Калькулятор длин сторон треугольника онлайн умеет вычислять длину сторон 14 способами.
Калькулятор может:
- Найти все стороны треугольника.
- Найти все углы треугольника.
- Найти площадь (S) и периметр (P) треугольника.
- Найти радиус (r) вписанной окружности.
- Найти радиус (R) описанной окружности.
- Найти высоту (h) треугольника.
Просто введите любые имеюшиеся данные и, если их достаточно, то калькулятор сам подберет нужные формулы для вычислений и покажет подробный расчет с выводом формул.
Сторона треугольника (или длина сторон) может быть найдена различными методами.
В большинстве случаев достаточно воспользоваться одной из ниже приведенных формул. Однако не редки случаи когда для нахождения искомой стороны понадобиться обратиться к дополнительным материалам или решения в два действия.
Как найти длину стороны треугольника?
Найти длину сторон треугольника очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.
Для прямоугольного треугольника:
1) Найти катет через гипотенузу и другой катет
где a и b – катеты, с – гипотенуза.
2) Найти гипотенузу по двум катетам
где a и b – катеты, с – гипотенуза.
3) Найти катет по гипотенузе и противолежащему углу
где a и b – катеты, с – гипотенуза,α° и β° – углы напротив катетов.
4) Найти гипотенузу через катет и противолежащий угол
где a и b – катеты, с – гипотенуза,α° и β°- углы напротив катетов.
Для равнобедренного треугольника:
1) Найти основание через боковые стороны и угол между ними
где a – искомое основание, b – известная боковая сторона,α° – угол между боковыми сторонами.
2) Найти основание через боковые стороны и угол при основании
где a – искомое основание,b – известная боковая сторона,β° – угол при осноавнии.
3) Найти боковые стороны по углу между ними
где b – искомая боковая сторона, a – основание,α° – угол между боковыми сторонами.
4) Найти боковые стороны по углу при основании
где b – искомая боковая сторона, a – основание,β° – угол при осноавнии.
Для равностороннего треугольника:
1) Найти сторону через площадь
где a – искомая сторона, S – площадь треугольника.
2) Найти сторону через высоту
где a – искомая сторона,h – высота треугольника.
3) Найти сторону через радиус вписанной окружности
где a – искомая сторона,r – радиус вписанной окружности.
4) Найти сторону через радиус описанной окружности
где a – искомая сторона,R – радиус описанной окружности.
Для произвольного треугольника:
1) Найти сторону через две известные стороны и один угол (теорема косинусов)
где a – искомая сторона, b и с – известные стороны, α° – угол напротив неизвестной стороны.
2) Найти сторону через одну известную сторону и два угла (теорема синусов)
где a – искомая сторона, b – известная сторона, α° и β° известные углы.
Скачать все формулы в формате Word
Имея только значения длин двух сторон треугольника, вычислить длину третьей стороны этого треугольника невозможно. Для этого необходимо ещё знать градусную меру угла, именно между этими двумя сторонами.
- Для нахождения третьей стороны треугольника необходимо знать градусную меру угла между двумя известными сторонами.
- Если известны периметр треугольника и две его стороны, то третью сторону можно вычислить как разность периметра и суммы известных сторон.
- В случае, если известны две стороны и высота треугольника, можно воспользоваться теоремой Пифагора.
- Для нахождения третьей стороны равнобедренного треугольника необходимо убедиться, что сумма известных сторон больше третьей стороны.
- Теорема Пифагора позволяет находить длину стороны треугольника в прямоугольном треугольнике.
- Для нахождения третьей стороны треугольника по известному периметру и двум известным сторонам нужно вычесть их сумму из периметра.
- Площадь прямоугольника можно вычислить, зная одну из его сторон и общую площадь. Для этого необходимо разделить общую площадь на сторону, известную заранее.
- Как найти 3 сторону треугольника зная только 2 стороны
- Как найти сторону треугольника 2 класс
- Как найти третью сторону треугольника если известны две стороны и высота
- Как найти третью сторону равнобедренного треугольника по двум сторонам
- Как найти третью сторону треугольника по теореме Пифагора
- Как найти длину стороны треугольника
- Как найти периметр треугольника если известны только две стороны
- Как найти стороны прямоугольника
- Как найти третий угол в треугольнике
- Как найти стороны прямоугольного треугольника если известны 2 стороны
- Как найти основание у треугольника
- Как найти третью сторону треугольника через медиану
- Как посчитать боковую сторону равнобедренного треугольника
- Как называется 3 сторона равнобедренного треугольника
- Как найти длину основания треугольника
- Как найти неизвестную сторону в прямоугольном треугольнике
- Как вычислить размеры треугольника
- Что можно найти зная три стороны треугольника
- Как найти третью сторону треугольника с прямым углом
Как найти 3 сторону треугольника зная только 2 стороны
Имея только значения длин двух сторон треугольника, вычислить длину третьей стороны этого треугольника невозможно. Для этого необходимо ещё знать градусную меру угла, именно между этими двумя сторонами.
Как найти сторону треугольника 2 класс
Периметр равен сумме сторон геометрической фигуры. Таким образом, если известен периметр треугольника Р и две стороны треугольника а и в, то третью сторону с можно найти как разность периметра треугольника и суммы двух других его сторон: с = Р — (а + в).
Как найти третью сторону треугольника если известны две стороны и высота
К такому виду треугольника можно применить теорему Пифагора. Суть данной теоремы в том, что сумма квадратов катетов равняется квадрату гипотенузы.
Как найти третью сторону равнобедренного треугольника по двум сторонам
Сумма длин двух сторон треугольника должна быть больше третьей стороны. Если мы берем стороны 4 см, 4см, 8 см, то сложив стороны 4 см + 4 см = 8 см, это равно третьей стороне, а надо, чтобы было больше. А вот если берем 8 см, 8 см, 4 см, то 8 см + 8 см = 16 см — больше 4см, 8 см + 4 см = 12 см — больше 8 см.
Как найти третью сторону треугольника по теореме Пифагора
Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. Гипотенуза — сторона, лежащая напротив прямого угла.Из этой формулы можно вывести следующее:
- a = √c2 − b.
- b = √c2 − a.
- c = √a2 + b.
Как найти длину стороны треугольника
Ответы1. Периметр треугольника — это сумма всех сторон. Из задачи нам известно длину двух сторон и периметр этого треугольника. Для того, чтобы узнать длину третьей стороны, нужно найти разницу между периметра и суммы двох известных сторон.
Как найти периметр треугольника если известны только две стороны
P = 2a + b, где a — боковая сторона, b — основание.
Как найти стороны прямоугольника
А = S: b, где S — площадь прямоугольника, b — сторона прямоугольника.
Как найти третий угол в треугольнике
Все, что вам нужно сделать, это сложить известные углы (27° + 90° = 117°) и вычесть эту сумму из 180°, то есть 180° — 117° = 63°. Третий угол равен 63°. Можно поступить проще. Так как сумма всех углов в треугольнике равна 180°, то на два острых угла в прямоугольном треугольнике остается всегда 90°.
Как найти стороны прямоугольного треугольника если известны 2 стороны
По теореме Пифагора, для того чтобы вычислить гипотенузу прямоугольного треугольника, нужно извлечь квадратный корень из суммы квадратов катетов. Катетами считаются стороны a и b, образующие друг с другом прямой угол, а гипотенузой — сторона, лежащая напротив него.
Как найти основание у треугольника
В получившемся прямоугольном треугольнике необходимо по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов) найти неизвестный катет (который является половиной основания исходного равнобедренного треугольника). Умножить значение получившегося катета на два, это будет основание треугольника.
Формула стороны треугольника через его медианы
Сторона треугольника равна двум третям корня квадратного из удвоенного произведения квадратов медиан, проведенных к двум другим сторонам минус квадрат медианы, проведенной к этой стороне.
Как посчитать боковую сторону равнобедренного треугольника
Для этого воспользуемся теоремой Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов катетов: АВ2 = ВН2 + АН2; АВ2 = 122 + 52 = 144 + 25 = 169; АВ = √169 = 13 см.
Как называется 3 сторона равнобедренного треугольника
Равные стороны называются боковыми сторонами, а третья сторона — основанием равнобедренного треугольника. Треугольник, все стороны которого равны, называется равносторонним. Теорема. В равнобедренном треугольнике углы при оcновании равны.
Как найти длину основания треугольника
S=(б/4)*√(4*а^2 — б^2), где б -основание треугольника, а -сторона треугольника; Подставим в формулу известные величины и найдем длину основания: 4=(б/4)* √(4*(√17)^2-б^2);
Как найти неизвестную сторону в прямоугольном треугольнике
C = √(a² + b²).
Как вычислить размеры треугольника
Посчитайте произведение двух известных сторон треугольника. Найдите синус угла между выбранными сторонами. Перемножьте полученные числа.Поделите результат на два:
- S — искомая площадь треугольника.
- a и b — стороны треугольника.
- α — угол между сторонами a и b.
Что можно найти зная три стороны треугольника
Через теорему косинусов можно найти угол треугольника, зная все три стороны треугольника.
Как найти третью сторону треугольника с прямым углом
По теореме Пифагора, для того чтобы вычислить гипотенузу прямоугольного треугольника, нужно извлечь квадратный корень из суммы квадратов катетов.
Оставить отзыв (1)
Исторический термин «решение треугольников» (лат. solutio triangulorum) обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.), а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере (сферический треугольник), на гиперболической плоскости (гиперболический треугольник) и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.
Решение плоских треугольников[править | править код]
У треугольника[2] общего вида имеется 6 основных элементов: 3 линейные (длины сторон ) и 3 угловые (). Сторону, противолежащую углу при вершине, традиционно обозначают той же буквой, что и эта вершина, но не заглавной, а строчной (см. рисунок). В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[3].
Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Поскольку вариант «заданы три угла» исключён из рассмотрения, остаются 5 различных вариантов[4]:
- три стороны;
- две стороны и угол между ними;
- две стороны и угол напротив одной из них;
- сторона и два прилежащих угла;
- сторона, противолежащий угол и один из прилежащих.
Основные теоремы[править | править код]
Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[5]:
- Теорема косинусов
- Теорема синусов
- Сумма углов треугольника
Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов, теорему о проекциях и формулы Мольвейде.
Замечания[править | править код]
- Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов, потому что значение синуса угла при вершине треугольника не определяет однозначно самого угла, поскольку смежные углы имеют один и тот же синус[6]. Например, если то угол может быть как , так и , потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают: в интервале от до значение косинуса определяет угол однозначно.
- При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
- Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем .
Три стороны[править | править код]
Пусть заданы длины всех трёх сторон . Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:
Чтобы найти углы , надо воспользоваться теоремой косинусов[7]:
Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна
Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в замечании 1, существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол (он лежит против наибольшей из сторон) — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.
Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.
Две стороны и угол между ними[править | править код]
Пусть для определённости известны длины сторон и угол между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны применяется теорема косинусов[8]:
Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:
Третий угол находится из теоремы о сумме углов треугольника: .
Две стороны и угол напротив одной из них[править | править код]
В этом случае решений может быть два, одно или ни одного. Пусть известны две стороны и угол . Тогда уравнение для угла находится из теоремы синусов[9]:
Для краткости обозначим (правая часть уравнения). Это число всегда положительно. При решении уравнения возможны 4 случая, во многом зависящие от D[10][11].
- Задача не имеет решения (сторона «не достаёт» до линии ) в двух случаях: если или если угол и при этом
- Если существует единственное решение, причём треугольник прямоугольный:
- Если то возможны 2 варианта.
- Если , то угол имеет два возможных значения: острый угол и тупой угол . На рисунке справа первому значению соответствуют точка , сторона и угол , а второму значению — точка , сторона и угол .
- Если , то (большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для исключён и решение единственно.
Третий угол определяется по формуле . Третью сторону можно найти по теореме синусов:
Сторона и два угла[править | править код]
Пусть задана сторона и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше . В противном случае задача решения не имеет.
Вначале определяется третий угол. Например, если даны углы , то . Далее обе неизвестные стороны находятся по теореме синусов[12]:
Решение прямоугольных треугольников[править | править код]
Прямоугольный треугольник
В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:
- два катета;
- катет и гипотенуза;
- катет и прилежащий острый угол;
- катет и противолежащий острый угол;
- гипотенуза и острый угол.
Вершину прямого угла традиционно обозначают буквой , гипотенузу — . Катеты обозначаются и , а величины противолежащих им углов — и соответственно.
Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:
и определения основных тригонометрических функций:
Ясно также, что углы и — острые, так как их сумма равна . Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.
При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.
Два катета[править | править код]
Гипотенуза находится по теореме Пифагора:
Углы могут быть найдены с использованием функции арктангенса:
или же по только что найденной гипотенузе:
Катет и гипотенуза[править | править код]
Пусть известны катет и гипотенуза — тогда катет находится из теоремы Пифагора:
После этого углы определяются аналогично предыдущему случаю.
Катет и прилежащий острый угол[править | править код]
Пусть известны катет и прилежащий к нему угол .
Гипотенуза находится из соотношения
Катет может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения
Острый угол может быть найден как
Катет и противолежащий острый угол[править | править код]
Пусть известны катет и противолежащий ему угол .
Гипотенуза находится из соотношения
Катет и второй острый угол могут быть найдены аналогично предыдущему случаю.
Гипотенуза и острый угол[править | править код]
Пусть известны гипотенуза и острый угол .
Острый угол может быть найден как
Катеты определяются из соотношений
Решение сферических треугольников[править | править код]
Стороны сферического треугольника измеряют величиной опирающихся на них центральных углов
Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.
Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но основные соотношения: две сферические теоремы косинусов и сферическая теорема синусов, — используемые для решения задачи, аналогичны плоскому случаю.
Из других соотношений могут оказаться полезными формулы аналогии Непера[13] и формула половины стороны[14].
Три стороны[править | править код]
Если даны (в угловых единицах) стороны , то углы треугольника определяются из теоремы косинусов[15]:
- ,
- ,
- ,
Две стороны и угол между ними[править | править код]
Пусть заданы стороны и угол между ними. Сторона находится по теореме косинусов[15]:
Углы можно найти так же, как в предыдущем случае, можно также использовать формулы аналогии Непера:
Две стороны и угол не между ними[править | править код]
Пусть заданы стороны и угол . Чтобы решение существовало, необходимо выполнение условия:
Угол получается из теоремы синусов:
Здесь, аналогично плоскому случаю, при получаются два решения: и .
Остальные величины можно найти из формул аналогии Непера[16]:
- ,
- .
Сторона и прилежащие углы[править | править код]
В этом варианте задана сторона и углы . Угол определяется по теореме косинусов[17]:
Две неизвестные стороны получаются из формул аналогии Непера:
или, если использовать вычисленный угол , по теореме косинусов:
Два угла и сторона не между ними[править | править код]
В отличие от плоского аналога данная задача может иметь несколько решений.
Пусть заданы сторона и углы . Сторона определяется по теореме синусов[18]:
Если угол для стороны острый и , существует второе решение:
Остальные величины определяются из формул аналогии Непера:
Три угла[править | править код]
Если заданы три угла, стороны находятся по теореме косинусов:
- ,
- ,
- .
Другой вариант: использование формулы половины угла[19].
Решение прямоугольных сферических треугольников[править | править код]
Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол ) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведённых соотношений[20]:
Вариации и обобщения[править | править код]
Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.
Примеры:
Примеры практического применения[править | править код]
Триангуляция[править | править код]
Чтобы определить расстояние от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние между которыми известно, и измерить углы и между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и два угла» можно найти длину высоты треугольника[23]:
Этот метод используется в каботажном судоходстве. Углы при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[23].
Другой пример: требуется измерить высоту горы или высокого здания. Известны углы наблюдения вершины из двух точек, расположенных на расстоянии . Из формул того же варианта, что и выше, получается[24]:
Расстояние между двумя точками на поверхности земного шара[править | править код]
Надо вычислить расстояние между двумя точками на земном шаре[25]:
- Точка : широта долгота
- Точка : широта долгота
Для сферического треугольника , где — северный полюс, известны следующие величины:
Это случай «две стороны и угол между ними». Из приведенных выше формул получается:
- ,
где — радиус Земли.
История[править | править код]
Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[26]
Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[27]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[28]:
В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.
Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[29]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[30].
Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[31]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].
Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[32].
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[33]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[34]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.
В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[35]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[36]. Кроме того, индийцы знали формулы для кратных углов , для . В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[37].
В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[38]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[36].
Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[29]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[39]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[40].
Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[41]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[42]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.
В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10″[43]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[44]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.
См. также[править | править код]
- Признаки подобия треугольников
- Площадь треугольника
- Сферическая тригонометрия
- Сферический треугольник
- Триангуляция
- Тригонометрические тождества
- Тригонометрические функции
- Формулы Мольвейде
Примечания[править | править код]
- ↑ 1 2 Выгодский М. Я., 1978, с. 266—268.
- ↑ Плоский треугольник иногда называют прямолинейным.
- ↑ Элементарная математика, 1976, с. 487.
- ↑ Solving Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 июня 2019 года.
- ↑ Элементарная математика, 1976, с. 488.
- ↑ Степанов Н. Н., 1948, с. 133.
- ↑ Solving SSS Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Solving SAS Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Solving SSA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
- ↑ Выгодский М. Я., 1978, с. 294.
- ↑ Элементарная математика, 1976, с. 493—496.
- ↑ Solving ASA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Степанов Н. Н., 1948, с. 87—90.
- ↑ Степанов Н. Н., 1948, с. 102—104.
- ↑ 1 2 Энциклопедия элементарной математики, 1963, с. 545.
- ↑ Степанов Н. Н., 1948, с. 121—128.
- ↑ Степанов Н. Н., 1948, с. 115—121.
- ↑ Степанов Н. Н., 1948, с. 128—133.
- ↑ Степанов Н. Н., 1948, с. 104—108.
- ↑ Основные формулы физики, 1957, с. 14—15.
- ↑ Цейтен Г. Г., 1932, с. 223—224.
- ↑ Цейтен Г. Г., 1938, с. 126—127.
- ↑ 1 2 Геометрия: 7—9 классы, 2009, с. 260—261.
- ↑ Геометрия: 7—9 классы, 2009, с. 260.
- ↑ Степанов Н. Н., 1948, с. 136—137.
- ↑ van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
- ↑ Глейзер Г. И., 1982, с. 77.
- ↑ Глейзер Г. И., 1982, с. 94—95.
- ↑ 1 2 Матвиевская Г. П., 2012, с. 92—96.
- ↑ Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
- ↑ История математики, том I, 1970, с. 143.
- ↑ Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
- ↑ Матвиевская Г. П., 2012, с. 25—27.
- ↑ Матвиевская Г. П., 2012, с. 33—36.
- ↑ Матвиевская Г. П., 2012, с. 40—44.
- ↑ 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79.
- ↑ Юшкевич А. П. История математики в Средние века. — М.: ГИФМЛ, 1961. — С. 160. — 448 с.
- ↑ Матвиевская Г. П., 2012, с. 51—55.
- ↑ Матвиевская Г. П., 2012, с. 111.
- ↑ Матвиевская Г. П., 2012, с. 96—98.
- ↑ Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
- ↑ Рыбников К. А., 1960, с. 105.
- ↑ История математики, том I, 1970, с. 320.
- ↑ Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.
Литература[править | править код]
- Теория и алгоритмы
- Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
- Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
- Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518—557. — 568 с.
- Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948.
- История
- Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
- Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
- История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
- История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
- Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
- Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
- Цейтен Г. Г. История математики в древности и в средние века. — М.—Л.: ГТТИ, 1932. — 230 с.
- Цейтен Г. Г. История математики в XVI и XVII веках. — М.—Л.: ОНТИ, 1938. — 456 с.
Triangle is a closed figure which is formed by three line segments. It consists of three angles and three vertices. The angles of triangles can be the same or different depending on the type of triangle. There are different types of triangles based on line and angles properties.
Properties of a Triangle:
1. Each triangle has 3 sides and 3 angles.
2. Sum of all the angles of triangles is 180°
3. Perimeter of a triangle is the sum of all three sides of the triangle.
4. A triangle has 3 vertices.
Types of Triangles based on line Properties
Scalene Triangle: Scalene Triangle is a type of triangle in which all the sides are of different lengths. All the angles of a scalene triangle are different from one another.
Isosceles Triangle: Isosceles Triangle is another type of triangle in which two sides are equal and the third side is unequal. In this triangle, the two angles are also equal and the third angle is different.
Right-angled Triangle: A right-angled triangle is one that follows the Pythagoras Theorem and one angle of such triangles is 90 degrees which is formed by the base and perpendicular. The hypotenuse is the longest side in such triangles.
Equilateral Triangle: An equilateral triangle is a triangle in which all the three sides are of equal size and all the angles of such triangles are also equal.
Finding Third Side of a Triangle given Two Sides
Lets assume that the triangle is Right Angled Triangle because to find a third side provided two sides are given is only possible in a right angled triangle.
We know that the right-angled triangle follows Pythagoras Theorem
According to Pythagoras Theorem, the sum of squares of two sides is equal to the square of the third side.
(Perpendicular)2 + (Base)2 = (Hypotenuse)2
Using the above equation third side can be calculated if two sides are known.
Example: Suppose two sides are given one of 3 cm and the other of 4 cm then find the third side.
Lets take perpendicular P = 3 cm and Base B = 4 cm.
using Pythagoras theorem
P2 + B2 = H2
(3)2 + (4)2 = H2
9 + 16 = H2
25 = H2
H = 5
Sample Questions
Question 1: Find the measure of base if perpendicular and hypotenuse is given, perpendicular = 12 cm and hypotenuse = 13 cm.
Solution:
Perpendicular = 12 cm
Hypotenuse = 13 cm
Using Pythagoras Theorem
P2 + B2 = H2
B2 = H2 – P2
B2 = 132 – 122
B2 = 169 – 144
B2 = 25
B = 5
Question 2: Perimeter of the equilateral triangle is 63 cm find the side of the triangle.
Solution:
Perimeter of an equilateral triangle = 3×side
3×side = 64
side = 63/3
side = 21 cm
Question 3: Find the measure of the third side of a right-angled triangle if the two sides are 6 cm and 8 cm.
Solution:
Perpendicular = 6 cm
Base = 8 cm
Using Pythagoras Theorem
H2 = P2 + B2
H2 = P2 + B2
H2 = 62 + 82
H2 = 36 + 64
H2 = 100
H = 10 cm
Question 4: Find whether the given triangle is a right-angled triangle or not, sides are 48, 55, 73?
Solution:
A right-angled triangle follows the Pythagorean theorem so we need to check it .
Sum of squares of two small sides should be equal to the square of the longest side
so 482 + 552 must be equal to 732
2304 + 3025 = 5329 which is equal to 732 = 5329
Hence the given triangle is a right-angled triangle because it is satisfying the Pythagorean theorem.
Question 5: Find the hypotenuse of a right angled triangle whose base is 8 cm and whose height is 15 cm?
Solution:
Using Pythagorean theorem, a2 + b2 = c2
So 82 + 152 = c2
hence c = √(64 + 225)
c = √289
c = 17 cm
Last Updated :
15 Feb, 2022
Like Article
Save Article
Зная две стороны в треугольнике и угол между ними, можно с помощью теоремы косинусов вычислить третью сторону треугольника. Для этого нужно извлечь квадратный корень из суммы квадратов известных сторон и разности с их удвоенным произведением на косинус угла между ними. (рис.76)
a^2=b^2+c^2-2bc cosα
a=√(b^2+c^2-2bc cosα )
Угол β или γ можно рассчитать через ту же теорему косинусов, зная две, образующие их стороны, при этом один из них – последний, проще найти, отняв два известных от 180 градусов.
cosβ=(a^2+c^2-b^2)/2ac=(b^2+c^2-2bc cosα+c^2-b^2)/(2c√(b^2+c^2-2bc cosα ))=(2c^2-2bc cosα)/(2c√(b^2+c^2-2bc cosα ))=(c-b cosα)/√(b^2+c^2-2bc cosα )
cosγ=(a^2+b^2-c^2)/2ab=(b^2+c^2-2bc cosα+b^2-c^2)/(2b√(b^2+c^2-2bc cosα ))=(b-c cosα)/√(b^2+c^2-2bc cosα )
Медиана треугольника рассчитывается по вполне однозначной формуле, тогда как если нужно найти медианы через две стороны и угол между ними, то требуются преобразования.
m_a=√(2b^2+2c^2-a^2 )/2=√(2b^2+2c^2-b^2-c^2+2bc cosα )/2=√(b^2+c^2+2bc cosα )/2
m_b=√(2a^2+2c^2-b^2 )/2=√(2b^2+2c^2-4bc cosα+2c^2-b^2 )/2=√(b^2+4c^2-4bc cosα )/2
m_c=√(2a^2+2b^2-c^2 )/2=√(2b^2+2c^2-4bc cosα+2b^2-c^2 )/2=√(4b^2+c^2-4bc cosα )/2
Для расчета биссектрис в произвольном треугольнике также существуют стандартные формулы, из которых только одна может быть преобразована и упрощена для двух сторон и угла между ними.
l_c=√(ab(a+b+c)(a+b-c))/(a+b)
l_b=√(ac(a+b+c)(a+c-b))/(a+c)
l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b-c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-b^2-c^2+2bc cosα ) )/(b+c)=(bc√(2(1+cosα ) ))/(b+c)
Чтобы найти высоту, нужно знать все три стороны в треугольнике. Подставив их в формулу так, чтобы сторона, на которую опущена искомая высота была в знаменателе, рассчитываются их величины.
h_a=(2√(p(p-a)(p-b)(p-c) ))/a
h_b=(2√(p(p-a)(p-b)(p-c) ))/b
h_c=(2√(p(p-a)(p-b)(p-c) ))/c
Вычислить среднюю линию треугольника можно, зная лишь ту сторону, которой она параллельна, так как сторона будет в два раза больше. В случае с неизвестной стороной, можно подставить в формулу радикал,выведенный по теореме косинусов.
M_a=a/2=√(b^2+c^2-2bc cosα )/2
M_b=b/2
M_c=c/2
На пересечении биссектрис в треугольнике расположен центр окружности, которую можно в него вписать. Радиус такой окружности рассчитывается по следующей формуле(рис.75.5)
r=√(((p-a)(p-b)(p-c))/p)
Центр описанной вокруг треугольника окружности в свою очередь расположен в точке пересечения медиатрисс, и его формула значительно видоизменена в сравнении с радиусом вписанной окружности. (рис.75.6)
R=abc/(4√(p(p-a)(p-b)(p-c)))