Как найти градусную меру смежного угла

Смежные углы в геометрии

15 июня 2022

Два угла называются смежными, если у них общая вершина, общая сторона, а две других стороны образуют прямую.

В этом уроке:

  1. Что такое смежные углы
  2. Основное свойство смежных углов
  3. Биссектрисы смежных углов
  4. Тренировочные задачи

Это довольно простая, но очень важная тема.

1. Что такое смежные углы

Возьмём прямую $AB$ и отметим на ней точку $M$. Получим развёрнутый угол $AMB:$

Развёрнутый угол

Проведём из точки $M$ луч $MN$, не совпадающий с лучами $MA$ и $MB$.

Смежный угол

Получим два новых угла: $angle AMN$ и $angle BMN$. Эти углы и называются смежными.

Определение. Два угла называются смежными, если у них одна общая сторона, а две других образуют прямую (или, что то же самое, являются дополнительными лучами).

Обратите внимание: чтобы углы стали смежными, им недостаточно просто иметь общую сторону. Вот эти углы — не смежные, хотя они и имеют общую сторону:

Углы с общей стороной

А вот дальше — смежные, хотя и расположены немного непривычно:

Нестандартные смежные углы

Часто смежные углы возникают в точке пересечения прямых. Например, при пересечении двух прямых

Пересечение двух прямых

образуется четыре пары смежных углов: $angle ASM$ и $angle ASN$; $angle BSM$ и $angle MSN$; $angle ASN$ и $angle BSN$; наконец, $angle ASM$ и $angle BSM$.

2. Основное свойство внешних углов

У смежных углов есть замечательное свойство, которое будет преследовать нас на протяжении всей геометрии, до конца 11 класса.

Теорема. Сумма смежных углов равна 180°.

Доказательство. Рассмотрим смежные углы $AMN$ и $BMN$ с общей стороной $MN$:

Смежный угол

Поскольку луч $MN$ делит угол $AMB$ на смежные углы $AMN$ и $BMN$, по основному свойству углов

[angle AMB=angle AMN+angle BMN]

Но угол $AMB$ — развёрнутый, поэтому

[angle AMN+angle BMN={180}^circ ]

Другими словами, если один угол равен $alpha $, то смежный с ним равен ${180}^circ -alpha $. Или если известно, что углы $alpha $ и $beta $ — смежные, то $alpha +beta ={180}^circ $.

Казалось бы, элементарные рассуждения, но их вполне достаточно, чтобы решать большой класс задач.

Задача 1. Найдите угол, смежный с углом $ABC$, если:

  1. $angle ABC={36}^circ $.
  2. $angle ABC={121}^circ $.

Решение

1) Обозначим смежный угол $DBC=x$. Он будет тупым:

Смежный угол 36 градусов

Тогда $x=180-36=144$.

2) Обозначим смежный угол $DBC=x$. Он будет острым:

Смежный угол 121 градус

Тогда $x=180-121=59$.

Немного усложним задачу.

Задача 2. Найдите смежные углы, если:

  1. один из них на 68° больше другого.
  2. один из них в 5 раз больше другого.
  3. их градусные меры относятся как 5 : 4.

Решение.

1) Пусть один из углов равен $x$. Тогда другой (очевидно, больший) будет равен $x+68$.

Один смежный угол на 68 больше другого

Поскольку углы смежные, их сумма равна 180 градусов:

[begin{align}2x+68&=180 \ 2x&=112 \ x&=56 end{align}]

Итак, один угол равен 56 градусов. Тогда другой равен $x+68=124$ градуса.

2) Пусть меньший угол равен $x$. Тогда смежный с ним равен $5x$.

Один смежный угол в 5 раз больше другого

Сумма смежных углов равна 180 градусов, поэтому

[begin{align}5x+x&=180 \ 6x&=180 \ x&=30 end{align}]

Мы нашли меньший угол — он равен 30 градусов. Тогда второй угол равен $5x=150$ градусов.

3) В задачах с отношениями величинам удобно обозначать их кратными некоторой переменной. Например, если углы относятся как 5 к 4, то пусть величина одного угла будет $5x$, а другого — $4x$.

Смежные углы относятся как 5 к 4

Сумма смежных углов вновь равна 180 градусов:

[begin{align}5x+4x&=180 \ 9x&=180 \ x&=20 end{align}]

Поэтому сами углы равны $4x=80$ и $5x=100$ градусов.

3. Биссектрисы смежных углов

Вновь рассмотрим смежные углы $AMN$ и $BMN$:

Смежный угол

Построим биссектрису $MC$ угла $AMN$ и биссектрису $MD$ угла $BMN$:

Биссектрисы смежных углов

Если $angle AMC=x$ и $angle BMD=y$, то $angle AMN=2x$ и $angle BMN=2y$. Это смежные углы, поэтому

[begin{align}2x+2y&={180}^circ \ x+y&={90}^circ end{align}]

Получается, что биссектрисы смежных углов всегда пересекаются под углом 90°. Этот факт известен далеко не всем ученикам. Хотя он вполне может встретиться, например, на ЕГЭ.

Задача 3. Углы $ABC$ и $MBC$ смежные, $angle ABC={70}^circ $. Луч $BD$ принадлежит углу $ABC$, причём $angle ABD={40}^circ $. Найдите угол между биссектрисами углов $CBD$ и $MBC$.

Решение. Изобразим все углы на рисунке:

Смежный угол 40 и биссектрисы

Видим, что углы $ABD$ и $MBD$ — смежные. Следовательно

[begin{align}angle MBD&={180}^circ -angle ABD= \ &={180}^circ -{40}^circ ={140}^circ end{align}]

Синим цветом отмечены биссектрисы углов $CBD$ и $MBC$. Обозначим величину углов переменными: $angle CBD=2x$, $angle MBD=2y$. Но $angle MBD=angle MBC+angle CBD$, поэтому

[begin{align}2x+2y&=140 \ x+y&=70 end{align}]

Это и есть искомый угол между биссектрисами. Он равен 70 градусов.

Задача 4. Дан треугольник $ABC$. Лучи $AM$ и $CN$ лежат на одной прямой со стороной $AB$ (см. рисунок). Известно, что $angle MAC+angle ABC={180}^circ $. Докажите, что $angle MAC=angle NBC$.

Треугольник ABC и смежные углы

Пусть $angle ABC=x$. Тогда из условия следует, что $angle MAC={180}^circ -x$.

С другой стороны, углы $ABC$ и $NBC$ смежные, поэтому $angle NBC={180}^circ -x$.

Получается, что углы $MAC$ и $NBC$ равны одному и тому же выражению. Следовательно, $angle MAC=angle NBC$, что и требовалось доказать.

Смотрите также:

  1. Что такое вертикальные углы
  2. Перпендикулярные прямые — определение и свойства
  3. Правила комбинаторики в задаче B6
  4. Метод координат в пространстве
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Задача B4 про три дороги — стандартная задача на движение

Как найти смежный угол

Плоским углом называют фигуру, образованную двумя лучами, исходящими из одной точки. Эта точка называется вершиной угла, а лучи – его сторонами. Если один из лучей продолжить за его начальную точку, то есть сделать прямой линией, то его продолжение образует со вторым лучом еще один угол – он называется смежным. Так как стороны угла равнозначны и продолжить можно любую из них, у каждого угла есть по два смежных.

Как найти смежный угол

Инструкция

Если вам известна величина основного угла (α) в градусах, рассчитать градусную меру любого из пары смежных (α₁ и α₂) будет очень просто. Каждый из них дополняет основной угол до развернутого, то есть равного 180°, поэтому для их нахождения вычтите из этого числа известную величину основного угла α₁ = α₂ = 180°-α.

Величина исходного угла может быть приведена в радианах. Если и результат нужно получить в этих единицах, исходите из того, что развернутому углу соответствует количество радиан, равное числу Пи. Значит, формулу вычисления можно записать в таком виде: α₁ = α₂ = π-α.

Вместо градусной или радианной меры основного угла в условиях может быть дано соотношение величин основного и смежного углов. В этом случае составьте уравнение пропорции. Например, обозначьте через Y величину доли пропорции, относящуюся к основному углу, через X – относящуюся к смежному, а количество градусов, приходящееся на каждую единицу пропорции, обозначьте через k. Тогда общую формулу можно будет записать так: k*X+k*Y=180° или k*(X+Y)=180°. Выразите из нее общий множитель: k=180°/(X+Y). Затем рассчитайте величину смежного угла, умножив полученный коэффициент на долю этого угла в заданной пропорции: k*X = 180°/(X+Y)*X. Например, если это соотношение равно 5/13, величина смежного угла должна составлять 180°/(5+13)*13 = 10°*13 = 130°.

Если в исходных условиях ничего не сказано об основном угле, но дана величина вертикального угла, для вычисления смежных углов используйте формулы двух предыдущих шагов. Согласно определению вертикальный угол образуется двумя лучами, исходящими из той же точки, что и лучи основного угла, но направленными в строго противоположные стороны. Это значит, что градусная или радианная мера основного и вертикального угла равны, а значит, равны и величины смежных им углов.

Видео по теме

Источники:

  • как найти смежный угол в треугольнике если

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 октября 2021 года; проверки требуют 5 правок.

Смежные углы — это два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой. Таким образом, вместе смежные углы составляют развёрнутый угол, а сумма их угловых величин смежных всегда равна {displaystyle 180} градусов.

Таким образом, величина угла, являющимся смежным для угла величиной alpha градусов, будет равна {displaystyle 180-alpha } градусов.

Так, например, для угла карп {displaystyle 135} градусов смежный угол составляет {displaystyle 45} градусов (см. рисунок).

Тригонометрические соотношения[править | править код]

Синусы смежных углов равны. Их косинусы и тангенсы равны по величине, но имеют противоположные знаки (за исключением неопределённых значений).

См. также[править | править код]

  • Угол
  • Прилежащие углы
  • Дополнительные углы
  • Треугольник

Ссылки[править | править код]

  • Никитин Н. Н. Геометрия. Смежные углы.
  • Animated demonstration
  • Angle definition pages

Содержание:

Определение: Угол — это геометрическая фигура, образованная двумя лучами, выходящими из одной точки, и частью плоскости, которую они ограничивают.

Два угла называются равными, если их можно совместить наложением.

Биссектрисой угла называется луч, который выходит из вершины угла и делит его на два равных угла.

Определение. Развернутым углом называется угол, стороны которого являются дополнительными лучами.

Угол - определение, виды, как обозначают с примерами вычисления и решения

На рисунке 56 луч АК — биссектриса угла ВАС и Угол - определение, виды, как обозначают с примерами вычисления и решения

Угол - определение, виды, как обозначают с примерами вычисления и решения

На рисунке 57 угол ABC — развернутый, лучи ВА и ВС — дополнительные. Другая (незакрашенная) полуплоскость относительно прямой АС также задает развернутый угол ABC.

Углы измеряются в градусах, минутах, секундах.

Развернутый угол равен 180°; Угол - определение, виды, как обозначают с примерами вычисления и решения часть развернутого угла называется градусом и обозначается Угол - определение, виды, как обозначают с примерами вычисления и решения часть одного градуса называется минутой и обозначается 1′; Угол - определение, виды, как обозначают с примерами вычисления и решения часть минуты называется секундой и обозначается 1″.

Угол, равный 5 градусов 20 минут и 35 секунд, записывается так: 5°20’35”.

Вместо «градусная мера угла равна 20°» часто говорят «угол равен 20°», вместо найти «градусную меру угла» говорят «найти угол».

Определения

Определение: Угол — это геометрическая фигура, образованная двумя лучами, выходящими из одной точки, и частью плоскости, которую они ограничивают.

Определение: Угол, равный 90°, называется прямым; угол, меньший 90°, — острым; угол, больший 90°, но меньший 180°, — тупым; угол, равный 360°, называется полным (его стороны совпадают).

Угол - определение, виды, как обозначают с примерами вычисления и решения

На рисунке 58 последовательно изображены: острый угол, равный 60°; прямой угол, равный 90°; тупой угол, равный 120°; угол, равный 270°; и полный угол, равный 360°.

Градусная мера угла является его важной характеристикой. Свойства градусной меры угла: любой угол имеет градусную меру, выраженную некоторым положительным числом; равным углам соответствуют равные градусные меры, а большему углу — большая градусная мера. И наоборот.

Аксиомы

Аксиома измерения углов. Если внутри угла из его вершины провести луч, то он разобьет данный угол на два угла, сумма градусных мер которых равна градусной мере данного угла.

Аксиома откладывания углов. От любого луча в данную полуплоскость можно отложить угол данной градусной меры, и притом только один.

Угол - определение, виды, как обозначают с примерами вычисления и решения

На рисунке 59 луч AD проходит внутри угла ВАС. По аксиоме измерения углов Угол - определение, виды, как обозначают с примерами вычисления и решения Например, если из вершины развернутого угла АОВ (рис. 60) провести ЛУЧ ОС, который составит со стороной ОВ угол 50°, то со стороной OA луч ОС составит 180° – 50° = 130°.

Угол - определение, виды, как обозначают с примерами вычисления и решения

Два луча с общим началом задают на плоскости два угла. В дальнейшем будем рассматривать меньший из этих двух углов (если они неразвернутые). Такой угол меньше 180°.

Пример №1

Внутри угла ВАС, равного 114°, из его вершины проведен луч АЕ. Угол ВАЕ в 2 раза больше угла ЕАС. Найти величину угла ВАЕ.

Решение:

Пусть Угол - определение, виды, как обозначают с примерами вычисления и решения Тогда Угол - определение, виды, как обозначают с примерами вычисления и решения (рис. 61).

Угол - определение, виды, как обозначают с примерами вычисления и решения

По аксиоме измерения углов Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения

Тогда Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения

Ответ: 76о

Замечания. 1. Возможен другой способ записи решения, когда рядом с буквой Угол - определение, виды, как обозначают с примерами вычисления и решения пишут знак градуса: Угол - определение, виды, как обозначают с примерами вычисления и решения Тогда в уравнении знак градуса писать не нужно: Угол - определение, виды, как обозначают с примерами вычисления и решения

2. В дальнейшем при решении задач не будем ссылаться на аксиому измерения углов.

Пример №2

Внутри угла проведены лучи BD и BF (рис. 62).

Угол - определение, виды, как обозначают с примерами вычисления и решения

Найти величину угла DBF, если:

Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения

Решение:

Угол - определение, виды, как обозначают с примерами вычисления и решения

Угол - определение, виды, как обозначают с примерами вычисления и решения

Угол - определение, виды, как обозначают с примерами вычисления и решения Если сложить углы ABF и CBD, то получим угол ABC плюс угол DBF.

Отсюда Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения

Ответ: Угол - определение, виды, как обозначают с примерами вычисления и решения

Пример №3

Луч AD делит угол ВАС на два угла BAD и CAD. Доказать, что угол между биссектрисами АК и АЕ углов BAD и CAD равен половине угла ВАС (рис. 63).

Угол - определение, виды, как обозначают с примерами вычисления и решения

Доказательство:

Так как АК иАЕ — биссектрисы, то Угол - определение, виды, как обозначают с примерами вычисления и решения Тогда Угол - определение, виды, как обозначают с примерами вычисления и решения

Следовательно, Угол - определение, виды, как обозначают с примерами вычисления и решения Что и требовалось доказать.

Замечание. В данной задаче мы доказали свойство: «Если внутри угла из его вершины провести луч, то угол между биссектрисами полученных углов равен половине данного угла».

Геометрия 3D

В пространстве при пересечении двух плоскостей образуются двугранные углы. Две полуплоскости с общей границей являются гранями такого двугранного угла, а их граница — его ребром. Измеряется двугранный угол величиной линейного угла, образованного двумя лучами, проведенными в каждой из полуплоскостей из точки на ребре двугранного угла перпендикулярно этому ребру. На рисунке 69 ZABC — линейный угол изображенного двугранного угла.

Геометрия 3D

В пространстве при пересечении двух плоскостей образуются двугранные углы. Две полуплоскости с общей границей являются гранями такого двугранного угла, а их граница — его ребром. Измеряется двугранный угол величиной линейного угла, образованного двумя лучами, проведенными в каждой из полуплоскостей из точки на ребре двугранного угла перпендикулярно этому ребру. На рисунке 69 Угол - определение, виды, как обозначают с примерами вычисления и решения — линейный угол изображенного двугранного угла.
Угол - определение, виды, как обозначают с примерами вычисления и решения

Смежные углы. Вертикальные углы

Определение. Два угла называются смежными, если у них одна сторона общая, а две другие являются дополнительными лучами.

Угол - определение, виды, как обозначают с примерами вычисления и решения

Если на рисунке 70 лучи OA и ОВ дополнительные, то углы АОС и ВОС — смежные.

Теорема (свойство смежных углов). Сумма смежных углов равна 180°.

Дано: Угол - определение, виды, как обозначают с примерами вычисления и решения — смежные.

Доказать: Угол - определение, виды, как обозначают с примерами вычисления и решения

Доказательство:

Из определения смежных углов следует, что лучи OA и ОВ являются дополнительными и поэтому образуют развернутый угол АОВ, равный 180°. Луч ОС проходит между сторонами этого угла, и по аксиоме измерения углов Угол - определение, виды, как обозначают с примерами вычисления и решения Поэтому Угол - определение, виды, как обозначают с примерами вычисления и решения. Теорема доказана.

Следствия.

  1. Если смежные углы равны, то каждый из них прямой.
  2. Если два угла равны, то равны и смежные с ними углы.

Замечание. Все теоремы курса геометрии 7—9 классов описывают свойства фигур на плоскости.

Определение. Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами к сторонам другого.

При пересечении двух прямых АС и DB в точке О (рис. 71) получим, что лучи OA и ОС, О В и OD — дополнительные. Поэтому углы AOD и BОС — вертикальные. Углы АОВ и DOC также вертикальные.

Угол - определение, виды, как обозначают с примерами вычисления и решения

Теорема (свойство вертикальных углов). Вертикальные углы равны.

Дано: Угол - определение, виды, как обозначают с примерами вычисления и решения — вертикальные (рис. 72).

Угол - определение, виды, как обозначают с примерами вычисления и решения

Доказать: Угол - определение, виды, как обозначают с примерами вычисления и решения

Доказательство:

Углы 1 и 3 смежные, так как лучи OA и OD — дополнительные по определению вертикальных углов. По свойству смежных углов Угол - определение, виды, как обозначают с примерами вычисления и решения Углы 2 и 3 также смежные, Угол - определение, виды, как обозначают с примерами вычисления и решения

Так как Угол - определение, виды, как обозначают с примерами вычисления и решения

Теорема доказана.

Углом между двумя пересекающимися прямыми называется меньший из образованных ими углов. Если при пересечении прямых АВ и CD (рис. 73) Угол - определение, виды, как обозначают с примерами вычисления и решения то Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения как вертикальные. Угол между прямыми АВ и CD равен 30°. Говорят, что прямые пересекаются под углом 30°.

Угол - определение, виды, как обозначают с примерами вычисления и решения

При пересечении двух прямых образуются четыре угла (не считая развернутых). Если один из них 90°, то и остальные по 90° (докажите самостоятельно). Говорят, что прямые пересекаются под прямым углом.

Угол между параллельными прямыми считается равным 0°.

Пример №4

Смежные углы относятся как 2:3. а) Найти величину каждого из углов, б) Определить, сколько процентов развернутого угла составляет меньший угол.

Решение:

Угол - определение, виды, как обозначают с примерами вычисления и решения

а) Пусть Угол - определение, виды, как обозначают с примерами вычисления и решения — данные смежные углы (рис. 74). Согласно условию Угол - определение, виды, как обозначают с примерами вычисления и решения Угол - определение, виды, как обозначают с примерами вычисления и решения (градусную меру одной части принимаем за Угол - определение, виды, как обозначают с примерами вычисления и решения). По свойству смежных углов

Угол - определение, виды, как обозначают с примерами вычисления и решения то есть Угол - определение, виды, как обозначают с примерами вычисления и решения

Угол - определение, виды, как обозначают с примерами вычисления и решения

б) Меньшим является Угол - определение, виды, как обозначают с примерами вычисления и решения а 72° от 180° составляют Угол - определение, виды, как обозначают с примерами вычисления и решения

Ответ: 72°, 108°; 40 %.

Пример №5

а) Найти угол между биссектрисами ОК и ОМ смежных углов ВОС и АОС (рис. 75), если Угол - определение, виды, как обозначают с примерами вычисления и решения б) Доказать, что биссектрисы смежных углов образуют прямой угол.

Угол - определение, виды, как обозначают с примерами вычисления и решения

Решение:

а) Если Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения

Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решения

б) Так как ОМ и ОК — биссектрисы, то

Угол - определение, виды, как обозначают с примерами вычисления и решения Найдем градусную меру Угол - определение, виды, как обозначают с примерами вычисления и решенияУгол - определение, виды, как обозначают с примерами вычисления и решенияПо свойству смежных углов Угол - определение, виды, как обозначают с примерами вычисления и решения Тогда Угол - определение, виды, как обозначают с примерами вычисления и решения. Что и требовалось доказать.

Замечание. Можно было сослаться на ключевую задачу 3* к § 5.

Пример №6

Доказать, что биссектрисы вертикальных углов образуют развернутый угол.

Угол - определение, виды, как обозначают с примерами вычисления и решения

Решение:

а) Пусть ОЕ и ОК — биссектрисы вертикальных углов АОС и BOD (рис. 76). Докажем, что Угол - определение, виды, как обозначают с примерами вычисления и решения — развернутый. Известно, что биссектриса делит угол пополам. Так как вертикальные углы равны, то равны и их половины. Поэтому Угол - определение, виды, как обозначают с примерами вычисления и решения

б) Угол - определение, виды, как обозначают с примерами вычисления и решения так как лучи OA и ОВ дополнительные, и поэтому Угол - определение, виды, как обозначают с примерами вычисления и решения — развернутый. Заменив в последнем равенстве Угол - определение, виды, как обозначают с примерами вычисления и решения на равный ему Угол - определение, виды, как обозначают с примерами вычисления и решения получим Угол - определение, виды, как обозначают с примерами вычисления и решения Отсюда следует, что Угол - определение, виды, как обозначают с примерами вычисления и решения — развернутый.

Замечание. Из решения задачи следует свойство: если Угол - определение, виды, как обозначают с примерами вычисления и решения — развернутый и Угол - определение, виды, как обозначают с примерами вычисления и решения— вертикальные.

  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Задачи на построение циркулем и линейкой
  • Задачи на построение по геометрии
  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Начальные геометрические сведения
  5. Смежные углы

Смежные углы – это два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой.

На Рис.1 ОС – общая сторона, ОА и ОВ продолжают друг друга, значит АОС и СОВсмежные.

Вместе смежные углы составляют развернутый угол, т.е. угол равный 1800. На Рис.1 АОВ = АОС + СОВ = 1800. Значит:

  1. Зная один из смежных углов, всегда можно найти второй. На Рис.2  СОВ = 350, тогда АОС = 1800СОВ = 1800 – 350 = 1450.

         

  1. Если один из смежных углов острый, то второй будет тупой и наоборот (Рис.3).

         

  1. Если один из смежных углов прямой т.е. равен 900, то второй также будет прямой (Рис.4).

         

Советуем посмотреть:

Точки, прямые, отрезки

Провешивание прямой на местности

Луч

Угол

Равенство геометрических фигур

Сравнение отрезков

Сравнение углов

Длина отрезка

Единицы измерения длины, расстояний

Градусная мера угла

Измерение углов на местности

Вертикальные углы

Перпендикулярные прямые

Построение прямых углов на местности

Начальные геометрические сведения


Правило встречается в следующих упражнениях:

7 класс

Задание 64,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 65,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 169,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 186,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 227,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 234,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 253,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 324,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 362,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 847,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Добавить комментарий