Законы физики как найти r

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

CoulombsLaw.svg

Зако́н Куло́на — физический закон, описывающий взаимодействие между двумя неподвижными точечными электрическими зарядами в вакууме. Сила, с которой заряд q_{1} действует на заряд q_{2}, согласно этому закону находится (в СИ) как

{displaystyle {vec {F}}_{12}={frac {1}{4pi varepsilon _{0}}}cdot {frac {q_{1}q_{2}({vec {r}}_{2}-{vec {r}}_{1})}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}},

где {displaystyle |{vec {r}}_{2}-{vec {r}}_{1}|=r_{12}} — расстояние между зарядами, {displaystyle {vec {r}}_{1}}, {displaystyle {vec {r}}_{2}} — их радиус-векторы, а varepsilon _{0} — электрическая постоянная. По величине, {displaystyle F_{12}=q_{1}q_{2}/(4pi varepsilon _{0}r_{12}^{2})}.

Также под законом Кулона понимается формула для вычисления электрического поля точечного заряда, вместе с её обобщением на произвольное распределение зарядов в пространстве:

{displaystyle {vec {E}}({vec {r}}_{0})={frac {1}{4pi varepsilon _{0}}}int _{V}{frac {({vec {r}}_{0}-{vec {r}})rho ({vec {r}}),dV}{|{vec {r}}_{0}-{vec {r}}|^{3}}}}.

Здесь {vec  {r}}_{0} — радиус-вектор точки, в которой определяется поле, а {vec {r}} — радиус-вектор элемента объёма dV, заряд {displaystyle dq=rho dV} (rho — плотность заряда) которого даёт вклад в поле.

Закон Кулона в классической электродинамике[править | править код]

Установление и формулировки закона[править | править код]

Закон открыт Шарлем Кулоном в 1785 году. Проведя большое количество опытов с металлическими шариками, Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка[1]:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

В векторном виде в формулировке Ш. Кулона закон записывается как

{displaystyle {vec {F}}_{12}=kcdot {frac {q_{1}cdot q_{2}}{r_{12}^{2}}}cdot {frac {{vec {r}}_{12}}{r_{12}}}},

где vec{F}_{12} — сила, с которой заряд 1 действует на заряд 2; q_1, q_2 — величина зарядов (со знаком); vec{r}_{12} — вектор, направленный от заряда 1 к заряду 2 и по модулю равный расстоянию между зарядами (r_{12}); k — коэффициент пропорциональности.

Условия применимости[править | править код]

Для того, чтобы закон был верен, необходимы:

  1. точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Здесь две оговорки: а) существует обобщение закона Кулона на случай тел конечных размеров; б) можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. расположение зарядов в вакууме.

В отдельных ситуациях, с корректировками, закон может быть применен также для взаимодействий зарядов в среде и для движущихся зарядов[2]. Но в общем случае при наличии неоднородных диэлектриков он неприменим, поскольку помимо заряда q_{1} на зарад q_{2} действуют связанные заряды, возникшие при поляризации.

Выражения в разных системах единиц[править | править код]

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока — ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн/м = 8,9875517873681764⋅109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

k={frac  {1}{4pi varepsilon _{0}}},

где varepsilon _{0} ≈ 8,85418781762⋅10−12 Ф/м — электрическая постоянная.

В случае среды, заполненной бесконечным однородным изотропным диэлектрическим веществом, в знаменатель формулы закона Кулона добавляется диэлектрическая проницаемость среды ε. Тогда

{displaystyle k={frac {1}{varepsilon }},,} (в СГСЭ) {displaystyle quad k={frac {1}{4pi varepsilon _{0}varepsilon }},,} (в СИ).

Закон Кулона и уравнения Максвелла[править | править код]

Закон Кулона и принцип суперпозиции для электрических полей в вакууме полностью равносильны уравнениям Максвелла для электростатики {displaystyle mathrm {div} {vec {D}}=rho } (rho — плотность заряда, {displaystyle {vec {D}}} — вектор электрического смещения) и {displaystyle mathrm {rot} {vec {E}}=0} ({vec {E}} — напряжённость электрического поля). То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики, и наоборот, уравнения Максвелла для электростатики выполняются, тогда когда выполняются закон Кулона и принцип суперпозиции для электрических полей[3].

Исторически закон Кулона был одним из эмпирических законов, служивших предпосылками для формулирования уравнения Максвелла. Однако при современном изложении учения об электромагнетизме этот закон (равно как и, скажем, закон Ампера) нередко позиционируется как следствие уравнений Максвелла, которым придаётся статус фундаментальных аксиом.

Вывод закона Кулона из уравнений Максвелла[править | править код]

Уравнение Максвелла {displaystyle mathrm {div} {vec {D}}=rho } с помощью теоремы Гаусса может быть приведено к интегральной форме

{displaystyle oint limits _{mathbf {S} }{vec {D}}cdot d{vec {s}}=Q},

где Q — суммарный заряд внутри замкнутой поверхности S, по которой проводится интегрирование. Если «суммарный» заряд состоит из одного точечного заряда q_{1}, пространство заполнено однородным диэлектриком, то есть {displaystyle {vec {D}}=varepsilon _{0}varepsilon {vec {E}}}, а поверхность представляет собой сферу с центром в месте нахождения заряда, то из-за симметрии поле заряда q_{1} в любой точке на поверхности сферы будет одним и тем же по величине и направленным от центра или к центру. Тогда интеграл оказывается равным {displaystyle Dcdot S=varepsilon _{0}varepsilon Ecdot 4pi l^{2}}, где через l обозначен радиус сферы, отсюда {displaystyle E=q_{1}/(4pi varepsilon _{0}varepsilon l^{2})}. Если на поверхность сферы поместить другой точечный заряд q_{2}, на него будет действовать сила. Поскольку поле есть отношение действующей на произвольный заряд силы к величине данного заряда ({displaystyle E=F/q_{2}}), приходим к выражению закона Кулона {displaystyle F=q_{1}q_{2}/(4pi varepsilon _{0}varepsilon l^{2})}.

Обобщение на случай распределения заряда[править | править код]

Если на заряд q_{2} действует не точечный заряд q_{1}, а заряд, распределённый в пространстве с плотностью {displaystyle rho _{1}({vec {r}})} (Кл/м3), то область, где {displaystyle rho _{1}neq 0}, можно мысленно разбить на малые (в пределе — бесконечно малые) элементы объёма {displaystyle dV_{1}} и каждый такой элемент рассматривать как точечный заряд {displaystyle rho _{1}({vec {r}}_{1}),dV_{1}}. По принципу суперпозиции, суммарная сила, действующая на заряд q_{2} со стороны таких элементов, может быть определена как интеграл по ним:

{displaystyle {vec {F}}_{12}={frac {q_{2}}{4pi varepsilon _{0}}}int _{V_{1}}{frac {({vec {r}}_{2}-{vec {r}}_{1}),rho _{1}({vec {r}}_{1})dV_{1}}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}},

где радиус-вектором {displaystyle {vec {r}}_{2}} задаётся положение заряда q_{2}, а радиус-вектором {displaystyle {vec {r}}_{1}} — положение элемента dV. Если в случае точечного q_{1} вектор {displaystyle {vec {r}}_{1}} был фиксированным, то теперь он пробегает все положения элементов.

Если же не только заряд q_{1}, но и заряд q_{2} являются распределёнными, то производится интегрирование и по элементам первого, и по элементам второго заряда, а именно

{displaystyle {vec {F}}_{12}={frac {1}{4pi varepsilon _{0}}}int _{V_{2}}int _{V_{1}}{frac {({vec {r}}_{2}-{vec {r}}_{1}),rho _{1}({vec {r}}_{1})dV_{1},rho _{2}({vec {r}}_{2})dV_{2}}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}}.

Закон Кулона и расчёт электрического поля[править | править код]

Взаимодействие двух зарядов может быть истрактовано как взаимодействие одного из зарядов с электрическим полем, создаваемым другим зарядом. Это становится виднее, если соответствующим образом перегруппировать сомножители в выражении для силы:

{displaystyle {vec {F}}_{12}={frac {1}{4pi varepsilon _{0}}}cdot {frac {q_{1}q_{2}({vec {r}}_{2}-{vec {r}}_{1})}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}=q_{2}cdot left[{frac {1}{4pi varepsilon _{0}}}cdot {frac {q_{1}({vec {r}}_{2}-{vec {r}}_{1})}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}right]=q_{2}cdot E_{1}({vec {r}}_{2})}.

Тем самым закон Кулона фактически становится основой для вычисления поля. Так же, как и при рассмотрении силы, возможно обобщение последнего равенства на случай распределения зарядов.

Для нахождения поля {vec {E}} ({displaystyle =-{rm {{grad},varphi }}}) и электрического потенциала varphi в точке {vec  {r}}_{0}, создаваемых распределённым зарядом, производится интегрирование:

{displaystyle {vec {E}}({vec {r}}_{0})={frac {1}{4pi varepsilon _{0}}}int {frac {({vec {r}}_{0}-{vec {r}}),dq({vec {r}})}{|{vec {r}}_{0}-{vec {r}}|^{3}}},qquad varphi ({vec {r}}_{0})={frac {1}{4pi varepsilon _{0}}}int {frac {dq({vec {r}})}{|{vec {r}}_{0}-{vec {r}}|}}},

где заряд {displaystyle dq} обычно записывается как {displaystyle rho ({vec {r}})dV} (и интегрирование тогда выполняется по объёму), но в ряде задач может задаваться как {displaystyle sigma ({vec {r}})dS} (если заряд поверхностный, [sigma ] = Кл/м2, интерирование по площади) или как {displaystyle lambda ({vec {r}})dl} (заряд линейный [lambda ] = Кл/м, интеграл по линии).

Если всё пространство заполнено однородным диэлектриком с проницаемостью varepsilon , то формулы сохраняют свою актуальность, если в них varepsilon _{0} заменить на varepsilon _{0}varepsilon . В других случаях, за редкими исключениями, формулы неприменимы, так как необходимо учитывать вклад в том числе связанных зарядов ({displaystyle rho =rho _{f}+rho _{b}}, где {displaystyle rho _{f}} — плотность стороннего, а {displaystyle rho _{b}} — связанного заряда), возникающих при поляризации, — а эти заряды заранее неизвестны.

Аналогии в других областях классической физики[править | править код]

Закон Кулона совершенно аналогичен по форме закону всемирного тяготения. При этом функцию гравитационных масс выполняют электрические заряды[4] разных знаков.

Магнитостатическими аналогами закона Кулона являются закон Ампера (в части нахождения сил взаимодействия) и закон Био — Савара — Лапласа (в части расчёта по́ля).

Об открытии и исторической значимости закона[править | править код]

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил[5] Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала его трагическая гибель.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил[6], что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение[7] о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества»[8] отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «сила электрического притяжения подчиняется тем же законам, что и сила тяжести, а следовательно, зависит от квадрата расстояния между зарядами»[9]. Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785)[10].

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Дж. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.[11].

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона является первым открытым количественным и сформулированным на математическом языке фундаментальным законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме[12].

Закон Кулона в квантовой механике[править | править код]

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике[13]. Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

{displaystyle H=-{frac {hbar ^{2}}{2m}}sum _{j}nabla _{j}^{2}-Ze^{2}sum _{j}{frac {1}{r_{j}}}+sum _{i>j}{frac {e^{2}}{r_{ij}}}.}

Здесь m — масса электрона, е — его заряд, r_{j} — абсолютная величина радиус-вектора j-го электрона vec r_j, а r_{ij}=|vec r_{i} - vec r_{j}|. Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно[14].

Закон Кулона с точки зрения квантовой электродинамики[править | править код]

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона[15][16].

Степень точности закона Кулона[править | править код]

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что[], какова бы ни была форма полости или проводника[17].

Такие опыты впервые провел Кавендиш и повторил Максвелл в усовершенствованном виде, получив для максимального отличия показателя в степени от двух величину {displaystyle {frac {1}{21600}}}[18].

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до (3,1 pm 2,7) times 10^{-16}[19].

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9[20][21].

Коэффициент k в законе Кулона остаётся постоянным с точностью до 15⋅10−6[21].

Поправки к закону в квантовой электродинамике[править | править код]

На небольших расстояниях (порядка комптоновской длины волны электрона):

{displaystyle lambda _{e}={frac {hbar }{m_{e}c}}approx 3{,}86cdot 10^{-13}} м[22],

где m_e — масса электрона, hbar  — постоянная Планка, c — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка e^{-2r/lambda_e} в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.

Например, выражение для потенциала точечного заряда Q в системе СГС, с учётом радиационных поправок первого порядка, принимает вид
[23]:


Phi(r) = frac{Q}{r}cdotleft(1+ frac{alpha}{4sqrt{pi}}frac{e^{-2r/lambda_e}}{(r/lambda_e)^{3/2}}right),

где lambda_e — комптоновская длина волны электрона,
{displaystyle alpha ={frac {e^{2}}{hbar c}}} — постоянная тонкой структуры и rgg lambda_e.

На расстояниях порядка {displaystyle lambda _{W}={frac {hbar }{m_{w}c}}sim } 10−18 м, где m_w — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка {displaystyle {frac {m_{e}c^{2}}{elambda _{e}}}sim } 1018 В/м или {displaystyle {frac {m_{e}c}{elambda _{e}}}sim } 109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро-, но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально[24].

Закон Кулона и поляризация вакуума[править | править код]

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона e_e является убывающей функцией расстояния e_e=e_e(r)[25]. Эффективный потенциал, создаваемый электроном с электрическим зарядом e, можно описать зависимостью вида e_e(r)/r. Эффективный заряд e_e(r) зависит от расстояния r по логарифмическому закону:


frac{e_e(r)}{e}=1+frac{2alpha}{3pi}lnfrac{r_e}{r}+dots,

где

{displaystyle alpha ={frac {e^{2}}{4pi varepsilon _{0}hbar c}}approx 7.3cdot 10^{-3}} — постоянная тонкой структуры;
{displaystyle r_{e}={frac {e^{2}}{4pi varepsilon _{0}c^{2}m_{e}}}approx 2.8cdot 10^{-13}} см — классический радиус электрона[26][27].

Эффект Юлинга[править | править код]

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 МГц[28][29].

Закон Кулона и сверхтяжёлые ядра[править | править код]

В сильном электромагнитном поле вблизи сверхтяжёлых ядер с зарядом Z > 170 осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона[30].

См. также[править | править код]

  • Электростатика
  • Электрическое поле
  • Дальнодействие
  • Закон Био — Савара — Лапласа
  • Закон притяжения
  • Шарль Огюстен де Кулон
  • Кулон (единица измерения)
  • Принцип суперпозиции
  • Уравнения Максвелла

Примечания[править | править код]

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 17. — 656 с. — ISBN 5-9221-0227-3.
  2. Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2001. — С. 132. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
  3. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
  4. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм. — М.: Наука, 1964. — Тираж 100 000 экз. — С. 33.
  5. Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
  6. Эпинус Ф. Т. У. Теория электричества и магнетизма. — Л.: АН СССР, 1951. — 564 с. — (Классики науки). — 3000 экз. Архивировано 17 ноября 2012 года.
  7. Abel Socin (1760) Acta Helvetica, vol. 4, pages 224-225.
  8. J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
  9. Уиттекер Э. История теории эфира и электричества. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 76. — 512 с. — ISBN 5-93972-070-6.
  10. John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 Архивная копия от 1 декабря 2016 на Wayback Machine автор пишет, что сила изменяется как x−2,06.
  11. ‘Филонович С. Р. Кавендиш, Кулон и электростатика. — М.: Знание, 1988. — С. 48.
  12. Спиридонов О. П. Универсальные физические постоянные.— М.: Просвещение.— 1984.— с. 52-53;
  13. Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — М., 2002. — С. 74. — («Теоретическая физика», том III).
  14. Бете Х. Квантовая механика. — Пер. с англ., под ред. В. Л. Бонч-Бруевича. — М.: Мир, 1965. — С. 11.
  15. Пайерлс Р. Е.  Законы природы. пер. с англ. под ред. проф. Халатникова И. М. , Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
  16. Окунь Л. Б. alpha beta gamma … z Элементарное введение в физику элементарных частиц Архивная копия от 25 ноября 2010 на Wayback Machine, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
  17. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106—108;
  18. Калашников С. Г.,
    Электричество, М., ГИТТЛ, 1956, гл. III «Разность потенциалов», п. 34 «Точная проверка закона Кулона», с. 68—69; «Добавления», 1. «Теория опытов Кавендиша и Максвелла», с. 642—645;
  19. E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721—724 (1971);
  20. W. E. Lamb, R. C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method (англ.) // Physical Review. — 1947. — Vol. 72, no. 3. — P. 241—243.
  21. 1 2 Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
  22. CODATA Архивная копия от 11 февраля 2012 на Wayback Machine (the Committee on Data for Science and Technology)
  23. Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика. — Издание 3-е, исправленное. — М.: Наука, 1989. — С. 565—567. — 720 с. — («Теоретическая физика», том IV). — ISBN 5-02-014422-3.
  24. Neda Sadooghi. Modified Coulomb potential of QED in a strong magnetic field (англ.). Архивировано 18 января 2015 года.
  25. Окунь Л. Б. Физика элементарных частиц. Изд. 3-е, М.: «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
  26. «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
  27. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
  28. Uehling E. A ., Phys. Rev., 48, 55, (1935)
  29. Швебер С., Бете Г., Гофман Ф. Мезоны и поля. Том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
  30. Мигдал А. Б. Поляризация вакуума в сильных полях и пионная конденсация// Успехи физических наук Т. 123— в. 3.— 1977 г., ноябрь.— с. 369—403;

Литература[править | править код]

  • Филонович С. Р. Судьба классического закона. — М.: Наука, 1990. — 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.

Ссылки[править | править код]

  • Закон Кулона (видеурок, программа 10 класса)

Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.

Закон Кулона

Рисунок 1. Закон Кулона

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Крутильные весы

Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r2

Взаимодействие точечных зарядов

Рис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 1018 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная:   ε0 = 8,85 ∙10-12 Кл2/Н∙м2. Выполнив несложные вычисления, мы находим: k = 9×109 H*м2 / Кл2. В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Закон Кулона в диэлектриках

Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации. В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название –  диэлектрическая проницаемость. Обозначают её символом ε. В этом случае k = 1/4πεε0.

Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.

Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.

Применение на практике

Вся современная электротехника построена на принципах взаимодействия кулоновских сил.  Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.

На базе электростатики появилось много изобретений:

  • конденсатор;
  • различные диэлектрики;
  • антистатические материалы для защиты чувствительных электронных деталей;
  • защитная одежда для работников электронной промышленности и многое другое.

На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).

Большой адронный коллайдер

Рис. 4. Большой адронный коллайдер

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

Использованная литература:

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.

Видео по теме

Закон Ома назван в честь своего открывателя это ученый Георг Симон Ом. Свои эксперименты в области электричества он начал вдохновляясь опытами Фурье. Ом проводил свои опыты с различными материалами и изучение их электропроводности. Так была разработана знаменитая формула, которая стала краеугольной в современной физике, которая вошла в школьные учебники: I=U/R. Сила тока пропорциональна величине напряжения и имеет обратную пропорциональность сопротивлению.

В статье подробно разобраны области теории и практического применения принципов закона Ома в современной электротехнике. В качестве дополнения, в материале содержатся два обучающих видеоролика и один научный материал на тему статьи.

Закон Ома

Закон Ома показывает отношения между напряжением (U), током (I) и сопротивлением (R). Записано это может быть тремя разными способами:

U = I × R

или

I = V/R

или

R = V/I

Где:

  • V – напряжение в вольтах (В);
  • I – сила тока в амперах (А);
  • R – сопротивление в омах (Ом);

Для большинства схем амперы – слишком большие величины, а омы – слишком маленькие. Поэтому в формулу можно подставлять миллиамперы и килоомы. Если силу тока подставлять в миллиамперах (мА), то сопротивление обязательно должно быть в килоомах (кОм) и наоборот. Напряжение – всегда в вольтах.

Видоизменения закона Ома.
Видоизменения закона Ома.

Чтобы проще запомнить три разные версии определения Закона Ома, можно воспользоваться «VIR-треугольником».

  • Если надо вычислить напряжение, закрываем пальцем V. У нас остаются I и R. Они на одном уровне, значит между ними ставим знак умножения. Получается: V = I × R .
  • Если вычисляем ток, закрываем пальцем I. У нас остаётся V над R. Значит напряжение делится на сопротивление:  I = V/R .
  • Аналогичным образом поступаем при вычислении сопротивления. Закрываем R. Остаётся V над I. Значит: R = V/I .

Закон Ома, определение: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Есть также частный случай – Закон Ома для участка цепи – сила тока в участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению этого участка.

Закон Ома для цепи

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

Закон Ома для участка цепи.
Закон Ома для участка цепи.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Для полной цепи

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

Все о законе Ома: простыми словами с примерами для “чайников”

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

Для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

Для замкнутой цепи

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Следствия закона Ома.
Следствия закона Ома.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Сфера применения

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.
Все о законе Ома: простыми словами с примерами для “чайников”
Все о законе Ома: простыми словами с примерами для “чайников”
Все о законе Ома: простыми словами с примерами для “чайников”

Последовательное и параллельное включение элементов

Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение. Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.

Цепь последовательно включенных резистивных элементов

Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:

  • I = I1= I2 ;
  • U = U1+ U2 ;
  • R = R1+ R2

Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения. Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.

При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx. Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.

Цепь параллельно включенных резистивных элементов

На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:

  • I = I1+ I2 … ;
  • U = U1= U2 … ;
  • 1 / R = 1 / R1+ 1 / R2 + …

Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение. Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.

Интегральная и дифференциальная формы закона

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.

Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

Все о законе Ома: простыми словами с примерами для “чайников”

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления, тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Сила тока что такое

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Напряжение, что такое

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

Памятник Георгу Симону Ому

Памятник Георгу Симону Ому

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

закон Ома для новичков

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря “участок цепи” мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть  у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон Ома для Чайников

Закон запишется в следующем виде:

закон Ома для чайников

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

Ток в проводнике

Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

По какой формуле можно найти сопротивление?

Анонимный вопрос

2 ноября 2018  · 61,6 K

Лучший ответ на 99.9% вопросов: “Поисковик в помощь”.  · 2 нояб 2018

Самая простая формула для нахождения сопротивления – закон Ома для участка цепи.

R=U/I, где

R – сопротивление,

U – напряжение,

I – сила тока.

8,5 K

Комментировать ответ…Комментировать…

Рассчитайте сопротивление лампы накаливания в рабочем состоянии R и в выключенном состоянии R20 , а также токи в рабочем состоянии Iраб и в холодном состоянии I20 . Лампа мощностью 100 Вт включается в сеть напряжением 220 В. Температура нити лампы в холодном состоянии +200 С, в горячем – +30000 С. Материал нити – вольфрам. Его температурный коэффициент сопротивления – α=0,0045 1/К.

8,0 K

Комментировать ответ…Комментировать…

Сопротивление вычисляется по формуле (Закон Ома):
R = U/I
R — само сопротивление (Ом)
U — напряжение (Вольт)
I — сила тока (Ампер)
Т.е в системе СИ:
[R] = B/ A = Ом
Читать далее

26,9 K

Комментировать ответ…Комментировать…

Добавить комментарий