Как найти углы все способы


Download Article


Download Article

In geometry, an angle is the space between 2 rays (or line segments) with the same endpoint (or vertex). The most common way to measure angles is in degrees, with a full circle measuring 360 degrees. You can calculate the measure of an angle in a polygon if you know the shape of the polygon and the measure of its other angles or, in the case of a right triangle, if you know the measures of two of its sides. Additionally, you can measure angles using a protractor or calculate an angle without a protractor using a graphing calculator. This is to allow you to calculate angles

  1. Image titled Calculate Angles Step 1

    1

    Count the number of sides in the polygon. In order to calculate the interior angles of a polygon, you need to first determine how many sides the polygon has. Note that a polygon has the same number of sides as it has angles.[1]

    • For instance, a triangle has 3 sides and 3 interior angles while a square has 4 sides and 4 interior angles.
  2. Image titled Calculate Angles Step 2

    2

    Find the total measure of all of the interior angles in the polygon. The formula for finding the total measure of all interior angles in a polygon is: (n – 2) x 180. In this case, n is the number of sides the polygon has. Some common polygon total angle measures are as follows:[2]

    • The angles in a triangle (a 3-sided polygon) total 180 degrees.
    • The angles in a quadrilateral (a 4-sided polygon) total 360 degrees.
    • The angles in a pentagon (a 5-sided polygon) total 540 degrees.
    • The angles in a hexagon (a 6-sided polygon) total 720 degrees.
    • The angles in an octagon (an 8-sided polygon) total 1080 degrees.

    Advertisement

  3. Image titled Calculate Angles Step 3

    3

    Divide the total measure of all of a regular polygon’s angles by the number of its angles. A regular polygon is a polygon whose sides are all the same length and whose angles all have the same measure. For instance, the measure of each angle in an equilateral triangle is 180 ÷ 3, or 60 degrees, and the measure of each angle in a square is 360 ÷ 4, or 90 degrees.[3]

    • Equilateral triangles and squares are examples of regular polygons, while the Pentagon in Washington, D.C. is an example of a regular pentagon and a stop sign is an example of a regular octagon.
  4. Image titled Calculate Angles Step 4

    4

    Subtract the sum of the known angles from the total measure of the angles for an irregular polygon. If your polygon doesn’t have sides of the same length and angles of the same measure, all you need to do is add up all of the known angles in the polygon. Then, subtract that number from the total measure of all of the angles to find the missing angle.[4]

    • For example, if you know that 4 of the angles in a pentagon measure 80, 100, 120, and 140 degrees, add the numbers together to get a sum of 440. Then, subtract this sum from the total angle measure for a pentagon, which is 540 degrees: 540 – 440 = 100 degrees. So, the missing angle is 100 degrees.

    Tip: Some polygons offer “cheats” to help you figure out the measure of the unknown angle. An isosceles triangle is a triangle with 2 sides of equal length and 2 angles of equal measure. A parallelogram is a quadrilateral with opposite sides of equal lengths and angles diagonally opposite each other of equal measure.

  5. Advertisement

  1. Image titled Calculate Angles Step 5

    1

    Remember that every right triangle has one angle equal to 90 degrees. By definition, a right triangle will always have one angle that’s 90 degrees, even if it’s not labeled as such. So, you will always know at least one angle and can use trigonometry to find out the other 2 angles.[5]

  2. Image titled Calculate Angles Step 6

    2

    Measure the length of 2 of the triangle’s sides. The longest side of a triangle is called the “hypotenuse.” The “adjacent” side is adjacent (or next to) to the angle you’re trying to determine.[6]
    The “opposite” side is opposite to the angle you’re trying to determine. Measure 2 of the sides so you can determine the measure of the remaining angles in the triangle.[7]

    Tip: You can use a graphing calculator to solve your equations or find a table online that lists the values for various sine, cosine, and tangent functions.

  3. Image titled Calculate Angles Step 7

    3

    Use the sine function if you know the length of the opposite side and the hypotenuse. Plug your values into the equation: sine (x) = opposite ÷ hypotenuse. Say that the length of the opposite side is 5 and the length of the hypotenuse is 10. Divide 5 by 10, which is equal to 0.5. Now you know that sine (x) = 0.5 which is the same as x = sine-1 (0.5).[8]

    • If you have a graphing calculator, simply type 0.5 and press sine-1. If you don’t have a graphing calculator, use an online chart to find the value. Both will show that x = 30 degrees.
  4. Image titled Calculate Angles Step 8

    4

    Use the cosine function if you know the length of the adjacent side and the hypotenuse. For this type of problem, use the equation: cosine (x) = adjacent ÷ hypotenuse. If the length of the adjacent side is 1.666 and the length of the hypotenuse is 2.0, divide 1.666 by 2, which is equal to 0.833. So, cosine (x) = 0.833 or x = cosine-1 (0.833).[9]

    • Plug 0.833 into your graphing calculator and press cosine-1. Alternatively, look up the value in a cosine chart. The answer is 33.6 degrees.
  5. Image titled Calculate Angles Step 9

    5

    Use the tangent function if you know the length of the opposite side and the adjacent side. The equation for tangent functions is tangent (x) = opposite ÷ adjacent. Say you know the length of the opposite side is 75 and the length of the adjacent side is 100. Divide 75 by 100, which is 0.75. This means that tangent (x) = 0.75, which is the same as x = tangent-1 (0.75).[10]

    • Find the value in a tangent chart or press 0.75 on your graphing calculator, then tangent-1. This is equal to 36.9 degrees.
  6. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do you find an angle?

    Mario Banuelos, PhD

    Mario Banuelos is an Assistant Professor of Mathematics at California State University, Fresno. With over eight years of teaching experience, Mario specializes in mathematical biology, optimization, statistical models for genome evolution, and data science. Mario holds a BA in Mathematics from California State University, Fresno, and a Ph.D. in Applied Mathematics from the University of California, Merced. Mario has taught at both the high school and collegiate levels.

    Mario Banuelos, PhD

    Assistant Professor of Mathematics

    Expert Answer

  • Question

    How do I create a 90 degree corner by swinging an arch?

    Donagan

    Pick a convenient point on a line to be the vertex of your 90° angle. Choose two points on the line, one on each side of the vertex and equidistant from the vertex. Use a compass to draw two arcs of the same diameter, each centered on one of those latter points. Draw a line connecting the vertex point with the intersecting point(s) of the arcs. That line describes a 90° angle with the first line.

  • Question

    How do I find the interior angles of a hexagon without base or height or anything?

    Donagan

    The sum of the six interior angles of a regular polygon is (n-2)(180°), where n is the number of sides. Therefore, in a hexagon the sum of the angles is (4)(180°) = 720°. All the angles are equal, so divide 720° by 6 to get 120°, the size of each interior angle.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Angles are given names according to how many degrees they measure. As noted above, a right angle measures 90 degrees. An angle measuring more than 0 but less than 90 degrees is an acute angle. An angle measuring more than 90 but less than 180 degrees is an obtuse angle. An angle measuring 180 degrees is a straight angle, while an angle measuring more than 180 degrees is a reflex angle.

  • Two angles whose measures add up to 90 degrees are called complementary angles. (The two angles other than the right angle in a right triangle are complementary angles.) Two angles whose measures add up to 180 degrees are called supplementary angles.

Advertisement

References

About This Article

Article SummaryX

To calculate the angles inside a polygon, first count the number of interior angles. A polygon has the same number of interior angles as sides. For example, a triangle always has 3 angles, while a square or rectangle always has 4, and so on. Next, use the formula (n – 2) x 180 to find the total number of degrees of all the interior angles combined. In this formula, n is equal to the number of interior angles. So, a triangle would have (3 – 2) x 180 degrees, or 180 degrees total. On the other hand, a quadrilateral, such as a square or a rectangle, would have (4 – 2) x 180 degrees, or a total of 360 degrees. If the polygon is regular—that is, if all the sides are the same length—then all you have to do is divide the total number of degrees of all the interior angles by the number of sides in the polygon. For instance, to calculate the angles in a regular pentagon, divide 540 degrees by 5 to get 108. Each angle in the pentagon is 108 degrees. If the polygon has irregular sides, your job is a little trickier. If you know all the angles in the polygon but one, you can add the known angles up and subtract the sum from the total number of degrees of all the interior angles. This will give you the number of degrees in the missing angle. In other cases, you may need to look up a formula or function that’s specific to the type of polygon you’re working with. For instance, you can use a sine, cosine, or tan function to find the angles in a right triangle depending on which angle you’re calculating and which side lengths you know. To find out how to calculate angle measure in a right triangle, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 691,722 times.

Reader Success Stories

  • Cynthia Trent

    Cynthia Trent

    Dec 29, 2022

    “I was doing my homework and I didn’t understand something, so now it helped me.”

Did this article help you?

Содержание

  1. Углы в геометрии
  2. Способы обозначения углов
  3. Виды углов
  4. Геометрия. Урок 2. Углы
  5. Понятие угла
  6. Виды углов:
  7. Биссектриса угла
  8. Углы, образованные при пересечении двух прямых
  9. Углы, образованные при пересечении двух прямых секущей
  10. Сумма углов многоугольника
  11. Примеры решений заданий из ОГЭ
  12. Геометрическая фигура угол: определение угла, измерение углов, обозначения и примеры
  13. Определение угла
  14. Определение смежных и вертикальных углов
  15. Сравнение углов
  16. Измерение углов
  17. Обозначение углов на чертеже

Углы в геометрии

Угол — это геометрическая фигура, которая состоит из двух лучей и вершины.

Вершина угла — это точка, в которой два луча берут начало.

Стороны угла — это лучи, которые образуют угол.

Например: Вершина угла — точка « O ».
Стороны угла — « OA » и « OB ».

Для обозначения угла в тексте используется символ: AOB

Способы обозначения углов

Одной заглавной латинской буквой, указывающей его вершину.

Угол: O

Тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

Угол: AOD

Называть угол можно с любого края, но НЕ с вершины.

Угол с рисунка выше имеет два названия: AOD и DOA .

При таком обозначении вершина угла должна всегда находиться в середине названия.

Единица измерения углов — градусы. Углы измеряют с помощью специального прибора — транспортира.

Для обозначения градусов в тексте используется символ: °

50 градусов обозначаются так: « 50° »

Виды углов

Вид угла Размер в градусах Пример
Прямой Равен 90°
Острый Меньше 90°
Тупой Больше 90°
Развернутый Равен 180°

Два угла могут иметь одну общую сторону.

Обратите внимание на рисунок ниже. Попробуйте сосчитать и назвать все углы на изображении.

Если насчитали три угла, то вы правы. Давайте их назовём:

  • AOB
  • BOC
  • AOC

Углы AOB и BOC имеют общую сторону OB .

Источник

Геометрия. Урок 2. Углы

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Понятие угла

Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.

Стороны угла – лучи, которые образуют угол.

Вершина угла – точка, из которой выходят лучи.

Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠ A O B или ∠ B O A , но ни в коем случае не ∠ O A B , ∠ O B A , ∠ A B O , ∠ B A O .

Величину угла измеряют в градусах. ∠ A O B = 24 ° .

Виды углов:

Биссектриса угла

Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.

Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.

O D – биссектриса угла ∠ A O B . Она делит этот угол на два равных угла.

∠ A O D = ∠ B O D = ∠ A O B 2

Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон O A и O B угла ∠ A O B .

Углы, образованные при пересечении двух прямых

Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.

Свойство: вертикальные углы равны.

Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.

Свойство: сумма смежных углов равна 180 ° .

( 1 ) и ( 3 )
( 2 ) и ( 4 )

называются вертикальными .

По свойству вертикальных углов:

∠ C O D = ∠ A O B
∠ B O D = ∠ A O C

( 1 ) и ( 2 )
( 2 ) и ( 3 )
( 3 ) и ( 4 )
( 4 ) и ( 1 )

называются смежными .

По свойству смежных углов:

∠ C O D + ∠ D O B = 180 ° ∠ D O B + ∠ B O A = 180 ° ∠ B O A + ∠ A O C = 180 ° ∠ A O C + ∠ C O D = 180 °

Углы, образованные при пересечении двух прямых секущей

Прямая, пересекающая две заданные прямые, называется секущей этих прямых.

Существует пять видов углов, которые образуются при пересечении двух прямых секущей.

( 1 ) и ( 5 )
( 2 ) и ( 6 )
( 3 ) и ( 7 )
( 4 ) и ( 8 )

называются соответственными .
(Легко запомнить: они соответствуют друг другу, похожи друг на друга).

( 3 ) и ( 5 )
( 4 ) и ( 6 )

называются внутренними односторонними .
(Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).

( 1 ) и ( 7 )
( 2 ) и ( 8 )

называются внешними односторонними .
(Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).

( 3 ) и ( 6 )
( 4 ) и ( 5 )

называются внутренними накрест лежащими .
(Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).

( 1 ) и ( 8 )
( 2 ) и ( 7 )

называются внешними накрест лежащими .
(Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).

Если прямые, которые пересекает секущая, параллельны , то углы имеют следующие свойства:

  • Соответственные углы равны.
  • Внутренние накрест лежащие углы равны.
  • Внешние накрест лежащие углы равны.
  • Сумма внутренних односторонних углов равна 180 ° .
  • Сумма внешних односторонних углов равна 180 ° .

Сумма углов многоугольника

Сумма углов произвольного n -угольника вычисляется по формуле:

S n = 180 ° ⋅ ( n − 2 )

где n – это количество углов в n -угольнике.

Пользуясь этой формулой, можно вычислить сумму углов для произвольного n -угольника.

Сумма углов треугольника: S 3 = 180 ° ⋅ ( 3 − 2 ) = 180 °

Сумма углов четырехугольника: S 4 = 180 ° ⋅ ( 4 − 2 ) = 360 °

Сумма углов пятиугольника: S 5 = 180 ° ⋅ ( 5 − 2 ) = 540 °

Так можно продолжать до бесконечности.

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.

На рисунках изображены примеры правильных многоугольников:

Чтобы найти величину угла правильного n -угольника , необходимо сумму углов этого многоугольника разделить на количество углов.

α n = 180 ° ⋅ ( n − 2 ) n

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с углами

Источник

Геометрическая фигура угол: определение угла, измерение углов, обозначения и примеры

Угол – основная геометрическая фигура, которую разберем на протяжение всей темы. Определения, способы задания, обозначения и измерения угла. Разберем принципы выделения углов на чертежах. Вся теория проиллюстрирована и имеет большое количество наглядных чертежей.

Определение угла

Угол – простая важная фигура в геометрии. Угол напрямую зависит от определения луча, который в свою очередь состоит из базовых понятий точки, прямой и плоскости. Для досконального изучения необходимо углубиться по темам прямая на плоскости – необходимые сведения и плоскость – необходимые сведения.

Понятие угла начинается с понятий о точке, плоскости и прямой, изображенной на этой плоскости.

Дана прямая a на плоскости. На ней обозначим некоторую точку O . Прямая разделена точкой на две части, каждая из которых имеет название луч, а точка O – начало луча.

Иначе говоря, луч или полупрямая – это часть прямой, состоящая из точек заданной прямой, расположенных на одной стороне относительно начальной точки, то есть точки O .

Обозначение луча допустимо в двух вариациях: одной строчной или двумя прописными буквами латинского алфавита. При обозначении двумя буквами луч имеет название, состоящее из двух букв. Рассмотрим подробнее на чертеже.

Перейдем к понятию определения угла.

Угол – это фигура, расположенная в заданной плоскости, образованная двумя несовпадающими лучами, имеющими общее начало. Сторона угла является лучом, вершина – общее начало сторон.

Имеет место случай, когда стороны угла могут выступать в роли прямой линии.

Когда обе стороны угла расположены на одной прямой или его стороны служат как дополнительные полупрямые одной прямой, то такой угол называют развернутым.

На рисунке ниже изображен развернутый угол.

Точка на прямой – это и есть вершина угла. Чаще всего имеет место ее обозначение точкой O .

Угол в математике обозначается знаком « ∠ ». Когда стороны угла обозначают малыми латинскими, то для правильного определения угла записываются подряд буквы соответственно сторонам. Если две стороны имеют обозначение k и h , то угол обозначается как ∠ k h или ∠ h k .

Когда идет обозначение большими буквами, то соответственно стороны угла имеют названия O A и O B . В таком случае угол имеет название из трех букв латинского алфавита, записанные подряд, в центре с вершиной — ∠ A O B и ∠ B O A . Существует обозначение в виде цифр, когда углы не имеют названий или буквенных обозначений. Ниже приведен рисунок, где разными способами обозначаются углы.

Угол делит плоскость на две части. В случае, если угол не развернутый, тогда одна часть плоскости имеет название внутренняя область угла, другая – внешняя область угла. Ниже приведено изображение, объясняющее, какие части плоскости внешние, а какие внутренние.

При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.

Внутренняя область угла – элемент, служащий для второго определения угла.

Углом называют геометрическую фигуру, состоящая из двух несовпадающих лучей, имеющих общее начало и соответствующую внутреннюю область угла.

Данное определение является более строгим, чем предыдущее, так как имеет больше условий. Оба определения не желательно рассматривать отдельно, потому как угол – это геометрическая фигура, преобразованная при помощи двух лучей, выходящих из одной точки. Когда необходимо выполнять действия с углом, то под определением понимают наличие двух лучей с общим началом и внутренней областью.

Определение смежных и вертикальных углов

Два угла называют смежными, если имеется общая сторона, а две другие являются дополнительными полупрямыми или образуют развернутый угол.

На рисунке видно, что смежные углы дополняют друг друга, так как являются продолжением один другого.

Два угла называют вертикальными, если стороны одного являются дополнительными полупрямыми другого или являются продолжениями сторон другого. На рисунке ниже показано изображение вертикальных углов.

При пересечении прямых получается 4 пары смежных и 2 пары вертикальных углов. Ниже показано на рисунке.

Сравнение углов

Статья показывает определения равных и неравных углов. Разберем какой угол считается большим, какой меньшим и другие свойства угла. Две фигуры считаются равными, если при наложении они полностью совпадают. Такое же свойство применимо для сравнения углов.

Даны два угла. Необходимо прийти к выводу, равные эти углы или нет.

Известно, что имеет место наложение вершин двух углов и стороны первого угла с любой другой стороной второго. То есть при полном совпадении при наложении углов стороны заданных углов совместятся полностью, углы равные.

Может быть так, что при наложении стороны могут не совместиться, то углы неравные, меньший из которых состоит из другого, а больший имеет в своем составе полный другой угол. Ниже изображены неравные углы, не совмещенные при наложении.

Развернутые углы являются равными.

Измерение углов

Измерение углов начинается с измерения стороны измеряемого угла и его внутренней области, заполняя которую единичными углами, прикладывают друг к другу. Необходимо посчитать количество уложенных углов, они и предопределяют меру измеряемого угла.

Единица измерения угла может быть выражена любым измеряемым углом. Имеются общепринятые единицы измерения, которые применяют в науке и технике. Они специализируются на других названиях.

Чаще всего используют понятие градус.

Один градус называют углом, который имеет одну сто восьмидесятую часть развернутого угла.

Стандартное обозначение градуса идет при помощи « ° », тогда один градус – 1 ° . Следовательно, развернутый угол состоит из 180 таких углов, состоящих из одного градуса. Все имеющиеся углы плотно уложены друг к другу и стороны предыдущего совмещены с последующим.

Известно, что количество положенных градусов в угле, это и есть та самая мера угла. Развернутый угол имеет 180 уложенных углов в своем составе. Ниже на рисунке приводятся примеры, где уложение угла идет в 30 раз, то есть одна шестая развернутого, и 90 раз, то есть половина.

Для точности определения измерения углов используются минуты и секунды. Их применяют, когда величина угла не является целым обозначением градуса. Такие части градуса позволяют выполнять более точные расчеты .

Минутой называют одну шестидесятую часть градуса.

Секундой называют одну шестидесятую часть минуты.

Градус содержит 3600 секунд. Минуты обозначают « ‘ », а секунды « » ». Имеет место обозначение:

1 ° = 60 ‘ = 3600 » , 1 ‘ = ( 1 60 ) ° , 1 ‘ = 60 » , 1 » = ( 1 60 ) ‘ = ( 1 3600 ) ° ,

а обозначение угла 17 градусов 3 минут и 59 секунд имеет вид 17 ° 3 ‘ 59 » .

Градусная мера угла –это число, показывающее количество укладываний градуса в заданном угле.

Приведем пример обозначения градусной меры угла равного 17 ° 3 ‘ 59 » . Запись имеет еще один вид 17 + 3 60 + 59 3600 = 17 239 3600 .

Для точного измерения углов используют такой измерительный прибор, как транспортир. При обозначении угла ∠ A O B и его градусной мере в 110 градусов применяют более удобную запись ∠ A O B = 110 ° , которая читается «Угол А О В равен 110 градусам».

В геометрии используется мера угла из интервала ( 0 , 180 ] , а в тригонометрии произвольная градусная мера имеет название углов поворота. Значение углов всегда выражается действительным числом. Прямой угол – это угол, имеющий 90 градусов. Острый угол – угол, который меньше 90 градусов, а тупой – больше.

Острый угол измеряется в интервале ( 0 , 90 ) , а тупой – ( 90 , 180 ) . Ниже наглядно изображены три вида углов.

Любая градусная мера любого угла имеет одинаковое значение. Больший угол соответственно имеет большую градусную меру, чем меньший. Градусная мера одного угла – это сумма всех имеющихся градусных мер внутренних углов. Ниже приведен рисунок, где показан угол АОВ, состоящий из углов АОС, СОD и DОВ. Подробно это выглядит так: ∠ A O B = ∠ A O C + ∠ D O B = 45 ° + 30 ° + 60 ° = 135 ° .

Исходя из этого, можно сделать вывод, что сумма всех смежных углов равна 180 градусам, потому что они все и составляют развернутый угол.

Отсюда следует, что любые вертикальные углы равны. Если рассмотреть это на примере, мы получим, что угол А О В и С О D – вертикальные (на чертеже), тогда пары углов А О В и В О С , С О D и В О С считают смежными. В таком случает равенство ∠ A O B + ∠ B O C = 180 ° вместе с ∠ C O D + ∠ B O C = 180 ° считаются однозначно верными. Отсюда имеем, что ∠ A O B = ∠ C O D . Ниже приводится пример изображения и обозначения вертикальных улов.

Кроме градусов, минут и секунд используется еще одна единица измерения. Она называется радианом. Чаще всего ее можно встретить в тригонометрии при обозначении углов многоугольников. Что же называют радианом.

Углом в один радиан называют центральный угол, который имеет длину радиуса окружности равную длине дуги.

На рисунке радиан изображается в виде окружности, где имеется центр, обозначенный точкой , с двумя точками на окружности, соединенными и преобразованными в радиусы О А и О В . По определению данный треугольник A O B является равносторонним, значит длина дуги A B равна длинам радиусов О В и О А .

Обозначение угла принимается за «рад». То есть запись в 5 радиан сокращенно обозначается как 5 рад. Иногда можно встретить обозначение, имеющее название пи. Радианы не имеют зависимости от длины заданной окружности, так как фигуры имеют некое ограничение при помощи угла и его дугой с центром, находящимся в вершине заданного угла. Они считаются подобными.

Радианы имеют такой же смысл, как и градусы, только разница в их величине. Чтобы это определить, необходимо вычисленную длину дуги центрального угла поделить на длину ее радиуса.

На практике используют перевод градусов в радианы и радианы в градусы для более удобного решения задач. Указанная статья имеет информацию о связи градусной меры с радианной, где можно подробно изучить переводы из градусной в радианную и обратно.

Обозначение углов на чертеже

Для наглядного и удобного изображения дуг, углов используют чертежи. Не всегда можно правильно изобразить и отметить тот или иной угол, дугу или название. Равные углы имеют обозначение в виде одинакового количества дуг, а неравные в виде разного. На чертеже изображено правильное обозначение острых, равных и неравных углов.

Когда необходимо отметить более 3 углов, используются специальные обозначения дуг, например, волнистые или зубчатые. Это не имеет столь важное значение. Ниже приведен рисунок, где показано их обозначение.

Обозначение углов должны быть простыми, чтобы не мешали другим значениям. При решении задачи рекомендовано выделять только необходимые для решения углы, чтобы не загромождать весь чертеж. Это не помешает решению и доказательству, а также придаст эстетичный вид рисунку.

Источник


Загрузить PDF


Загрузить PDF

В геометрии угол — это фигура, которая образована двумя лучами, которые выходят из одной точки (она называется вершиной угла). В большинстве случаев единицей измерения угла является градус (°) — помните, что полный угол или один оборот равен 360°. Найти значение угла многоугольника можно по его типу и значениям других углов, а если дан прямоугольный треугольник, угол можно вычислить по двум сторонам. Более того, угол можно измерить с помощью транспортира или вычислить с помощью графического калькулятора.

  1. Изображение с названием Calculate Angles Step 1

    1

    Сосчитайте число сторон многоугольника. Чтобы вычислить внутренние углы многоугольника, сначала нужно определить, сколько у многоугольника сторон. Обратите внимание, что число сторон многоугольника равно числу его углов.[1]

    • Например, у треугольника 3 стороны и 3 внутренних углов, а у квадрата 4 стороны и 4 внутренних углов.
  2. Изображение с названием Calculate Angles Step 2

    2

    Вычислите сумму всех внутренних углов многоугольника. Для этого воспользуйтесь следующей формулой: (n – 2) x 180. В этой формуле n — это количество сторон многоугольника. Далее приведены суммы углов часто встречающихся многоугольников:[2]

    • Сумма углов треугольника (многоугольника с 3-мя сторонами) равна 180°.
    • Сумма углов четырехугольника (многоугольника с 4-мя сторонами) равна 360°.
    • Сумма углов пятиугольника (многоугольника с 5-ю сторонами) равна 540°.
    • Сумма углов шестиугольника (многоугольника с 6-ю сторонами) равна 720°.
    • Сумма углов восьмиугольника (многоугольника с 8-ю сторонами) равна 1080°.
  3. Изображение с названием Calculate Angles Step 3

    3

    Разделите сумму всех углов правильного многоугольника на число углов. Правильный многоугольник это многоугольник с равными сторонами и равными углами. Например, каждый угол равностороннего треугольника вычисляется так: 180 ÷ 3 = 60°, а каждый угол квадрата находится так: 360 ÷ 4 = 90°.[3]

    • Равносторонний треугольник и квадрат — это правильные многоугольники. А у здания Пентагона (Вашингтон, США) и дорожного знака «Стоп» форма правильного восьмиугольника.
  4. Изображение с названием Calculate Angles Step 4

    4

    Вычтите сумму всех известных углов из общей суммы углов неправильного многоугольника. Если стороны многоугольника не равны друг другу, и его углы также не равны друг другу, сначала сложите известные углы многоугольника. Теперь полученное значение вычтите из суммы всех углов многоугольника — так вы найдете неизвестный угол.[4]

    • Например, если дано, что 4 угла пятиугольника равны 80°, 100°, 120° и 140°, сложите эти числа: 80 + 100 + 120 + 140 = 440. Теперь вычтите это значение из суммы всех углов пятиугольника; эта сумма равна 540°: 540 – 440 = 100°. Таким образом, неизвестный угол равен 100°.

    Совет: неизвестный угол некоторых многоугольников можно вычислить, если знать свойства фигуры. К примеру, в равнобедренном треугольнике две стороны равны и два угла равны; в параллелограмме (это четырехугольник) противоположные стороны равны и противоположные углы равны.

    Реклама

  1. Изображение с названием Calculate Angles Step 5

    1

    Помните, что в любом прямоугольном треугольнике один угол всегда равен 90°. Это так, даже если прямой угол никак не отмечен или его значение не указано. Таким образом, один угол прямоугольного треугольника всегда известен, а другие углы можно вычислить с помощью тригонометрии.[5]

  2. Изображение с названием Calculate Angles Step 6

    2

    Измерьте длину двух сторон треугольника. Самая длинная сторона прямоугольного треугольника называется гипотенузой. Прилежащая сторона это сторона, которая находится возле неизвестного угла. Противолежащая сторона — это сторона, которая находится напротив неизвестного угла. Измерьте две стороны, чтобы вычислить неизвестные углы треугольника.[6]

    Совет: воспользуйтесь графическим калькулятором, чтобы решить уравнения, или найдите онлайн-таблицу со значениями синусов, косинусов и тангенсов.

  3. Изображение с названием Calculate Angles Step 7

    3

    Вычислите синус угла, если вам известны противолежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: sin(x) = противолежащая сторона ÷ гипотенуза. Например, противолежащая сторона равна 5 см, а гипотенуза равна 10 см. Разделите 5/10 = 0,5. Таким образом, sin(x) = 0,5, то есть x = sin-1 (0,5).[7]

    • Если у вас есть графический калькулятор, введите 0,5 и нажмите клавишу sin-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 30°.
  4. Изображение с названием Calculate Angles Step 8

    4

    Вычислите косинус угла, если вам известны прилежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: cos(x) = прилежащая сторона ÷ гипотенуза. Например, прилежащая сторона равна 1,67 см, а гипотенуза равна 2 см. Разделите 1,67/2 = 0,83. Таким образом, cos(x) = 0,83, то есть x = cos-1 (0,83).[8]

    • Если у вас есть графический калькулятор, введите 0,83 и нажмите клавишу cos-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 33,6°.
  5. Изображение с названием Calculate Angles Step 9

    5

    Вычислите тангенс угла, если вам известны противолежащая и прилежащая стороны. Для этого подставьте значения в уравнение: tg(x) = противолежащая сторона ÷ прилежащая сторона. Например, противолежащая сторона равна 75 см, а прилежащая сторона равна 75 см. Разделите 75/100 = 0,75. Таким образом, tg(x) = 0,75, то есть x = tg-1 (0,75).[9]

    • Если у вас есть графический калькулятор, введите 0,75 и нажмите клавишу tg-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 36,9°.

    Реклама

Советы

  • Названия углов соответствуют их значениям. Угол в 90° — это прямой угол. Угол в 180° — это развернутый угол. Угол, который лежит между 0° и 90° — это острый угол. Угол, который лежит между 90° и 180° — это тупой угол. Угол, который лежит между 180° и 360° — это невыпуклый угол.
  • Если сумма двух углов равна 90°, они называются дополнительными. Запомните: два острых угла прямоугольного треугольника всегда являются дополнительными. Если же сумма двух углов равна 180°, они называются смежными.

Реклама

Об этой статье

Эту страницу просматривали 237 189 раз.

Была ли эта статья полезной?

Исторический термин «решение треугольников» (лат. solutio triangulorum) обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.), а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере (сферический треугольник), на гиперболической плоскости (гиперболический треугольник) и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.

Решение плоских треугольников[править | править код]

Стандартные обозначения в треугольнике

У треугольника[2] общего вида имеется 6 основных элементов: 3 линейные (длины сторон a,b,c) и 3 угловые (alpha ,beta ,gamma ). Сторону, противолежащую углу при вершине, традиционно обозначают той же буквой, что и эта вершина, но не заглавной, а строчной (см. рисунок). В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[3].

Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Поскольку вариант «заданы три угла» исключён из рассмотрения, остаются 5 различных вариантов[4]:

  • три стороны;
  • две стороны и угол между ними;
  • две стороны и угол напротив одной из них;
  • сторона и два прилежащих угла;
  • сторона, противолежащий угол и один из прилежащих.

Основные теоремы[править | править код]

Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[5]:

Теорема косинусов
{displaystyle a^{2}=b^{2}+c^{2}-2bccdot cos alpha }
{displaystyle b^{2}=a^{2}+c^{2}-2accdot cos beta }
{displaystyle c^{2}=a^{2}+b^{2}-2abcdot cos gamma }
Теорема синусов
{frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}
Сумма углов треугольника
alpha +beta +gamma =180^{circ }

Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов, теорему о проекциях и формулы Мольвейде.

Замечания[править | править код]

  1. Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов, потому что значение синуса угла при вершине треугольника не определяет однозначно самого угла, поскольку смежные углы имеют один и тот же синус[6]. Например, если sin beta =0{,}5, то угол beta может быть как 30^{circ }, так и 150^{circ }, потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают: в интервале от 0^{circ } до 180^{circ } значение косинуса определяет угол однозначно.
  2. При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
  3. Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем 180^{circ }.

Три стороны[править | править код]

Пусть заданы длины всех трёх сторон a,b,c. Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:

{displaystyle a<b+c,quad b<a+c,quad c<a+b.}

Чтобы найти углы alpha ,beta , надо воспользоваться теоремой косинусов[7]:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}},quad beta =arccos {frac {a^{2}+c^{2}-b^{2}}{2ac}}.}

Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна {displaystyle 180^{circ }colon }

{displaystyle gamma =180^{circ }-(alpha +beta ).}

Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в замечании 1, существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол (он лежит против наибольшей из сторон) — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.

Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть для определённости известны длины сторон a,b и угол gamma между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны c применяется теорема косинусов[8]:

{displaystyle c={sqrt {a^{2}+b^{2}-2abcos gamma }}.}

Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}}=arccos {frac {b-acos gamma }{sqrt {a^{2}+b^{2}-2abcos gamma }}}.}

Третий угол находится из теоремы о сумме углов треугольника: beta =180^{circ }-alpha -gamma .

Заданы две стороны и угол не между ними

Две стороны и угол напротив одной из них[править | править код]

В этом случае решений может быть два, одно или ни одного. Пусть известны две стороны b,c и угол beta . Тогда уравнение для угла gamma находится из теоремы синусов[9]:

{displaystyle sin gamma ={frac {c}{b}}sin beta .}

Для краткости обозначим {displaystyle D={frac {c}{b}}sin beta } (правая часть уравнения). Это число всегда положительно. При решении уравнения возможны 4 случая, во многом зависящие от D[10][11].

  1. Задача не имеет решения (сторона b «не достаёт» до линии BC) в двух случаях: если D>1 или если угол beta geqslant 90^{circ } и при этом bleqslant c.
  2. Если {displaystyle D=1,} существует единственное решение, причём треугольник прямоугольный: {displaystyle gamma =arcsin D=90^{circ }.}

  1. Если {displaystyle D<1,} то возможны 2 варианта.
    1. Если b<c, то угол gamma имеет два возможных значения: острый угол {displaystyle gamma =arcsin D} и тупой угол {displaystyle gamma '=180^{circ }-gamma }. На рисунке справа первому значению соответствуют точка C, сторона b и угол gamma , а второму значению — точка C', сторона {displaystyle b'=b} и угол gamma '.
    2. Если bgeqslant c, то beta geqslant gamma (большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для gamma исключён и решение {displaystyle gamma =arcsin D} единственно.

Третий угол определяется по формуле {displaystyle alpha =180^{circ }-beta -gamma }. Третью сторону можно найти по теореме синусов:

a=b {frac {sin alpha }{sin beta }}

В данном случае заданы сторона и прилежащие к ней углы. Аналогичные рассуждения имеют смысл, даже если один из известных углов противоположен стороне.

Сторона и два угла[править | править код]

Пусть задана сторона c и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше 180^{circ }. В противном случае задача решения не имеет.

Вначале определяется третий угол. Например, если даны углы alpha ,beta , то {displaystyle gamma =180^{circ }-alpha -beta }. Далее обе неизвестные стороны находятся по теореме синусов[12]:

{displaystyle a=c {frac {sin alpha }{sin gamma }},quad b=c {frac {sin beta }{sin gamma }}.}

Решение прямоугольных треугольников[править | править код]

Прямоугольный треугольник

В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.

Вершину прямого угла традиционно обозначают буквой C, гипотенузу — c. Катеты обозначаются a и b, а величины противолежащих им углов — alpha и beta соответственно.

Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:

c^{2}=a^{2}+b^{2}

и определения основных тригонометрических функций:

sin alpha =cos beta ={frac {a}{c}},quad cos alpha =sin beta ={frac {b}{c}},
{displaystyle operatorname {tg} alpha =operatorname {ctg} beta ={frac {a}{b}},quad operatorname {ctg} alpha =operatorname {tg} beta ={frac {b}{a}}.}

Ясно также, что углы alpha и beta  — острые, так как их сумма равна 90^{circ }. Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.

При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.

Два катета[править | править код]

Гипотенуза находится по теореме Пифагора:

c={sqrt {a^{2}+b^{2}}}.

Углы могут быть найдены с использованием функции арктангенса:

{displaystyle alpha =operatorname {arctg} {frac {a}{b}},quad beta =operatorname {arctg} {frac {b}{a}}}

или же по только что найденной гипотенузе:

alpha =arcsin {frac {a}{c}}=arccos {frac {b}{c}},quad beta =arcsin {frac {b}{c}}=arccos {frac {a}{c}}.

Катет и гипотенуза[править | править код]

Пусть известны катет b и гипотенуза c — тогда катет a находится из теоремы Пифагора:

a={sqrt {c^{2}-b^{2}}}.

После этого углы определяются аналогично предыдущему случаю.

Катет и прилежащий острый угол[править | править код]

Пусть известны катет b и прилежащий к нему угол alpha .

Гипотенуза c находится из соотношения

c={frac {b}{cos alpha }}.

Катет a может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения

a=b mathrm {tg} ,alpha .

Острый угол beta может быть найден как

beta =90^{circ }-alpha .

Катет и противолежащий острый угол[править | править код]

Пусть известны катет b и противолежащий ему угол beta .

Гипотенуза c находится из соотношения

c={frac {b}{sin beta }}.

Катет a и второй острый угол alpha могут быть найдены аналогично предыдущему случаю.

Гипотенуза и острый угол[править | править код]

Пусть известны гипотенуза c и острый угол beta .

Острый угол alpha может быть найден как

alpha =90^{circ }-beta .

Катеты определяются из соотношений

a=csin alpha =ccos beta ,
b=csin beta =ccos alpha .

Решение сферических треугольников[править | править код]

Стороны сферического треугольника a,b,c измеряют величиной опирающихся на них центральных углов

Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника a,b,c принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.

Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов alpha +beta +gamma зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но основные соотношения: две сферические теоремы косинусов и сферическая теорема синусов, — используемые для решения задачи, аналогичны плоскому случаю.

Из других соотношений могут оказаться полезными формулы аналогии Непера[13] и формула половины стороны[14].

Три стороны[править | править код]

Если даны (в угловых единицах) стороны a,b,c, то углы треугольника определяются из теоремы косинусов[15]:

alpha =arccos left({frac {cos a-cos b cos c}{sin b sin c}}right),
beta =arccos left({frac {cos b-cos c cos a}{sin c sin a}}right),
gamma =arccos left({frac {cos c-cos a cos b}{sin a sin b}}right),

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть заданы стороны a,b и угол gamma между ними. Сторона c находится по теореме косинусов[15]:

c=arccos left(cos acos b+sin asin bcos gamma right)

Углы alpha ,beta можно найти так же, как в предыдущем случае, можно также использовать формулы аналогии Непера:

{displaystyle alpha =operatorname {arctg}  {frac {2sin a}{operatorname {tg} ({frac {gamma }{2}})sin(b+a)+operatorname {ctg} ({frac {gamma }{2}})sin(b-a)}},}
{displaystyle beta =operatorname {arctg}  {frac {2sin b}{operatorname {tg} ({frac {gamma }{2}})sin(a+b)+operatorname {ctg} ({frac {gamma }{2}})sin(a-b)}}.}

Заданы две стороны и угол не между ними

Две стороны и угол не между ними[править | править код]

Пусть заданы стороны b,c и угол beta . Чтобы решение существовало, необходимо выполнение условия:

{displaystyle b>arcsin(sin c,sin beta ).}

Угол gamma получается из теоремы синусов:

{displaystyle gamma =arcsin left({frac {sin c,sin beta }{sin b}}right).}

Здесь, аналогично плоскому случаю, при b<c получаются два решения: gamma и {displaystyle 180^{circ }-gamma }.

Остальные величины можно найти из формул аналогии Непера[16]:

a=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(b-c)right){frac {sin left({frac {1}{2}}(beta +gamma )right)}{sin left({frac {1}{2}}(beta -gamma )right)}}right},
alpha =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(beta -gamma )right){frac {sin left({frac {1}{2}}(b+c)right)}{sin left({frac {1}{2}}(b-c)right)}}right}.

Заданы сторона и прилежащие углы

Сторона и прилежащие углы[править | править код]

В этом варианте задана сторона c и углы alpha ,beta . Угол gamma определяется по теореме косинусов[17]:

{displaystyle gamma =arccos(sin alpha sin beta cos c-cos alpha cos beta ).}

Две неизвестные стороны получаются из формул аналогии Непера:

a=operatorname {arctg} left{{frac {2sin alpha }{operatorname {ctg} (c/2)sin(beta +alpha )+operatorname {tg} (c/2)sin(beta -alpha )}}right}
b=operatorname {arctg} left{{frac {2sin beta }{operatorname {ctg} (c/2)sin(alpha +beta )+operatorname {tg} (c/2)sin(alpha -beta )}}right}

или, если использовать вычисленный угол gamma , по теореме косинусов:

{displaystyle a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),}
{displaystyle b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right).}

Заданы два угла и сторона не между ними

Два угла и сторона не между ними[править | править код]

В отличие от плоского аналога данная задача может иметь несколько решений.

Пусть заданы сторона a и углы alpha ,beta . Сторона b определяется по теореме синусов[18]:

{displaystyle b=arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Если угол для стороны a острый и alpha >beta , существует второе решение:

{displaystyle b=pi -arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Остальные величины определяются из формул аналогии Непера:

{displaystyle c=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(a-b)right){frac {sin left({frac {1}{2}}(alpha +beta )right)}{sin left({frac {1}{2}}(alpha -beta )right)}}right}.}
{displaystyle gamma =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(alpha -beta )right){frac {sin left({frac {1}{2}}(a+b)right)}{sin left({frac {1}{2}}(a-b)right)}}right}.}

Три угла[править | править код]

Если заданы три угла, стороны находятся по теореме косинусов:

a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),
b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right),
c=arccos left({frac {cos gamma +cos alpha cos beta }{sin alpha sin beta }}right).

Другой вариант: использование формулы половины угла[19].

Решение прямоугольных сферических треугольников[править | править код]

Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол C) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведённых соотношений[20]:

{displaystyle sin a=sin ccdot sin alpha =operatorname {tg} bcdot operatorname {ctg} beta ,}
{displaystyle sin b=sin ccdot sin beta =operatorname {tg} acdot operatorname {ctg} alpha ,}
{displaystyle cos c=cos acdot cos b=operatorname {ctg} alpha cdot operatorname {ctg} beta ,}
{displaystyle operatorname {tg} a=sin bcdot operatorname {tg} alpha ,}
{displaystyle operatorname {tg} b=operatorname {tg} ccdot cos alpha ,}
{displaystyle cos alpha =cos acdot sin beta =operatorname {tg} bcdot operatorname {ctg} c,}
{displaystyle cos beta =cos bcdot sin alpha =operatorname {tg} acdot operatorname {ctg} c.}

Вариации и обобщения[править | править код]

Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.

Примеры:

Примеры практического применения[править | править код]

Триангуляция[править | править код]

Чтобы определить расстояние d от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние l между которыми известно, и измерить углы alpha и beta между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и два угла» можно найти длину высоты треугольника[23]:

d={frac {sin alpha ,sin beta }{sin(alpha +beta )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} alpha +operatorname {tg} beta }},l

Этот метод используется в каботажном судоходстве. Углы alpha ,beta при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[23].

Другой пример: требуется измерить высоту h горы или высокого здания. Известны углы alpha ,beta наблюдения вершины из двух точек, расположенных на расстоянии l. Из формул того же варианта, что и выше, получается[24]:

h={frac {sin alpha ,sin beta }{sin(beta -alpha )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} beta -operatorname {tg} alpha }},l

Расстояние между двумя точками на поверхности земного шара[править | править код]

Distance on earth.png

Надо вычислить расстояние между двумя точками на земном шаре[25]:

Точка A: широта lambda _{mathrm {A} }, долгота L_{mathrm {A} },
Точка B: широта lambda _{mathrm {B} }, долгота L_{mathrm {B} },

Для сферического треугольника ABC, где C — северный полюс, известны следующие величины:

{displaystyle a=90^{mathrm {o} }-lambda _{mathrm {B} }}
{displaystyle b=90^{mathrm {o} }-lambda _{mathrm {A} }}
{displaystyle gamma =L_{mathrm {A} }-L_{mathrm {B} }}

Это случай «две стороны и угол между ними». Из приведенных выше формул получается:

mathrm {AB} =Rarccos left{sin lambda _{mathrm {A} },sin lambda _{mathrm {B} }+cos lambda _{mathrm {A} },cos lambda _{mathrm {B} },cos left(L_{mathrm {A} }-L_{mathrm {B} }right)right},

где R — радиус Земли.

История[править | править код]

Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[26]

Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[27]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[28]:

В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.

Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[29]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[30].

Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[31]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].

Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[32].

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[33]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[34]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.

В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[35]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[36]. Кроме того, индийцы знали формулы для кратных углов sin nvarphi , cos nvarphi для n=2,3,4,5. В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[37].

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[38]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[36].

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[29]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[39]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[40].

Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[41]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[42]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.

В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10″[43]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[44]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.

См. также[править | править код]

  • Признаки подобия треугольников
  • Площадь треугольника
  • Сферическая тригонометрия
  • Сферический треугольник
  • Триангуляция
  • Тригонометрические тождества
  • Тригонометрические функции
  • Формулы Мольвейде

Примечания[править | править код]

  1. 1 2 Выгодский М. Я., 1978, с. 266—268.
  2. Плоский треугольник иногда называют прямолинейным.
  3. Элементарная математика, 1976, с. 487.
  4. Solving Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 июня 2019 года.
  5. Элементарная математика, 1976, с. 488.
  6. Степанов Н. Н., 1948, с. 133.
  7. Solving SSS Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
  8. Solving SAS Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  9. Solving SSA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
  10. Выгодский М. Я., 1978, с. 294.
  11. Элементарная математика, 1976, с. 493—496.
  12. Solving ASA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  13. Степанов Н. Н., 1948, с. 87—90.
  14. Степанов Н. Н., 1948, с. 102—104.
  15. 1 2 Энциклопедия элементарной математики, 1963, с. 545.
  16. Степанов Н. Н., 1948, с. 121—128.
  17. Степанов Н. Н., 1948, с. 115—121.
  18. Степанов Н. Н., 1948, с. 128—133.
  19. Степанов Н. Н., 1948, с. 104—108.
  20. Основные формулы физики, 1957, с. 14—15.
  21. Цейтен Г. Г., 1932, с. 223—224.
  22. Цейтен Г. Г., 1938, с. 126—127.
  23. 1 2 Геометрия: 7—9 классы, 2009, с. 260—261.
  24. Геометрия: 7—9 классы, 2009, с. 260.
  25. Степанов Н. Н., 1948, с. 136—137.
  26. van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
  27. Глейзер Г. И., 1982, с. 77.
  28. Глейзер Г. И., 1982, с. 94—95.
  29. 1 2 Матвиевская Г. П., 2012, с. 92—96.
  30. Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
  31. История математики, том I, 1970, с. 143.
  32. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
  33. Матвиевская Г. П., 2012, с. 25—27.
  34. Матвиевская Г. П., 2012, с. 33—36.
  35. Матвиевская Г. П., 2012, с. 40—44.
  36. 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79.
  37. Юшкевич А. П. История математики в Средние века. — М.: ГИФМЛ, 1961. — С. 160. — 448 с.
  38. Матвиевская Г. П., 2012, с. 51—55.
  39. Матвиевская Г. П., 2012, с. 111.
  40. Матвиевская Г. П., 2012, с. 96—98.
  41. Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
  42. Рыбников К. А., 1960, с. 105.
  43. История математики, том I, 1970, с. 320.
  44. Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.

Литература[править | править код]

Теория и алгоритмы
  • Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
  • Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518—557. — 568 с.
  • Степанов Н. Н. Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948.
История
  • Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
  • Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
    • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
    • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
    • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
  • Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
  • Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
  • Цейтен Г. Г. История математики в древности и в средние века. — М.Л.: ГТТИ, 1932. — 230 с.
  • Цейтен Г. Г. История математики в XVI и XVII веках. — М.Л.: ОНТИ, 1938. — 456 с.

Как узнать угол треугольника

Как узнать угол треугольника

В задачах по геометрии для разных классов целью или промежуточным действием является нахождение угла треугольника. Разберем, как это делается в разных видах треугольников.

1

Универсальные формулы, чтобы узнать угол треугольника

Формулы, приведенные ниже, подойдут для любого типа треугольников.

  • ∠А = 180°-(∠В+∠С) (т.к. сумма всех углов треугольника равна 180°).
  • ∠А = 180°-∠OAB (т.к. ∠OAB внешний).

2

Узнать угол в равнобедренном треугольнике

Равнобедренный треугольник можно опознать по двум равным боковым сторонам или по двум равным углам.

  • ∠B = 180°-2•∠A.
  • ∠А =∠С (т.к. углы при основании равнобедренного треугольника равны).
  • Если ∠А=60°, то все углы равны 60°, а треугольник ABC – равносторонний.

Равноб

3

Узнать угол в прямоугольном треугольнике

Углы в прямоугольном треугольнике можно найти либо одним из способов, представленных в пункте 1, либо при помощи тригонометрических функций – синуса, косинуса, тангенса и котангенса.

Тригонометрические функции

Если вам даны две стороны, найти угол можно по следующему алгоритму:

  • Смотрим, какими являются данные стороны по отношению к прямому углу (катет, гипотенуза) и углу, который нужно найти (прилежащий/противолежащий катет).
  • Находим тригонометрическую функцию, которая подходит нам.
  • Находим, чему она равна, подставив значения данных сторон.
  • Вычисляем угол при помощи обратной функции (арксинус, арккосинус и т.д.).

Теоремы синуса и косинуса

Сами теоремы вы видите на картинке ниже. С помощью них можно узнать косинус или синус интересующего вас угла, и через него вычислить значение.

Фывыфв

Добавить комментарий