того же количества моль газа.

    И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

    Так, закон Бойля-Мариотта гласит (это два человека):
    Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

    Закон Гей-Люссака (а вот это один человек):
    Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

    Закон Шарля:
    Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

    Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

    Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
    Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

    Уравнение Клапейрона-Менделеева

    Что такое уравнение Клапейрона-Менделеева

    Идеальный газ — это газ, в котором пренебрегают взаимодействием молекул газа между собой.

    Идеальными считают разреженные газы. Особенно близкими к идеальным считают гелий и водород.

    Идеальный газ — это упрощенная математическая модель, которая широко применяется для описания свойств и поведения реальных газов при атмосферном давлении и комнатной температуре.

    Давление, объем и температура — это основные параметры состояния системы, и они связаны друг с другом. Соотношение, при котором определяется данная связь, называется уравнением состояния данного газа.

    Существует эквивалентная макроскопическая формулировка идеального газа — это такой газ, который одновременно будет подчиняться закону Бойля-Мариотта и Гей-Люссака, то есть:

    p V = c o n s t * T

    В представленном выше уравнении состоянии газа под const подразумевается количество молей.

    Свойства классического и квазиклассического идеального газа описываются уравнением состояния идеального газа, которое называется уравнением Менделеева-Клапейрона, ниже представлена формула Менделеева-Клапейрона.

    p V = m M R T = n R T , где m — масса газа, M — молярная масса газа, R = 8 , 314 Д ж / ( м о л ь * К ) — универсальная газовая постоянная, T — температура (К), n — количество молей газа.

    Таким образом давление и объем прямо пропорциональны количеству молей и температуре.

    Также уравнение Клапейрона-Менделеева можно записать в ином виде:

    p V = N k T , где N — это количество молекул газа массой m , k = 1 , 38 * 10 – 23 Д ж / К — постоянная Больцмана, которая определяет «долю» газовой постоянной, приходящуюся на одну молекулу и определяется по формуле:

    N = m N A M , где

    N A = 6 . 02 * 10 23 м о л ь – 1 ; — это постоянная Авогадро.

    Какое значение имеет универсальная газовая постоянная

    Универсальная газовая постоянная (R) — это величина, которая является константой, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 K.

    Значение данной константы находится как произведение постоянной Больцмана ( k = 1 , 38 * 10 – 23 Д ж / К ) на число Авогадро ( N A = 6 . 02 * 10 23 м о л ь – 1 ) . Таким образом универсальная газовая постоянная принимает следующее значение: R = 8 , 314 Д ж / ( м о л ь * К ) .

    Постоянную Больцмана используют в формулах, описывающих изучаемое явление или поведение рассматриваемого объекта с микроскопической точки зрения, тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.

    Связь с другими законами состояния идеального газа

    С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один трех макропараметров (давление, температура или объем) — остаются неизменными.

    Количественные зависимости между двумя параметрами газа при фиксированном третьем параметре называют газовыми законами, которые связывают эти параметры.

    Изопроцессы — это термодинамические процессы, во время протекания которых количество вещества и один из макропараметров состояния: давление, объем, температура или энтропия — остается неизменным.

    В зависимости от того, какой параметр остается неизменным различают разные процессы, которые выражаются законами, являющимися следствием уравнения состояния газа:

    • изотермический процесс (T=const);
    • изохорный процесс (V=const);
    • изобарный процесс (p=const).

    Изотермический процесс (T=const)

    Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

    Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой — термостатом. Им может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

    Согласно уравнению Клапейрона-Менделеева, в любом состоянии с неизменной температурой произведение давления газа на объем одно и то же, то есть постоянно:

    Этот закон был открыт экспериментально английским ученым Бойлем и несколько позднее французским ученым Мариоттом. Именно поэтому он называется закон Бойля-Мариотта.

    Закон Бойля-Мариотта справедлив для любых газов, а также для смеси газов (например, для воздуха).

    Зависимость давления газа от объема при постоянной температуре изображается графической кривой — изотермой. Изотерма для различных температур представлена в координатах pV на рис.1. и представляет собой гиперболу.

    Рис.1. Изотерма в pV — координатах.

    Изохорный процесс (V=const)

    Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

    Из уравнения состояния следует, что отношение давлений газа данной массы при постоянно объеме равно отношению его абсолютных температур:

    p 1 p 2 = T 1 T 2

    Газовый закон был установлен экспериментально в 1787 г. французским физиком Ж. Шарлем и носит название закона Шарля: давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

    Так, если в качестве одного из состояний газа выбрать состояние газа при нормальных условиях, тогда

    p = p 0 T T 0 = p 0 γ T

    Коэффициент γ называют температурным коэффициентом давления газа. Он одинаков для всех газов.

    Зависимость давления газа от температуры при постоянном объеме изображается графически прямой, которая называется изохорой (Рис.2).

    Рис.2 Изображение изохоры в pT-координатах.

    Изобарный процесс (p=const)

    Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

    Из уравнения Клапейрона-Менделеева вытекает, что отношение объемов газа данной массы при постоянном давлении равно отношению его абсолютных температур.

    V 1 V 2 = T 1 T 2

    Если в качестве второго состояния газа выбрать состояние при нормальных условиях (нормальном атмосферном давлении, температуре таяния льда) следует:

    V = V 0 T T 0 = V 0 α T

    Этот газовый закон был установлен экспериментально в 1802 г французским ученым Гей-Люссаком.

    Закон Гей-Люссака: объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре.

    Коэффициент α называют температурным коэффициентом объемного расширения газов.

    Зависимость объема газа от температуры при постоянном давлении изображается графической прямой, которая называется изобарой (Рис.3).

    Рис. 3. Изобара в VT-координатах.

    Использование универсального уравнения для решения задачи

    В реальности проводятся различные физико-химические процессы. Рассмотрим каким образом уравнение состояния идеального газа и законы, связанные с ним находят применение для решения физических и химических задач.

    Определить давление кислорода в баллоне объемом 1 м 3 при температуре t = 27 C o . Масса кислорода 1 кг.

    Так как в уравнении даны объем и температура — два из трех макроскопических параметров, а третий (давление) нужно определить, то мы можем использовать уравнение Клапейрона-Менделеева:

    p V = n R T = m M R T

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 27 + 273 = 300 K

    Молярная масса кислорода известна из таблицы Менделеева:

    M ( O 2 ) = 2 * 16 = 32 г / м о л ь = 32 * 10 – 3 к г / м о л ь

    Выразим из уравнения состояния давления и поставим все имеющиеся данные:

    p = n R T V = m R T M V = 1 * 8 . 31 * 300 32 * 10 – 3 * 1 = 77 . 906 П а = 78 к П а

    Ответ: p = 78 кПа.

    Каким может быть наименьший объем баллона, содержащего кислород массой 6,4 кг, если его стенки при t = 20 C o выдерживают p = 1568 Н / с м 2 ?

    Используем уравнение Менделеева-Клапейрона, из которого выражаем объем кислорода, который нужно найти:

    p = n R T V = m R T M V

    Молярная масса кислорода предполагается равной:

    M ( O 2 ) = 2 * 16 = 32 г / м 3

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 20 + 273 = 293 K

    Переводим давление: p = 15680000 Па

    Выражаем из уравнения Клапейрона-Менделеева объем и подставляем значения, данные в условиях задачи:

    V = n R T p = m R T M p = 6 . 4 * 8 . 31 * 293 15680000 * 32 * 10 – 3 = 3 . 1 * 10 – 2 м 3 = 31 л .

    Используя уравнение состояния идеального газа, доказать, что плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Согласно уравнению Менделеева-Клапейрона:

    p = n R T V = m R T M V

    Плотность — это величина, характеризующая массу некоторого объема и находится по формуле:

    ρ = m V и л и V = m ρ

    Тогда p m ρ = n R T = m R T M

    Откуда выражаем плотность газа:

    Для водорода эта формула запишется следующим образом:

    ρ H 2 = p M H 2 R T

    По условию задачи водород и любой другой газ находятся при одинаковых условиях, откуда следует, что:

    ρ H 2 M H 2 = p R T

    Поставим последнее выражение в выражение для плотности любого газа:

    ρ = M * ρ H 2 M H 2

    Молярная масса водорода, исходя из таблицы Менделеева равна 2 г/моль и тогда. Молекулярная масса численно равная молярной и представляет собой массу молекулы в атомных единицах, поэтому в дальнейшем мы совершили переход к молекулярной массе.

    ρ = M r * ρ H 2 2

    Вывод: плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Рассмотрим несколько задач на законы, связанные с уравнение Клапейрона-Менделеева, то есть на изотермические, изохорные, изобарные процессы.

    При уменьшении давления газа в 2,5 раза его объем увеличился на 12 л. Какой объем занимал газ в начальном состоянии, если температура на протяжении всего процесса оставалась постоянной?

    По условию задачи температура в ходе всего процесса оставалась постоянной, откуда следует, что у нас изотермический процесс, и мы можем воспользоваться для решения законом Бойля-Мариотта.

    p 1 V 1 = p 2 V 2 , г д е p 1 – давление газа в начальном состоянии (до расширения), V 1 — объем газа в начальном состоянии, p 2 = p 1 2 . 5 — давление газа в конечном состоянии (после расширения), V 2 = V 1 + ∆ V — объем газа в конечном состоянии.

    Откуда можем найти начальный объем:

    p 1 V 1 = p 1 2 . 5 ( V 1 + ∆ V ) = p 1 2 . 5 V 1 + p 1 2 . 5 ∆ V

    V 1 ( p 1 – p 1 2 . 5 ) = p 1 2 . 5 ∆ V

    p 1 2 . 5 V 1 ( 2 . 5 – 1 ) = p 1 2 . 5 ∆ V

    V 1 = ∆ V 1 , 5 = 8 л

    Ответ: первоначальный объем газа был равен 8 л.

    Газ находится в баллоне при температуре 400 К. До какой температуры нужно нагреть газ, чтобы его давление увеличилось в 1,5 раза?

    Так как нагревание газа по условиям данной задачи происходит при постоянном объеме, значит перед нами изохорный процесс.

    При изохорном процессе:

    p 1 T 1 = p 2 T 2

    T 2 = p 2 T 1 p 1

    p 2 p 1 = 1 . 5 T 2 = 1 . 5 * T 1 = 1 . 5 * 400 = 600 K

    При 27°C объем газа равен 600 мл. Какой объем займет газ при 57°C, если давление будет оставаться постоянным?

    Так как давление по условию остается постоянным, то можем использовать закон Гей-Люссака.

    V 1 V 2 = T 1 T 2

    V_2 – искомый объем

    Для правильного расчета необходимо перевести температуры из Цельсий в Кельвины:

    T 1 = 273 + 27 = 300 K

    T 2 = 273 + 57 = 330 K

    T 2 V 1 T 1 = V 2

    V 2 = ( 600 * 330 ) / 300 = 660 м л

    Газ в трубе плавильной печи охлаждается от температуры t 1 = 1150 ° С д о t 2 = 200 ° С . Во сколько раз увеличивается плотность газа при этом? Давление газа не меняется.

    Так как по условию задания давления газа не изменяется, значит перед нами изобарный процесс. Для решения воспользуемся законом Гей-Люссака:

    V 1 V 2 = T 1 T 2

    Перейдем к абсолютной температуре:

    T 1 = 1150 + 273 = 1423 K

    T 2 = 200 + 273 = 473 K

    Масса газа: m = ρ 1 V 1 = ρ 2 V 2

    Использование этих формул приводит к следующему:

    [spoiler title=”источники:”]

    http://planetcalc.ru/4265/

    http://wika.tutoronline.ru/fizika/class/10/uravnenie-klapejronamendeleeva

    [/spoiler]

    Уравнение
    состояния
     идеального
    газа
     (иногда уравнение Клапейрона или уравнение Менделеева — Клапейрона) —
    формула, устанавливающая зависимость
    между давлением, молярным
    объёмом и абсолютной
    температурой идеального
    газа.
    Уравнение имеет вид:

    где

    •  — давление,

    •  — молярный
      объём,

    •  — универсальная
      газовая постоянная

    •  — абсолютная
      температура,К.

    Так
    как ,
    где—количество
    вещества,
    а ,
    где
    масса,—молярная
    масса,
    уравнение состояния можно записать:

    Эта
    форма записи носит имя уравнения (закона)
    Менделеева — Клапейрона.

    В
    случае постоянной массы газа уравнение
    можно записать в виде:

    Последнее
    уравнение называют объединённым
    газовым законом
    .
    Из него получаются законы Бойля —
    Мариотта, Шарля и Гей-Люссака:

     — закон
    Бойля — Мариотта
    .

     — Закон
    Гей-Люссака
    .

     — закон Шарля (второй
    закон Гей-Люссака, 1808 г.).А
    в форме пропорции этот
    закон удобен для расчёта перевода газа
    из одного состояния в другое. С точки
    зрения химика этот закон может звучать
    несколько иначе: Объёмы вступающих в
    реакцию газов при одинаковых условиях
    (температуре, давлении) относятся друг
    к другу и к объёмам образующихся
    газообразных соединений как простые
    целые числа. Например, 1 объёмводородасоединяется
    с 1 объёмом хлора,
    при этом образуются 2 объёма хлороводорода:

    1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

    — закон
    Бойля — Мариотта
    .
    Закон Бойля — Мариотта назван в честь
    ирландского физика, химика и философа Роберта
    Бойля (1627—1691),
    открывшего его в 1662 г., а также в честь
    французского физика Эдма
    Мариотта (1620—1684),
    который открыл этот закон независимо
    от Бойля в 1677 году. В некоторых случаях
    (в газовой
    динамике)
    уравнение состояния идеального газа
    удобно записывать в форме

    где —показатель
    адиабаты, 
    внутренняя энергия единицы массы
    вещества.Эмиль
    Амага обнаружил,
    что при высоких давлениях поведение газов отклоняется
    от закона Бойля — Мариотта. И это
    обстоятельство может быть прояснено
    на основании молекулярных представлений.

    С
    одной стороны, в сильно сжатых газах
    размеры самих молекул являются сравнимыми
    с расстояниями между молекулами. Таким
    образом, свободное пространство, в
    котором движутся молекулы, меньше, чем
    полный объём газа. Это обстоятельство
    увеличивает число ударов молекул в
    стенку, так как благодаря ему сокращается
    расстояние, которое должна пролететь
    молекула, чтобы достигнуть стенки. С
    другой стороны, в сильно сжатом и,
    следовательно, более плотном газе
    молекулы заметно притягиваются к другим
    молекулам гораздо большую часть времени,
    чем молекулы в разреженном газе. Это,
    наоборот, уменьшает число ударов молекул
    в стенку, так как при наличии притяжения
    к другим молекулам молекулы газа движутся
    по направлению к стенке с меньшей
    скоростью, чем при отсутствии притяжения.
    При не слишком больших давлениях более
    существенным является второе обстоятельство
    и произведение немного
    уменьшается. При очень высоких давлениях
    большую роль играет первое обстоятельство
    и произведениеувеличивается.

    5. Основное уравнение молекулярно-кинетической теории идеальных газов

    Для
    вывода основного уравнения
    молеку­лярно-кинетической теории
    рассмотрим одноатомный идеальный газ.
    Предполо­жим, что молекулы газа
    движутся хаоти­чески, число взаимных
    столкновений меж­ду молекулами газа
    пренебрежимо мало по сравнению с числом
    ударов о стенки сосуда, а соударения
    молекул со стенками сосуда абсолютно
    упругие. Выделим на стенке сосуда
    некоторую элементарную площадку DS и
    вычислим давле­ние, оказываемое на
    эту площадку. При каждом соударении
    молекула, движущая­ся перпендикулярно
    площадке, передает ей
    импульс m0v-(-m0v)=2m0v, где т0 
    масса молекулы, v 
    ее скорость.

    За
    время Dt площадки DS достигнут только те
    молекулы, которые заключены в объеме
    цилиндра с основанием DS и высотой vDt .Число
    этих молекул равно nDSvDt (n—концентрация
    молекул).

    Необходимо,
    однако, учитывать, что реально молекулы
    движутся к площадке

    DS
    под разными углами и имеют различ­ные
    скорости, причем скорость молекул при
    каждом соударении меняется. Для упрощения
    расчетов хаотическое движе­ние молекул
    заменяют движением вдоль трех взаимно
    перпендикулярных направ­лений, так
    что в любой момент времени вдоль каждого
    из них движется 1/3 моле­кул,
    причем половина молекул (1/6)
    дви­жется вдоль данного направления
    в одну сторону, половина — в противоположную.
    Тогда число ударов молекул, движущихся
    в заданном направлении, о площадку DS
    будет 1/6nDSvDt.
    При столкновении с пло­щадкой эти
    молекулы передадут ей им­пульс

    DР =
    2m0v1/6nDSvDt=1/3nm0v2DSDt.

    Тогда
    давление газа, оказываемое им на стенку
    сосуда,

    p=DP/(DtDS)=1/3nm0v2.
    (3.1)

    Если
    газ в объеме V содержит N молекул,

    движущихся
    со скоростями v1, v2, …, vN,
    то

    целесообразно
    рассматривать среднюю
    квадратичную скорость

    характеризующую
    всю совокупность моле­кул газа.

    Уравнение
    (3.1) с учетом (3.2) при­мет вид

    р
    =
     1/3пт0 <vкв>2.
    (3.3)

    Выражение
    (3.3) называется основ­ным
    уравнением молекулярно-кинетической
    теории идеальных газов.
     Точный
    рас­чет с учетом движения молекул по
    все-

    возможным
    направлениям дает ту же формулу.

    Учитывая,
    что n = N/V, получим

    где Е 
    суммарная кинетическая энергия
    поступательного движения всех молекул
    газа.

    Так
    как масса газа m =Nm0,
    то урав­нение (3.4) можно переписать в
    виде

    pV=1/3m<vкв>2.

    Для
    одного моля газа т
    = М (М —
     моляр­ная
    масса), поэтому

    pVm=1/3M<vкв>2,

    где Vm 
    молярный объем. С другой сто­роны, по
    уравнению Клапейрона —
    Мен­делеева, pVm=RT. Таким
    образом,

    RT=1/3М
    <vкв>2,
    откуда

    Так
    как М = m0NA,
    где m0—масса
    од­ной молекулы, а NА —
    постоянная Авогад­ро, то из уравнения
    (3.6) следует, что

    где k = R/NA—постоянная
    Больцмана. Отсюда найдем, что при
    комнатной темпе­ратуре молекулы
    кислорода имеют сред­нюю квадратичную
    скорость 480 м/с, во­дорода — 1900 м/с. При
    температуре жид­кого гелия те же
    скорости будут соответ­ственно 40 и
    160 м/с.

    Средняя
    кинетическая энергия посту­пательного
    движения одной молекулы иде­ального
    газа

    <e0)
    =E/N = m0 <vкв>)2/2
    =
     3/2kT(43.8)

    (использовали
    формулы (3.5) и (3.7)) пропорциональна
    термодинамической тем­пературе и
    зависит только от нее. Из этого уравнения
    следует, что при T=0 <e0>
    =0,,т. е. при 0 К прекращается поступательное
    движение молекул газа, а следовательно,
    его давление равно нулю. Таким образом,
    термодинамическая температура является
    мерой средней кинетической энергии
    по­ступательного движения молекул
    идеаль­ного газа и формула (3.8) раскрывает
    молекулярно-кинетическое толкование
    температуры.

    Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #

    Добавить комментарий