Характер и особенности расчета силы притяжения известны еще с древних времен. На основании имеющихся знаний, переданных современному научному сообществу великими исследователями, человек познает не только его окружающий мир, но и Вселенную.
Формула силы притяжения
Со времен Древней Греции философов интересовали явления притяжения тел к земле и свободного падения. К примеру, по утверждениям Аристотеля, из двух камней, брошенных с одинаковой высоты, быстрее достигнет земной поверхности тот, чья масса больше. В IV веке до нашей эры единственными методами научных изысканий служили наблюдения и анализ. К проверке гипотез опытным путем великие мыслители не прибегали. По истечению столетий физик из Италии Галилео Галилей проверил утверждения Аристотеля, используя практические методы исследований.
Итоги проведенных Галилеем опытов были опубликованы в «Беседах и математических доказательствах, касающихся двух новых наук». Ученый использовал псевдоним Сагредо: «пушечное ядро не опередит мушкетной пули при падении с высоты двухсот локтей». Формулировка закона всемирного тяготения была представлена в 1666 году Исааком Ньютоном. В ней фиксировались основные тезисы теоремы Галилея.
Смысл заключался в том, что тела, которые обладают разными массами, падают на землю с одинаковыми ускорениями. Одно тело притягивает другое и, наоборот, с силой, которая прямо пропорциональна их массам и обратно пропорциональна отрезку пути между ними. Согласно определению гравитации от Ньютона, тела, характеризующиеся массой, обладают свойством, благодаря которому притягиваются друг к другу.
Понятие и определение
Силы взаимного притяжения – это силы, которые притягивают любые тела, обладающие массами.
Корректность выводов Ньютона неоднократно подтверждалась путем практических испытаний. Но в начале ХХ века перед учеными-физиками остро стоял вопрос о природе и характере взаимодействия крупных астрономических тел, включая разные виды планетарных систем и галактик в вакууме. Ньютоновского закона уже было недостаточно, чтобы решить эти задачи. Исключить недочеты позволила новая теория, разработанная Альбертом Эйнштейном в начале ХХ столетия. Общая теория относительности объясняет гравитацию не в качестве силы, а представляет ее в виде искривления пространства и времени в четырех измерениях, которое зависит от массы тел, создающих его.
Гравитация представляет собой свойство тел, которые характеризуются массой, притягивать друг друга. Данное физическое явление можно объяснить, как поле, оказывающее дистанционное воздействие на предметы, не связанные между собой никаким другим способом.
Достижение Эйнштейна не противоречит теоретическому объяснению гравитации от Ньютона. Общая теория относительности рассматривает закон всемирного тяготения, как частный случай, применимый для сравнительно небольших расстояний. Данная закономерность в настоящее время также активно используется для поиска решений задач на практике.
Единицы измерения силы притяжения
В разных системах измерений можно встретить несколько отличающиеся обозначения. Единицы измерения силы притяжения следующие:
- система СИ: ([F]=H);
- система СГС: ([F]=дин).
Формула силы притяжения между телами в космосе
Закономерность гравитации, которую обнаружил Ньютон, можно представить в виде математической формулы. Вычисления выглядят следующим образом:
(F=(Gtimes m1times m2times r)/2),
где (m1,m2) – массы объектов, которые притягиваются друг к другу под действием силы (F),
(r) – расстояние, на которое удалены тела,
(G) – т.н. гравитационная постоянная величина, константа, равная 6,67.
Гравитационное взаимодействие объектов будет слабеть, если тела удаляются друг относительно друга. Сила гравитации пропорциональна величине расстояния в квадрате. При этом для нахождения искомой величины расстояние измеряется от центров тяжести тел, а не от поверхностей.
Гравитация в определенных моментах напоминает другие физические явления. Исходя из зависимости интенсивности силы от расстояния в квадрате, гравитацию можно сравнить с электромагнитным взаимодействием сильного и слабого характера.
Формула силы гравитационного притяжения между двумя телами
Квадратичная связь силы, с которой тела притягиваются друг к другу, с расстоянием между ними объясняет тот факт, что люди, находящиеся на поверхности планеты Земля не притягиваются к Солнцу, хотя масса его велика и превышает земную в миллион раз. Земля и центр Солнечной системы удалены примерно на 150 миллионов километров. Дистанция достаточно велика, чтобы ощущаться человеком. Однако эту силу можно зарегистрировать, используя высокоточные приборы. В рамках планеты Земля сила, с которой тела к ней притягиваются, то есть их вес, измеряется следующим образом:
(P=mtimes g),
где (m) – масса тела, на которое воздействует сила притяжение,
(g) – ускорение свободного падения около Земли (если рассматривать систему в условиях любой другой планеты, данная величина будет отличаться).
На разных географических широтах величина ускорения свободного падения может незначительно отличаться. Производя расчеты, данный показатель принимается за 9,81 метров в секунду в квадрате.
В физике понятия массы и веса тел отличаются. Весом называется сила, определяющее притяжение объекта к планете. Масса представляет собой меру инертности вещества. На нее не влияют другие тела, расположенные рядом.
Формула для силы притяжения тел произвольной формы
Расчеты определяются некоторыми условиями. К ним относятся характеристики исследуемых объектов.
Если сила притяжения измеряется между телами, которые обладают произвольной формой, их считают материальными точками:
(dtimes m1=rho1times dV1)
(dtimes m2=rho2times dV2)
где (rho1, rho2) – обозначают плотность веществ материальных точек, характерных для первого и второго объектов,
(dV1 ,dV2) – элементарные объемы выделенных материальных точек.
Исходя из этого, сила притяжения (doverline F), с которой взаимодействуют объекты, равна:
(doverline F=-Gtimes frac{rho _{1}timesrho _{2}times dtimes V_{1}times dtimes V_{2}}{r_{12}^{3}} bar{r_{12}})
Таким образом, сила притяжения первого тела вторым рассчитывается следующим образом:
(bar{F}_{12}=-Gtimesint_{V_{1}}^{rho _{1}times dtimes V_{1}}int_{V_{2}}^{frac{rho _{2}}{r_{12}^{3}}times bar{r}_{12}times dtimes V_{2}})
где интегрирование выполняется по всему объему первого ((V1)) и второго ((V2)) тел. Если тела обладают однородностью, то формула корректируется, таким образом:
(bar{F}_{12}=-Gtimesrho1timesrho2timesint_{V_{1}}^{dtimes V_{1}}int_{V_{2}}^{frac{bar{r}_{12}}{r_{12}^{3}}times dtimes V_{2}})
Формула для силы притяжения твердых тел шарообразной формы
В условиях, когда сила притяжения измеряется между телами, представленных в форме шара или близкой к нему, с плотностью, зависящей лишь от удаленности их центров тяжести, применяется следующая формула:
(bar{F}_{12}=-Gtimes(m1times m2)/R^3times R12)
где (m1,m2) – массы шаров, (R )– радиус – вектор, соединяющий центры шаров.
Пример применения формулы для расчета
Задача. Необходимо рассчитать силу притяжения между двумя идентичными однородными шарами, масса которых составляет по 1 килограмму. При этом их центры тяжести удалены на 1 метр друг от друга.
Решение будет выглядеть следующим образом:
Используя формулу для подсчета силы притяжения между двумя объектами шарообразной формы, получается:
(F_g=6.67times 10^{-11}times frac{1times 1}{1^{2}})
Ответ: (F_g=6.67times 10^{-11})
Выполнить расчет силы притяжения достаточно просто, если правильно выбрать формулу, подходящую под конкретные условия, в которых находятся тела. Если в процессе решения задач по физике или другим дисциплинам возникают проблемы, всегда можно обратиться за помощью к компетентным специалистам портала Феникс.Хелп.
Закон всемирного тяготения Ньютона
Класси́ческая тео́рия тяготе́ния Нью́то́на (Зако́н всеми́рного тяготе́ния Нью́то́на) — закон, описывающий гравитационное взаимодействие в рамках классической механики. Этот закон был открыт Ньютоном около 1666 года, опубликован в 1687 году в «Началах» Ньютона.
Закон гласит, что сила гравитационного притяжения между двумя материальными точками с массами и , разделёнными расстоянием , действует вдоль соединяющей их прямой, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния[1].
То есть:
. | (1) |
Здесь — гравитационная постоянная, равная[2]: 6,67430(15)·10−11 м³/(кг·с²).
Свойства ньютоновского тяготения[править | править код]
В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, называемое гравитационным полем.
Гравитационное взаимодействие в теории Ньютона распространяется мгновенно, так как сила тяготения зависит только от взаимного расположения притягивающихся тел в данный момент времени. Также для ньютоновских гравитационных сил справедлив принцип суперпозиции: сила тяготения, действующая на частицу со стороны нескольких других частиц, равна векторной сумме сил притяжения со стороны каждой частицы.
Ускорение, которое тело А приобретает под воздействием притяжения тела В, не зависит от массы тела А. Причина этого в том, что сила притяжения, действующая на тело А со стороны тела В, пропорциональна массе тела А – но ускорение, приобретаемое любым телом под действием любой силы, обратно пропорционально его массе по второму закону Ньютона; таким образом, увеличение массы тела А в равной мере увеличивает действующую на него силу и его сопротивление этой силе. В современной физике это свойство формулируют как равенство гравитационной и инертной масс.
В теории тяготения Ньютона ускорение точечного или маленького тела под действием гравитационной силы всегда в точности равно напряжённости гравитационного поля в точке, в которой находится тело[3], определяемой как отношение
Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела. Внутри сферически симметричной оболочки (имеющей сферическую полость или выделенной условно, являясь реально частью какого-то тела) поле, создаваемое ею[4], имеет нулевую напряженность (и, соответственно, постоянный потенциал), то есть, сферически симметричная оболочка не притягивает находящиеся внутри неё тела, и вообще никак на них не действует посредством гравитации.
Сюда следует добавить и то, очевидное из сказанного выше и третьего закона Ньютона, утверждение, что на сферически симметричное тело гравитация сторонних источников также действует в точности как на точечное тело той же массы, расположенное в центре симметрии. А отсюда следует, что и два сферически симметричных тела конечных размеров притягиваются в точности так же, как точечные тела тех же масс, расположенные в их центрах. Это утверждение оказывается достаточно важным для небесной механики, ведь многие небесные тела имеют именно сферически симметричную форму (пусть и не точно), что, в дополнение к тому, что расстояния между небесными телами часто (обычно) во много раз превосходят их размеры, упрощает применение теории к ним, т.к. сила их взаимодействия (в соответствующем приближении, которое оказывается обычно очень хорошим), а соответственно и ускорение, вычисляется так же просто, как для материальных точек – т.е. просто по формуле (1).
Гравитационное поле в теории Ньютона является потенциальным, в связи с этим для его описания можно использовать гравитационный потенциал В случае, если поле создаётся расположенной в начале координат точечной массой , гравитационный потенциал определяется формулой:
, | (1.1) |
(здесь потенциал на бесконечности, как это делается обычно, принят равным нулю).
В общем случае, когда плотность вещества распределена произвольно, удовлетворяет уравнению Пуассона:
. | (1.2) |
Решение данного уравнения[5] записывается в виде:
. | (1.3) |
Здесь — радиус-вектор точки, в которой определяется потенциал, — радиус-вектор элемента объёма c плотностью вещества , а интегрирование охватывает все такие элементы; — произвольная постоянная; чаще всего ее принимают равной нулю, как это сделано в формуле выше для одного точечного источника.
Сила притяжения, действующая в гравитационном поле на материальную точку с массой , связана с потенциалом формулой:
. | (1.4) |
Если поле создаётся точечной массой , расположенной в начале координат, то на точку массой действует сила
. | (1.5) |
Величина этой силы зависит только от расстояния между массами, но не от направления радиус-вектора (см. формулу в преамбуле).
Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.
Аналогия с электростатикой[править | править код]
С точки зрения физики, гравитационное поле сильно отличается от электростатического — например, массы всегда притягиваются, а заряды могут и отталкиваться, в гравитации нет аналога таким эффектам, как электростатическая индукция и т. д. Однако классические математические модели обеих теорий во многом сходны, а в ряде случаев даже тождественны. В связи с этим для ньютоновской гравитации применимы по сути все те теоретические конструкции и методы решения задач, которые применяются в электростатике. В этом, формальном (но математически вполне содержательном) смысле, можно сказать, что теория одна[6].
Среди теорем и методов, одинаково имеющих силу (и место для применения) в ньютоновской теории гравитации и электростатике, можно назвать теорему Гаусса, теорему Ирншоу, метод изображений, метод конформных отображений, полностью теорию потенциала, не говоря уже о принципе суперпозиции и других разного рода математических принципах и приёмах.
Ньютоновская гравитация гораздо более точно соответствует эксперименту, чем электростатика — она реже даёт существенную ошибку, и величина этой ошибки обычно гораздо меньше. Также можно заметить, что более общие теории для гравитации и электростатики (это соответственно ОТО и электродинамика) совершенно различны.
Точность закона всемирного тяготения Ньютона[править | править код]
Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности.[7] Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали[8], что приращение в выражении для зависимости ньютоновского потенциала на расстояниях нескольких метров находится в пределах . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения[9].
Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено[10].
В 2021 г. закон всемирного тяготения Ньютона был проверен для тел с массой 90 мг на расстояниях от 3 до 5 мм.[11][12].
Прецизионные лазерные дальнометрические наблюдения за орбитой Луны[13] подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью .
Связь с геометрией евклидова пространства[править | править код]
Факт равенства с очень высокой точностью () показателя степени расстояния в знаменателе выражения для силы тяготения числу отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса[14].
Исторический очерк[править | править код]
- (См. также Ньютон, Исаак#Всемирное тяготение и астрономия).
Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие[15]. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире[16]. Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда, Рена и Гука[17]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).[18]. Кроме того, Ньютон пришел к пониманию того, что гравитация универсальна: другими словами, одна и та же сила заставляет и яблоко падать на землю, и Луну вращаться вокруг Земли[19].
В своём основном труде «Математические начала натуральной философии» (1687) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что:
- наблюдаемые движения планет свидетельствуют о наличии центральной силы;
- обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.
Кроме того, Ньютон достиг существенного продвижения в таких практически значимых темах, связанных с тяготением, как проблема фигуры Земли, теория приливов, предварение равноденствий.
Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической. Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.
Теория Ньютона имела ряд существенных отличий от гипотез предшественников. Ньютон не просто опубликовал предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:
- закон тяготения;
- закон движения (второй закон Ньютона);
- система методов для математического исследования (математический анализ).
В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел и тем самым создаёт основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить. Последующие исследователи достигли также существенного прогресса в небесной механике, и «астрономическая точность» расчётов вошла в поговорку.
В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнанным, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы[20]. Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества[21]. После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.
Недостатки классической теории тяготения[править | править код]
В то же время ньютоновская теория содержала ряд трудностей. Главные из них следующие.
- Необъяснимое дальнодействие: сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания.
- Если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает неразрешимый гравитационный парадокс, который поставил под сомнение применимость ньютоновской теории в космологических масштабах.
- В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия[22].
В течение XVIII—XIX веков делались неоднократные попытки модифицировать или обобщить классическую теорию тяготения — физики изменяли формулу ньютоновского закона, объясняли механизм тяготения участием мирового эфира. По мере осознания принципов теории относительности начались попытки построить релятивистское обобщение теории гравитации. По-видимому, первую чёткую формулировку проблемы опубликовал Анри Пуанкаре в 1905 году:
Возможно ли найти такой закон, который удовлетворил бы условиям, поставленным Лоренцем [имеются в виду преобразования Лоренца] и одновременно сводился к закону Ньютона во всех случаях, когда скорости небесных тел достаточно малы для того, чтобы можно было пренебречь их квадратами (а также произведениями ускорений на расстояния) по сравнению с квадратом скорости света?
Пуанкаре в статье «О динамике электрона» предложил два варианта релятивистского обобщения закона тяготения. Оба они исключали дальнодействие (скорость гравитации совпадала со скоростью света). Историк науки В. П. Визгин в своей монографии пишет[23]:
Релятивистская теория тяготения, развитая Пуанкаре, не привлекла внимания физиков, хотя в принципиальном
отношении она была значительным шагом вперед в развитии гравитационной проблемы. Причины этого невнимания, с нашей точки зрения, таковы:
- теория не объясняла аномальное смещение перигелия Меркурия;
- большинство физиков в 1906—1908 годах не разделяло релятивистской программы;
- формально-алгебраический метод построения теории отодвинул на задний план физические аспекты теории;
- неоднозначность свидетельствовала о незаконченности теории;
- в период преобладания электромагнитно-полевой программы настоящее обобщение ньютоновской теории тяготения требовало использования явного полевого подхода — теория же Пуанкаре не давала уравнений гравитационного поля, из которых можно было получить найденные им лоренц-инвариантные элементарные законы взаимодействия.
Далее наброски релятивистской теории тяготения опубликовали в начале 1910-х годов Макс Абрахам, Гуннар Нордстрём и Альберт Эйнштейн. Все они до создания ОТО не соответствовали данным наблюдений.
Дальнейшее развитие[править | править код]
Общая теория относительности[править | править код]
На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году — созданием общей теории относительности Эйнштейна, в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия, оказалась приближением более общей теории, применимым при выполнении двух условий:
- Гравитационный потенциал в исследуемой системе не слишком велик: . В Солнечной системе это условие для большинства движений небесных тел можно считать выполненным — даже на поверхности Солнца отношение составляет всего . Заметным релятивистским эффектом является только упомянутое выше смещение перигелия Меркурия[24].
- Скорости движения в этой системе незначительны по сравнению со скоростью света: .
В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона
- .
Известно, что в этом случае гравитационный потенциал имеет вид:
- .
Найдём компоненту тензора энергии-импульса из уравнений гравитационного поля общей теории относительности:
- ,
где — тензор кривизны.
Для мы можем ввести кинетический тензор энергии-импульса . Пренебрегая величинами порядка , можно положить все компоненты , кроме , равными нулю. Компонента равна
и, следовательно .
Таким образом, уравнения гравитационного поля принимают вид . Вследствие формулы
значение компоненты тензора кривизны можно взять равным и так как , . Таким образом, приходим к уравнению Пуассона:
- , где [25]
Квантовая гравитация[править | править код]
Применение принципа корпускулярно-волнового дуализма к гравитационному полю показывает, что гравитационные волны можно рассматривать как поток квантов поля — гравитонов. В большинстве процессов во Вселенной квантовые эффекты гравитации очень малы. Они становятся существенными лишь вблизи сингулярностей поля тяготения, где радиус кривизны пространства-времени очень мал. Когда он становится близким к планковской длине, квантовые эффекты становятся доминирующими. Эффекты квантовой гравитации приводят к рождению частиц в гравитационном поле чёрных дыр и их постепенному испарению[26]. Построение непротиворечивой квантовой теории гравитации — одна из важнейших нерешённых задач современной физики.
С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности, энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса фотона, равна нулю[27][28]. Разница между законом ньютоновского тяготения и законом Кулона (существует два вида электрических зарядов и один вид «гравитационных зарядов» с притяжением между ними) объясняется тем, что спин фотона равен , а спин гравитона равен [29].
См. также[править | править код]
- Закон Кулона
- Гравитационная неустойчивость
- Гравитационная модель внешней торговли
Примечания[править | править код]
- ↑ Всемирного тяготения закон // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1988. — Т. 1. — С. 348. — ISBN 5-85270-034-7.
- ↑ CODATA Internationally recommended values of the Fundamental Physical Constants (англ.). Дата обращения: 7 марта 2020. Архивировано 27 августа 2011 года.
- ↑ Удобство использования физической величины напряженности связано с тем, что она не зависит от конкретного тела, помещаемого в данную точку, (будет одинаковой, если мы поместим в эту точку разные тела разной массы) и, таким образом, является характеристикой только самого поля, не зависящего непосредственно от тела, на которое оно действует (косвенная зависимость может быть за счёт действия самого этого тела на тела-источники поля, и только при изменении в результате этого воздействия их положения).
- ↑ То есть, речь не идет, конечно, об экранировке гравитационных полей, создаваемых другими источниками, которые могут находиться как внутри оболочки, так и вне её, а только лишь о том поле, которое создаётся самой оболочкой, именно его напряжённость равна нулю (а поля остальных источников тогда по принципу суперпозиции как раз останутся внутри сферической оболочки неизменными, как будто оболочки нет).
- ↑ Это решение естественно получается используя формулу решения с одним точечным источником, приведенную выше, и принцип суперпозиции – то есть просто сложением полей от (бесконечного) множества точечных источников, массой каждый, расположенных в соответствующих точках пространства.
- ↑ Это утверждение не столько дело вкуса, сколько указание на то, что можно достаточно свободно пользоваться методами и результатами одной теории применительно к другой, невзирая на то, на электростатическом или гравитационном языке всё описано, соблюдая, конечно, минимально необходимую осторожность, когда дело касается их немногочисленных отличий и особенностей.
- ↑ Д. Д. Иваненко, Г. А. Сарданашвили Гравитация, М.: Едиториал УРСС, 2004, ISBN 5-354-00538-8
- ↑ 10th International conference on General Relativity and Gravitation: Contribut. pap. — Padova, 1983. — Vol. 2, 566 p.
- ↑ Тезисы докладов Всесоюзной конференции «Современные теоретические и экспериментальные проблемы теории относительности и гравитации». — М.: МГПИ, 1984. — 308 с.
- ↑ Ю. Н. Ерошенко Новости физики в сети Internet (по материалам электронных препринтов) Архивная копия от 16 августа 2013 на Wayback Machine, УФН, 2007, т. 177, № 2, с. 230
- ↑ Tobias Westphal, Hans Hepach, Jeremias Pfaff, Markus Aspelmeyer Measurement of gravitational coupling between millimetre-sized masses Архивная копия от 22 августа 2021 на Wayback Machine // Nature volume 591, pages 225–228, 2021
- ↑ ArXiv.org Tobias Westphal, Hans Hepach, Jeremias Pfaff, Markus Aspelmeyer Measurement of gravitational coupling between millimetre-sized masses Архивная копия от 14 марта 2021 на Wayback Machine
- ↑ Турышев С. Г. «Экспериментальные проверки общей теории относительности: недавние успехи и будущие направления исследований» Архивная копия от 14 апреля 2015 на Wayback Machine, УФН, 179, с. 3-34, (2009)
- ↑ Бутиков Е.И., Кондратьев А.С. Физика. Книга 1. Механика. — М.: Наука, 1994. — 138 с.
- ↑ Архивированная копия. Дата обращения: 1 марта 2010. Архивировано из оригинала 12 февраля 2007 года.Архивированная копия. Дата обращения: 1 марта 2010. Архивировано из оригинала 12 февраля 2007 года.
- ↑ Спасский Б. И. История физики. — Т. 1. — С. 140—141.
- ↑ Ход их рассуждений легко восстановить, см. Тюлина И. А., указ. статья, стр. 185. Как показал Гюйгенс, при круговом движении центростремительная сила (пропорциональна) , где — скорость тела, — радиус орбиты. Но , где — период обращения, то есть . Согласно 3-му закону Кеплера, , поэтому , откуда окончательно имеем: .
- ↑ Точнее, никто не смог это сделать последовательно для эллиптических орбит. Для круговых, используя третий закон Кеплера и формулу Гюйгенса для центробежной силы, это было сделать довольно нетрудно, и сам Ньютон вспоминал, что сделал это довольно давно, но никому не сообщал, так как был не удовлетворен неудачей тогда с решением общей задачи. Это же, видимо, позже, сделал Гук (это его письмо сохранилось), побудивший Ньютона вернуться к общей задаче. Гук же обосновал второй закон Кеплера, применив методологически важный в тот момент прием суперпозиции свободного движения и движения с ускорением, направленным к центру. Однако только Ньютон решил в итоге задачу полностью, для некруговых орбит, впервые корректно и доказательно теоретически получив их форму, он же первый всё полно и систематически изложил.
- ↑ «Бог создал целые числа». Глава из книги. Архивная копия от 21 июня 2022 на Wayback Machine Elementy.ru, «Книжный клуб».
- ↑ Визгин В. П., 1981, с. 25.
- ↑ Визгин В. П., 1981, с. 27.
- ↑ Визгин В. П., 1981, с. 27—29.
- ↑ Визгин В. П., 1981, с. 69—75.
- ↑ Гинзбург В. Л. Гелиоцентрическая система и общая теория относительности (от Коперника до Эйнштейна) // Эйнштейновский сборник. — М.: Наука, 1973. — С. 63..
- ↑ В. Паули Теория относительности, ОГИЗ, 1947
- ↑ Ошибка в сносках?: Неверный тег
<ref>
; для сносокNov
не указан текст - ↑ Фриш Д., Торндайк А. Элементарные частицы. — М.: Атомиздат, 1966. — С. 98.
- ↑ Окунь Л. Б. Элементарное введение в физику элементарных частиц. — М.: Физматлит, 2009. — С. 105. — ISBN 978-5-9221-1070-9
- ↑ Киббл Т. «Квантовая теория гравитации» Архивная копия от 5 января 2016 на Wayback Machine, УФН, 96, с. 497—517, (1968)
Литература[править | править код]
- Визгин, В. П. Релятивистская теория тяготения. Истоки и формирование. 1900-1915 гг. — М. : Наука, 1981. — 352 с.
- Ньютон, И. Математические начала натуральной философии = Philosophiæ Naturalis Principia Mathematica : [пер. с лат.] / Исаак Ньютон ; ред. и предисл. Л. С. Полака ; пер. и комм. А. Н. Крылова. — М. : Наука, 1989. — 688 с. — (Классики науки). — ISBN 5-02-000747-1.
- Тюлина, И. А. Об основах ньютоновой механики (к трехсотлетию «Начал» Ньютона) // История и методология естественных наук. — М. : МГУ, 1989. — Вып. 36. — С. 184—196.
Разбираетесь с такой физической категорией, как сила тяжести? Формула, ее составляющие и единицы измерения укажут, что сильнее притянет Земля — яблоко или поезд. Отличается ли сила тяжести от силы тяготения? Объясним, как не перепутать эти две величины.
Что такое сила тяжести
Каждый день наблюдаем, как тела вокруг деформируются (меняют форму или размеры), ускоряются или тормозят, падают. В реальной жизни с различными телами происходят самые разнообразные вещи. Причина всех действий и взаимодействий кроется в некой силе. О чем идет речь?
Понятие силы
Силой называют физическую векторную величину, которая оказывает воздействие на тело, а ее источниками становятся другие тела. Что означает понятие векторной величины? Это говорит о том, что сила наделена направлением. В зависимости от того, куда она направлена, можно получить разные результаты.
Это как если стоять на вершине горы на сноуборде, то от направления толчка будет зависеть дальнейшее движение. Таков результат приложения силы в этом случае. Силы, которые изучают ученые-физики, разнообразны и очень важны для нашей повседневной жизни.
Определение и значение силы тяжести
Одна из них носит название сила тяжести. Физика предлагает следующее определение: сила тяжести — это величина, которая показывает, насколько сильно Земля притягивает тело, которое расположено на ее поверхности или рядом с ней. Таким образом, направление этой силы — центр нашей планеты.
Сила тяжести на Земле крайне важна по следующим причинам:
- Наша планета притягивает все, что попадает в сферу действия этой силы, будь то твердое тело, жидкость или газ.
- Благодаря ее существованию стало возможным создание атмосферы (молекулы газов, которые ее составляют, не улетают в космические просторы), появились и остаются на своих местах моря и океаны.
- Любой предмет, который приподнимаем и роняем, обязательно упадет вниз по направлению к Земле.
Кстати, именно из-за воздействия этой силы люди не могут летать. Самостоятельно развить скорость, на которой полет становится возможным (так называемую первую космическую) человек не способен, а потому в обычной жизни всегда твердо стоит ногами на Земле.
Сила тяжести и сила тяготения: отличия
Сила тяжести, определение которой дали выше, схожа с силой тяготения. Оба варианта связывает сила притяжения.
Однако эти две силы не одно и то же, хоть их и часто путают. Давайте разберемся, в чем тут дело.
Еще в 1682 году Исаак Ньютон открыл закон о всемирном тяготении. Сформулирован он был так: тела притягивают друг друга, а сила этого тяготения — величина, прямо пропорциональная произведению их масс и обратно пропорциональна расстоянию, возведенному в квадрат.
Математически силу тяготения записывают так: F = G×M×m/R², где:
- F — сила тяготения, Н;
- M — масса первого тела (часто планеты), кг;
- m — масса второго тела, кг;
- R — дистанция между ними, м;
- G — постоянная величина (G = 6,67×10⁻¹¹ м³×кг⁻¹×с⁻²).
Продемонстрировать эту силу легко — достаточно встать на весы. Стрелка сразу же отклонится, показывая вес тела. Так происходит из-за очень большой массы Земли, благодаря которой мы придавлены к ней. На Луне, масса которой меньше, вес человека меньше в несколько раз.
Итак, закон о всемирном тяготении и соответствующая сила необходимы для вычисления силы взаимодействий между разнообразными телами. При этом их размеры должны быть меньше, чем расстояние между ними.
Теперь вернемся к нашей теме и рассмотрим подробно, что же такое сила тяжести, обозначение которой дали выше, и как она связана с силой тяготения.
Сила тяжести: формула, единицы измерения
Напомним, что когда говорим о силе тяжести, то имеем в виду силу, с которой осуществляет притяжение наша планета.
Формула силы тяжести такова: F = m×g, где:
- F — сила тяжести, Н;
- m — масса тела, кг;
- g — ускорение свободного падения, м/с².
В этой формуле видим новую величину — ускорение свободного падения. Так называют ускорение, которое приобретает тело рядом с Землей во время свободного и беспрепятственного падения. Рядом с поверхностью Земли значение этой величины примерно равняется 9,81 м/с², а в приблизительных расчетах используют округленное значение 10 м/с².
По этой формуле рассчитывается сила тяжести, единица измерения которой — Ньютоны (в честь Исаака Ньютона).
Чему равна сила тяжести? Глядя на эту формулу, можно сказать, что сила тяжести схожа с весом тела. В покое на Земле эта величина и вес будут идентичны. Но это не одно и то же. Почему? Объяснение не сложное:
- Силой, с которой на тела действует Земля, называют силу тяжести.
- Вес тоже сила, с которой тела действуют на опору.
- То есть у них отличаются точки действия: первая направлена на центр массы тел, а вес направлен на опору.
Кроме того, на величину силы тяжести влияет масса и планета, на которой проводятся измерения. Вес определяется также ускорением, с которым происходит движение тела и опоры.
К примеру, вес тела в лифте определяется тем, в каком направлении и как быстро происходит движение тела. Сила тяжести не учитывает, куда и что движется: эти внешние факторы на нее не влияют.
Итак, с весом разобрались. А что же с силой тяготения, которую упоминали выше? Можем ли две эти силы приравнять? На этот раз ответ будет утвердительным. Но только, когда мы говорим о Земле и теле, которое к ней притягивается. В этом случае обе силы будут равны.
Выразим это математически:
- F = m×g.
- F = G×M×m/R².
- m×g = G×M×m/R².
Если обе части полученного уравнения разделить на массу, то получим такую формулу: g = G×M/R².
Величина g (ускорение свободного падения) уникальна для каждой планеты:
- На нашей Земле свободно падающее тело с каждой секундой ускоряется примерно на 9,81 метр (м/с²).
- Ускорение свободного падения рядом с Луной имеет величину всего 1,62 м/с².
- На Юпитере это значение достигает 26,2 м/с². Человек, который весит 60 кг, на этой планете почувствует себя так, будто бы поправился на 100 кг.
Как изменится величина, если тело будет падать 4 секунды? Попробуем подсчитать:
- Скорость падения в начальной точке составит 0 м/с².
- В течение первой секунды она увеличится до 9,81 м/с².
- За вторую секунду величина вырастет вдвое и составит 19,62 м/с².
- Третья секунда добавить еще одну величину ускорения и получится 29,43 м/с².
- В четвертую секунду скорость движения тела достигнет 39,24 м/с², что равняется приблизительно 141 км/ч.
Отметим, что яблоко и кирпич будут падать с равной скоростью. Только очень легкие предметы во время падения замедляет воздух, оказывая им ощутимое сопротивление. Так, птичье перышко будет совершать падение очень медленно и плавно.
Задумываемся об этом или нет, на каждого из нас оказывает воздействие сила тяжести. Формула ее расчета состоит из массы, умноженной на величину ускорения свободного падения. Эта сила показывает воздействие планет на тела, которые находятся рядом с их поверхностями. Поэтому ее величина отличается на Земле и на Луне.
Оригинал статьи: https://www.nur.kz/family/school/1909020-sila-tyazhesti-formula-edinitsy-izmereniya-osobennosti/
Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.
Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.
Закон всемирного тяготения
Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.
F — сила всемирного тяготения, m1 и m2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная (G = 6,67∙10–11 Н ∙ м2/кг2).
Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.
Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m1 = 1 кг и m2 = 1 кг, то F = G.
G = 6,67∙10–11 Н ∙ м2/кг2.
Сила тяжести
Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.
Сила тяжести — сила, с которой Земля притягивает к себе тела.
Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.
Расчет силы тяжести на Земле
Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:
Вывод формулы ускорения свободного падения
Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.
Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.
Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:
Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:
Отсюда:
Формула расчета ускорения свободного падения
Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.
Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙1022 кг.
Переведем километры в метры: 1736 км = 1736000 м.
Первая космическая скорость
Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.
ОпределениеПервая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.
Вывод формулы первой космической скорости
Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:
Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.
Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:
Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:
Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:
Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:
Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.
Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:
8 км/с — первая космическая скорость Земли.
Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙1024 кг, а ее радиус равен 6052 км.
Задание EF18521
Сила гравитационного притяжения между двумя шарами, находящимися на расстоянии 2 м друг от друга, равна 9 нН. Какова будет сила притяжения между ними, если расстояние увеличить до 6 м? Ответ выразите в наноньютонах (нН).
Алгоритм решения
- Записать исходные данные.
- Записать закон всемирного тяготения.
- Установить зависимость между силой гравитационного притяжения и расстоянием между телами.
- На основании вывода о зависимости двух величин вычислить гравитационное притяжение между двумя шарами при изменении расстояния между ними.
Решение
Запишем исходные данные:
- Расстояние между двумя шарами в первом случае: R1 = 2 м.
- Расстояние между двумя шарами во втором случае: R2 = 6 м.
- Сила гравитационного притяжения между двумя шарами в первом случае: F1 = 9 нН.
Запишем закон всемирного тяготения:
Из формулы видно, что сила гравитационного притяжения обратно пропорционально квадрату расстояния между телами массами m1 и m2.
R2 больше R1 втрое (6 больше 2 в 3 раза). Следовательно, расстояние между шарами тоже увеличилось втрое. В таком случае сила гравитационного притяжения между ними уменьшится в 32 раз, или в 9 раз. Так как в первом случае эта сила была равна 1 нН, то во втором она составит в 9 раз меньше, или 1 нН.
Ответ: 1
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17569
Две звезды одинаковой массы m притягиваются друг к другу с силами, равными по модулю F. Чему равен модуль сил притяжения между другими двумя звёздами, если расстояние между их центрами такое же, как и в первом случае, а массы звёзд равны 3m и 4m?
а) 7F
б) 9F
в) 12F
г) 16F
Алгоритм решения
1.Записать закон всемирного тяготения.
2.Применить закон всемирного тяготения для первой и второй пары звезд.
3.Из каждого выражения выразить расстояние между звездами.
4.Приравнять правые части уравнений и вычислить силу притяжения между второй парой звезд.
Решение
Закон всемирного тяготения выглядит так:
Примерим этот закон для первой и второй пары звезд:
Выразим квадраты радиусов, так как они в обоих случаях одинаковые:
Приравняем правые части выражений и выразим силу притяжения во втором случае:
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18678
Высота полёта искусственного спутника над Землёй увеличилась с 400 до 500 км. Как изменились в результате этого скорость спутника и его потенциальная энергия?
Для каждой величины определите соответствующий характер изменения:
1) | увеличилась |
2) | уменьшилась |
3) | не изменилась |
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Скорость
спутника |
Потенциальная энергия спутника |
Алгоритм решения
1.Записать закон всемирного тяготения и формулу центростремительного ускорения для движения тела по окружности с постоянной по модулю скоростью.
2.Установить зависимость скорости от высоты спутника над поверхностью Земли.
3.Записать формулу потенциальной энергии и установить, как она зависит от высоты.
Решение
На спутник действует сила притяжения Земли, которая сообщает ему центростремительное ускорение:
F=maц=GmM(R+h)2
Отсюда центростремительное ускорение равно:
aц=GM(R+h)2
Но центростремительное ускорение также равно:
aц=v2(R+h)
Приравняем правые части выражений и получим:
GM(R+h)2=v2(R+h)
v2=MG(R+h)(R+h)2=MG(R+h)
Квадрат скорости спутника обратно пропорционален радиусу вращения. Следовательно, при увеличении высоты увеличивается радиус вращения, а скорость уменьшается.
Потенциальная энергия спутника определяется формулой:
Ep = mgh
Видно, что потенциальная энергия зависит от высоты прямо пропорционально. Следовательно, при увеличении высоты потенциальная энергия спутника тоже увеличивается.
Верная последовательность цифр в ответе: 21.
Ответ: 21
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17578
Искусственный спутник обращается вокруг планеты по круговой орбите радиусом 4000 км со скоростью 3,4 км/с. Ускорение свободного падения на поверхности планеты равно 4 м/с2. Чему равен радиус планеты? Ответ запишите в километрах.
Алгоритм решения
1.Записать исходные данные. Перевести единицы измерения в СИ.
2.Записать формулу ускорения свободного падения и выразить через нее радиус планеты.
3.Записать формулу, раскрывающая взаимосвязь между линейной скоростью и радиусом окружности, по которой движется тело.
4.Записать закон всемирного тяготения применительно к спутнику.
5.Вывести формулу для расчета радиуса планеты.
6.Подставить известные данные и произвести вычисление.
Решение
Запишем исходные данные:
• Линейная скорость спутника: v = 3,4 км/с, или 3,4∙103 м/с.
• Радиус орбиты спутника: Rо = 4000 км, или 4∙106 м.
• Ускорение свободного падения у поверхности планеты: g = 4 м/с2.
Ускорение свободного падения определяется формулой:
Отсюда радиус равен:
Линейная скорость и радиус орбиты связываются формулой:
Используя закон всемирного тяготения, запишем силы, с которой притягивается спутник к планете:
Согласно второму закону Ньютона, сила — это произведение массы на ускорение тела. Следовательно:
Отсюда:
Поделим обе части выражения на массу спутника и радиус его орбиты. Получим:
Из этой формулы выразим массу планеты:
Подставим массу планеты в формулу для нахождения ее радиуса:
Подставляем известные данные и вычисляем:
Этот радиус соответствует 3400 км.
Ответ: 3400
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 18k
Содержание:
- Определение и формула силы притяжения
- Формула для силы притяжения тел произвольной формы
- Формула для силы притяжения твердых тел шарообразной формы
- Единицы измерения силы притяжения
- Примеры решения задач
Калькулятор расчета силы притяжения
Определение и формула силы притяжения
Определение
Между любыми телами, которые обладают массами, действуют силы, которые притягивают вышеназванные тела друг к другу.
Такие силы называют силами взаимного притяжения.
Рассмотрим две материальные точки (рис.1). Они притягиваются с силами прямо пропорциональными произведению масс этих материальных точек и
обратно пропорциональными расстоянию между ними. Так, сила тяготения (
$bar{F}_12$) будет равна:
$$
bar{F}_{12}=-G frac{m_{1} m_{2}}{r^{2}} frac{bar{r}_{12}}{r}(1)
$$
где материальная точка массы m2 действует на материальную точку массы m1 с силой притяжения
$bar{F}_12$; $bar{r}_12$ – радиус – вектор, который проведен из точки 2 в
точку 1, модуль этого вектора равен расстоянию между материальными точками (r); G=6,67•10-11 м3 кг-1
с-2(в системе СИ) – гравитационная постоянная (постоянная тяготения).
В соответствии с третьим законом Ньютона сила, с которой материальная точка 2 притягивается к материальной точке 1 (
$bar{F}_21$) равна:
$$bar{F}_{21}=-bar{F}_{12}=G frac{m_{1} m_{2}}{r^{2}} frac{bar{r}_{12}}{r}=-G frac{m_{1} m_{2}}{r^{2}} frac{bar{r}_{21}}{r}(2)$$
где $bar{r}_12 = – bar{r}_21$
Тяготение между телами осуществляется посредством гравитационного поля (поля тяготения). Силы тяготения являются потенциальными. Это дает возможность ввести такую энергетическую характеристику гравитационного поля как потенциал, который равен отношению потенциальной энергии материальной точки, находящейся исследуемой точке поля к массе данной точки.
Формула для силы притяжения тел произвольной формы
В двух телах произвольной формы и размера выделим элементарные массы, которые можно считать материальными точками, причем:
$$d m_{1}=rho_{1} d V_{1} quad, d m_{2}=rho_{2} d V_{2}$$
где $rho_1, rho_2$ – плотности вещества материальных точек первого и второго тел,
dV1 ,dV2 – элементарные объемы выделенных материальных точек. В таком случае, сила притяжения
($d bar{F}_12$), с которой элемент dm2 действует
на элемент dm1, равна:
$$d bar{F}_{12}=-G frac{rho_{1} rho_{2} d V_{1} d V_{2}}{r_{12}^{3}} bar{r}_{12}(4)$$
Следовательно, сила притяжения первого тела вторым может быть найдена по формуле:
$$bar{F}_{12}=-G int_{V_{1}} rho_{1} d V_{1} quad int_{V_{2}} frac{rho_{2}}{r_{12}^{3}} bar{r}_{12} d V_{2}$$
где интегрирование необходимо произвести по всему объему первого (V1) и второго (V2) тел.
Если тела являются однородными, то выражение можно немного преобразовать и получить:
$$bar{F}_{12}=-G rho_{1} rho_{2} int_{V_{1}} d V_{1} quad int_{V_{2}} frac{bar{r}_{12}}{r_{12}^{3}} d V_{2}$$
Формула для силы притяжения твердых тел шарообразной формы
Если силы притяжения рассматриваются для двух твердых тел шарообразной формы (или близких к шарам), плотность которых зависит только
от расстояний до их центров формула (6) примет вид:
$$bar{F}_{12}=-G frac{m_{1} m_{2}}{R^{3}} bar{R}_{12}(7)$$
где m1,m2 – массы шаров,
$bar{R}_12$ – радиус – вектор, соединяющий центры шаров,
$R=left|bar{R}_{12}right|$
Выражение (7) можно использовать в случае, если одно из тел имеет форму отличную от шарообразной,
но его размеры много меньше, чем размеры второго тела – шара. Так, формулой (7) можно пользоваться для вычислений сил притяжения тел к Земле.
Единицы измерения силы притяжения
Основной единицей измерения силы притяжения (как и любой другой силы) в системе СИ является: []=H.
В СГС: []=дин.
Примеры решения задач
Пример
Задание. Какова сила притяжения двух одинаковых однородных шара масса, которых равна по 1 кг? Расстояние между их центрами равно 1 м.
Решение. Основой для решения задачи служит формула:
$$bar{F}_{g}=-G frac{m_{1} m_{2}}{R^{3}} bar{R}_{12}(1.1)$$
Для вычисления модуля силы притяжения формула (1.1) преобразуется к виду:
$$F_{g}=G frac{m_{1} m_{2}}{R^{2}}$$
Проведем вычисления:
$F_{g}=6,67 cdot 10^{-11} frac{1 cdot 1}{1^{2}}=6,67 cdot 10^{-11}(H)$
Ответ. $F_{g}=6,67 cdot 10^{-11}(H)$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. С какой силой (по модулю) бесконечно длинный и тонкий и прямой стержень притягивает материальную частицу массы m.
Частица расположена на расстоянии a от стержня. Линейная плотность массы вещества стержня равна тау
Решение. Сделаем рисунок
Выделим на стержне элементарный участок массы dm:
$$d m=tau d l(2.1)$$
Силу притяжения между выделенным элементом на стержне и материальной точкой можно найти как:
$$d F=d F_{x}=G frac{d m cdot m}{r^{2}} cos alpha=G frac{tau d l cdot m}{r^{2}} cos alpha$$
Из рис.2 очевидно, что:
$dlcos $alpha=r d alpha$ ( 2.3 )$
Подставим выражение (2.3) в (2.2), имеем:
$$d F=G frac{tau cdot m}{r^{2}} r d alpha=G frac{tau cdot m}{r} d alpha(2.4)$$
Из рис. 2 видно, что:
$$frac{a}{r}=cos alpha rightarrow r=frac{a}{cos alpha}(2.5)$$
Подставим правую часть выражения (2.5) в формулу (2.4), получаем:
$$d F=G frac{tau cdot m}{a} cos alpha d alpha(2.6)$$
Для получения силы, с которой частица притягивается к стержню, проведем интегрирование выражения (2.6). Пределы интегрирования выберем от
0 до пи/2, так как стержень бесконечный умножим выражение на два для того, чтобы интегрирование было выполнено по всему объему стержня.
$$F=2 G frac{tau cdot m}{a} int_{0}^{frac{pi}{2}} cos alpha d alpha=2 G frac{tau cdot m}{a}$$
Ответ. $F=2 G frac{tau cdot m}{a}$
Читать дальше: Формула силы трения.