Как найти площадь прямоугольного треугольного треугольника

Содержание:

  • Формула
  • Примеры вычисления площади прямоугольного треугольника

Формула

Чтобы найти площадь прямоугольного треугольника $ABC$ (рис. 1),
надо найти произведение катетов
$a$ и
$b$ и поделить его на два. То есть

$$mathrm{S}_{Delta A B C}=frac{a b}{2}$$

Напомним, что катетами прямоугольного треугольника называются стороны, которые пересекаются под прямым углом.

Примеры вычисления площади прямоугольного треугольника

Пример

Задание. Найти площадь прямоугольного треугольника
$ABC$, если известно, что длины его катетов равны 3 см и 4 см.

Решение. Искомая площадь равна половине произведения катетов, то есть

$mathrm{S}_{Delta A B C}=frac{3 cdot 4}{2}=frac{12}{2}=6$ (см2)

Ответ. $mathrm{S}_{Delta A B C}=6$ (см2)

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычислить площадь прямоугольного треугольника, один из катетов которого равен 6 см, а гипотенуза 10 см.

Решение. Искомая площадь равна половине произведения катетов. Используя теорему Пифагора,
найдем второй катет заданного треугольника:

$b=sqrt{10^{2}-6^{2}}=sqrt{100-36}=sqrt{64}=8$ (см)

Тогда площадь

$S=frac{6 cdot 8}{2}=frac{48}{2}=24$ (см2)

Ответ. $S=24$ (см2)

Читать дальше: как найти площадь равнобедренного треугольника.

Найти площадь прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Найти площадь прямоугольного треугольника

Чтобы посчитать площадь прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы вычислить площадь прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • длины катетов a и b
  • длину гипотенузы с и длину любого из катетов (a или b)
  • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
  • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • длину гипотенузы с и один из острых углов (α или β)

Найти площадь прямоугольного треугольника по двум катетам

Катет a =
Катет b =
S =

0

Просто введите длины двух катетов, и получите ответ.

Теория

Чему равна площадь (S) прямоугольного треугольника если известны оба катета (a и b)?

Формула

S = ½ ⋅ a ⋅ b

Пример

К примеру найдём площадь прямоугольного треугольника у которого сторона a = 2 см, а сторона b = 4 см:

S = 2 ⋅ 4 / 2 = 8 / 2 = 4 см²

Найти площадь прямоугольного треугольника по катету и гипотенузе

Гипотенуза c =
Катет (a или b) =
S =

0

Введите длины гипотенузы и одного из катетов, и получите ответ.

Теория

Чему равна площадь (S) прямоугольного треугольника если известны его гипотенуза (c) и один из катетов (a или b)?

Формула

S = ½ ⋅ a ⋅ c² – a² = ½ ⋅ b ⋅ c² – b²

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 2 см, а гипотенуза c = 5 см:

S = 2 ⋅ 5² – 2² / 2 = 25 – 4 ≈ 4.58 см²

Найти площадь прямоугольного треугольника по катету и прилежащему к нему острому углу

Катет (a или b) =
Прилежащий угол (β или α) = °
S =

0

Введите длину одного из катетов и прилежащий к нему острый угол в градусах.

То есть к катету a прилежащий ∠β, а к катету b∠α

Теория

Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

S = ½ ⋅ a² ⋅ tg(β) = ½ ⋅ b² ⋅ tg(α)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а прилежащий к нему ∠β = 45°:

S = ½ ⋅ 4² ⋅ tg(45) = ½ ⋅ 16 ⋅ 1 = 16 / 2 = 8 см²

Найти площадь прямоугольного треугольника по катету и противолежащему к нему острому углу

Катет (a или b) =
Противолежащий угол (α или β) = °
S =

0

Введите длину одного из катетов и противолежащий к нему острый угол в градусах.

То есть к катету a противолежащий ∠α, а к катету b∠β

Теория

Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

S = ½ ⋅ a² ⋅ tg(90 – α) = ½ ⋅ b² ⋅ tg(90 – β)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а противолежащий к нему ∠α = 45°:

S = 4² / 2⋅ tg(45) = 16 / 2 ⋅ 1 = 8 см²

Найти площадь прямоугольного треугольника зная длину гипотенузы и один из острых углов

Гипотенуза c =
Угол (α или β) = °
S =

0

Введите длину гипотенузы и один из острых угол в градусах.

Теория

Чему равна площадь (S) прямоугольного треугольника если известны длина гипотенузы (c) и один из острых углов?

Формула

S = ½ ⋅ c² ⋅ sin(α) ⋅ cos(α) = ½ ⋅ c² ⋅ sin(β) ⋅ cos(β)

Пример

К примеру посчитаем чему равна площадь прямоугольного треугольника у которого гипотенуза c = 8 см, а ∠α = 45°:

S = ½ ⋅ 8² ⋅ sin(45) ⋅ cos(45) ≈ ½ ⋅ 64 ⋅ 0.7071067812 ⋅ 0.7071067812 ≈ 16 см²

площадь прямоугольного треугольника через две стороны

Формула:


S
=


1


2


 ab

Где: a, b – стороны.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через гипотенузу и острый угол

Формула:


S
=


1


4


 С2
·sin(2α)

Где: C – гипотенуза, α – острый угол.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через катет и острый угол

Формула:


S
=


1


2


 a2
·tg(α)

Где: a – катет, α – острый угол.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через гипотенузу и радиус вписанного круга

Формула:


S
=
R·(R+C)

Где: С – гипотенуза, R – радиус вписанной окружности.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через гипотенузу и диаметр вписанного круга

Формула:


S
=


D


2


 ·(


D


2


 + C
)

Где: С – гипотенуза, D – диаметр вписанной окружности.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через гипотенузу и площадь вписанного круга

Формула:


S
=




S


π




 ·(




S


π




 + C
)

Где: С – гипотенуза, S – площадь вписанной окружности.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через гипотенузу и длину вписанной окружности (периметр)

Формула:


S
=


P





 ·(


P





 + C
)

Где: С – гипотенуза, P – длина вписанной окружности.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через касание вписанной окружности которая делит гипотенузу на части

Формула:


S
=

C1

 · 

C2

Где: C1 , C2 – части гипотенузы.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

площадь прямоугольного треугольника через гипотенузу и высоту

Формула:


S
=


1


2


 
ch

Где: c – гипотенуза, h – высота.

цифр после запятой


5


  • 0

  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

обновите расчет!!!

укажите правильное значение!!!

скопировано

Площадь треугольника равна половине произведения гипотенузы и высоты.

Содержание материала

  1. Площадь прямоугольного треугольника по формуле Герона
  2. Видео
  3. Площадь прямоугольного треугольника по катету и противолежащему углу
  4. Если он равносторонний
  5. Формула для нахождения площади прямоугольного треугольника через катеты
  6. Если известны длины трех сторон
  7. Как найти площадь равностороннего треугольника

Площадь прямоугольного треугольника по формуле Герона

 Полупериметр:  Сторона a Сторона b Сторона c

Для вычисления площади треугольника применяются различные формулы, в зависимости от известных исходных данных. Выше приведены формулы и калькулятор, который поможет вычислить площадь треугольника или проверить уже выполненные вычисления. Приведены общие формулы для всех типов треугольников, частные случаи для равносторонних, равнобедренных и прямоугольных треугольников.

Наш калькулятор для вычисления площади поможет вам вычислить площадь разных видов треугольников или проверить уже выполненные вычисления.

В зависимости от вида треугольника и его известных исходных данных, площадь треугольника можно вычислить по различным формулам.

Видео

Площадь прямоугольного треугольника по катету и противолежащему углу

Пусть в прямоугольном треугольнике известны катет a и противолежащий угол α (Рис.5):

Найдем площадь прямоугольного треугольника. Коангенс угла α прямоугольного треугольника равна:

.

Откуда

(12). (12)

Подставляя (12) в (1), получим формулу площади прямоугольного треугольника по катету и противожащему углу:

(13). (13)

Пример 5. Известны катет и противолежащий угол прямоугольного треугольника: Решение.  Для вычисления площади треугольника восп. Найти площадь треугольника.

Решение. Для вычисления площади треугольника воспользуемся формулой (13). Подставляя значения   	     в (13), получим:

Ответ:

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Формула для нахождения площади прямоугольного треугольника через катеты

Чтобы найти площадь, нужно вывести формулу:

Так как в прямоугольном треугольнике катеты перпендикулярны, то один катет — это высота, проведенная ко второму катету.

Отсюда следует, что площадь прямоугольного треугольника равна половине произведения его катетов.

Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через катеты.

S = 1/2 (a × b), где a и b — катеты

Если известны длины трех сторон

Делайте так:

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.
  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Теги

Прямоугольный треугольник, так же как и любой другой треугольник, имеет три стороны и три угла. Разница только в том, что один угол прямой, т. е. 90 градусов и два остальных, острых угла в сумме составляют, тоже 90 градусов.
Две стороны, которые формируют прямой угол, называют катетами, а третья сторона напротив прямого угла, называется – гипотенуза


1. Если известны только катеты

Прямоугольный треугольник

ab – катеты треугольника

Формула площади треугольника через катеты ( S ) :

Формула площади через катеты

2. Если известны острый угол и гипотенуза или катет

Треугольник через сторону и угол

c – гипотенуза

a, b – катеты

αβ – острые углы

Формулы площади прямоугольного треугольника через гипотенузу и угол ( S ) :

Формула площади через гипотенузу и угол

Формула площади прямоугольного треугольника через гипотенузу и угол

Формулы площади прямоугольного треугольника через катет и угол ( S ) :

Формула площади  через катет a и угол

площади прямоугольного треугольника через катет b и угол


Для справкиКак известно, сумма острых углов в прямоугольном треугольнике равна 90 градусов, а если

Сумма острых углов прямоугольного треугольника равна 90 градусов

то справедливы следующие тождества:

синус косинус

синус косинус


3. Если известны радиус вписанной окружности и гипотенуза

Треугольник  радиус вписанной окружности и угол

c – гипотенуза

c1c2 – отрезки полученные делением гипотенузы, точкой касания окружности

r – радиус вписанной окружности

О – центр вписанной окружности

Формулы площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу ( S ) :

Формула площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Подробности

Опубликовано: 07 сентября 2011

Обновлено: 13 августа 2021

Добавить комментарий