Как найти значение параметра для параболы

Параметры параболы

Точка F(p/2, 0) называется фокусомпараболы, величина pпараметром, точка О(0, 0) – вершиной (рис. 9.15). При этом прямая OF, относительно которой парабола симметрична, задает ось этой кривой.

Величина где M(x, y) – произвольная точка параболы, называется фокальным радиусом, прямая D: x = –p/2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетомпараболы.

Основное характеристическое свойство параболы: все точки параболы равноудалены от директрисы и фокуса (рис. 9.15).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 9.16):

а) б) в)

Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1.Определить параметры и форму параболы по ее каноническому уравнению:

1) 2)

Решение.1) Уравнение y 2 = –8x определяет параболу с вершиной в точке О(0; 0), симметричную относительно оси Оx. Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2 = –2px, находим: 2p = 8, p = 4, p/2 = 2. Следовательно, фокус находится в точке F(–2; 0), уравнение директрисы D: x = 2 (рис. 9.17).

2) Уравнение x 2 = –4y задает параболу с вершиной в точке O(0; 0), симметричную относительно оси Oy. Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2py, находим: 2p = 4, p = 2, p/2 = 1. Следовательно, фокус находится в точке F(0; –1), уравнение директрисы D: y = 1 (рис. 9.18).

Пример 2.Определить параметры и вид кривой x 2 + 8x – 16y – 32 = 0. Сделать рисунок.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

(x + 4) 2 – 16 – 16y – 32 = 0;

В результате получим:

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх осью x = –4. Фокус находится в точке F(–4; –3 + p/2), т. е. F(–4; 1) Директриса D задается уравнением y = –3 – p/2 или y = –7 (рис. 9.19).

Пример 3. Написать уравнение кривой, все точки которой равноудалены от прямой y = –3 и точки F(0; 3).

Решение. Точка F(0; 3) лежит на оси Oy и находится с прямой y = –3 по разные стороны от начала координат, причем на одинаковом расстоянии (d = 3). Это позволяет заключить, что искомой кривой является парабола x 2 = 2py с параметром p = 2 × 3 = 6, т. е. x 2 = 12y (рис. 9.20).

Пример 4.Составить уравнение параболы с вершиной в точке V(3; –2) и фокусом в точке F(1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p/2 = 3 – 1 = 2, p = 4. Следовательно, искомое уравнение

Дата добавления: 2015-09-29 ; просмотров: 8117 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Квадратичная функция. Построение параболы

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

  • a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
  • b — второй коэффициент, который отвечает за смещение параболы от центра координат.
  • с — свободный член, который соответствует координате пересечения параболы с осью ординат.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 – 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:

  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=”671″ src=”https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=”602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x – 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x – 5.

D = b 2 – 4ac = 9 – 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x 2 + 3x – 5 = 0 2 + 3x – 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=”>

  1. Координаты вершины параболы:
  1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
  2. Нанести эти точки на координатную плоскость и построить график параболы:
    2 + 3x – 5 = 0″ height=”671″ src=”https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC” width=”602″>

Уравнение квадратичной функции имеет вид y = a * (x – x₀) 2 + y₀

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x – 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x – 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая. 2 + y₀” height=”431″ src=”https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=”602″>

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Парабола

Вы будете перенаправлены на Автор24

Парабола — это кривая, образованная геометрическим множеством точек, равноудалённых от точки $F$, не лежащей на параболе, и прямой $d$, не проходящей через точку $F$.

Рисунок 1. Парабола в прямоугольной системе координат

Парабола наряду с окружностью, эллипсом и гиперболой является одним из сечений конуса.

Парабола симметрична относительно своей оси, и поэтому можно построить сначала одну половину параболы, а затем, отложив симметричные этой половине точки, уже другую.

Классическая парабола описывается уравнением, оно имеет следующий вид:

$y^2 = 2px$, где число $p$ должно быть больше нуля.

Это уравнение является каноническим уравнением параболы и описывает вид параболы в прямоугольной системе координат.

Чаще всего приходится иметь дело с уравнениями параболы с вершиной, располагающейся не на пересечении осей координат, их общий вид представлен формулой: $y = ax^2 + bx + c$.

Кто придумал параболу

Парабола известна математикам уже очень давно, а название этой функции дал древнегреческий математик Аполлоний Пергский в III в. до н.э., изучавший свойства сечений конуса.

Также изучением параболы занимались Архимед и Папп Александрийский.

В дальнейшем разные учёные показали, что многие явления можно описать параболой, так, например, была открыта траектория движения снаряда.

Основные определения и строение параболы

Вершина параболы — это точка, находящаяся на минимальном расстоянии от директрисы параболы $d$.

Готовые работы на аналогичную тему

Фокус $F$ параболы — это точка, через которую проходит ось симметрии параболы, перпендикулярная прямой, находящаяся на расстоянии $d$. Фокус расположен на расстоянии $frac

<2>$ от вершины. Координаты фокуса классической параболы можно определить из её уравнения.

Фокус и вершина являются основными точками, характеризующими параболу.

Параметр $p$ параболы иначе называется фокальным параметром и является расстоянием между фокусом и директрисой. Чтобы найти фокальный параметр параболы, нужно выразить $p$ из формулы канонического уравнения параболы:

$p = frac<2x>$, где $x$ и $y$ — координаты точки, лежащей на параболе. Координаты фокуса параболы определяются через значение фокального параметра и равны ($frac

<2>;0)$.

Анализ уравнения и описание параболы

Сначала необходимо обратить внимание на коэффициент $a$ при $x^2$. Если он отрицательный, то парабола перевёрнутая по отношению к обычной и её ветви смотрят вниз, а если положительный – то её ветви смотрят вверх. Также модуль коэффициента $a$ влияет на степень пологости (ширину) параболы, чем меньше модуль $a$, тем парабола более широкая (пологая), и чем больше модуль $a$, тем она более узкая (крутая).

Далее необходимо посмотреть на коэффициент $c$. Коэффициент $c$ обозначает смещение по оси $OY$ относительно пересечения осей координат. Это легко проверить, если приравнять $x$ к нулю в имеющемся уравнении. Если коэффициент $c$ – положительный, то парабола смещена вверх относительно точки $(0;0)$, а если отрицательный – то вниз. В случае если $c=0$ — парабола проходит через точку начала координат.

Теперь можно найти вершину параболы, её координаты вычисляются по формуле:

$x = – frac<2a>$ (1).

Чтобы найти $y$, нужно подставить полученный по формуле $x$ в уравнение.

Рассмотрим уравнение параболы $y = x^2 + 2x + 3$

Рисунок 2. Анализ уравнения параболы, график и примеры решения

  1. Коэффициент при $a$ положительный, значит, ветви параболы смотрят вверх.
  2. Теперь смотрим на коэффициент $c$, он равен 3, значит, парабола пересекается с осью ординат в точке $(0; 3)$.
  3. Найдём координату $x$ вершины параболы по формуле (1), она равна $x = – frac<2><2>= -1$. Теперь найдём значение $y$, подставив значение $x$ в уравнение: $y = 1^2 +(-1) cdot 2 + 3 = 2$. Координаты вершины равны $(-1; 2)$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 04 12 2021

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kvadratichnaya-funkciya-parabola

http://spravochnick.ru/matematika/parabola/

[/spoiler]

Сегодня разберем одно из сложных заданий ОГЭ на знание функций и их свойств. Для решения задания нужно будет знать, как график параболы зависит от ее коэффициентов, а также уметь решать уравнения графическим методом.

Мы уже разбирали другие задания из 22-го номера ОГЭ, вы можете ознакомиться с ними по следующим ссылкам:

Задание №22 из ОГЭ. Как найти точку пересечения двух прямых, если нет уравнения?

Разбор №22 из пробного ОГЭ по математике

Текст сегодняшнего задания представлен на картинке:

Графический способ решения задания с параметром из №22 ОГЭ

Теперь, удобнее всего, превратить это уравнение во что-то более простое. Для этого, сделаем так, чтобы и слева и справа от знака равно, располагались функции, графики которых строить довольно легко. Чтобы это осуществить, перенесем модуль в правую сторону:

Графический способ решения задания с параметром из №22 ОГЭ

Теперь, наше задание свелось к тому, чтобы найти количество точек пересечения графиков двух функций:

Графический способ решения задания с параметром из №22 ОГЭ

График модуля строить довольно легко. Он выглядит так:

Графический способ решения задания с параметром из №22 ОГЭ

А вот с квадратичной функцией немного сложнее, т.к. она зависит от параметра а. Исследуем ее коэффициенты и опишем, как они влияют на график:

  1. Коэффициент при старшей степени равен единице, т.е. он больше нуля. Следовательно, ветви направлены вверх.
  2. Коэффициент при переменной х. Такого слагаемого в нашем случае вообще нет. Т.е. коэффициент при нем равняется нулю. Это значит, что парабола не смещена ни влево ни вправо. Ее центр лежит точно посередине, на оси ординат.
  3. Свободный член. В данном случае, это и есть наш параметр. Он отвечает за то, насколько выше или ниже оси абсцисс лежит вершина параболы.

Таким образом, в зависимости от параметра а, мы будем получать семейство парабол такого вида:

Графический способ решения задания с параметром из №22 ОГЭ

Посмотрим на общий чертеж обеих функций: семейства парабол и модуля:

Графический способ решения задания с параметром из №22 ОГЭ

Этот чертеж можно описать следующим так: при достаточно больших значениях параметра а, парабола лежит выше графика модуля и не имеет с ним общих точек. При уменьшении параметра, парабола смещается ниже и у графиков появляются точки пересечения.

Тогда, по мере того, как вершина параболы будет снижаться, возникнут такие случаи взаимного расположения графиков:

1. Нет общих точек
1. Нет общих точек
2. Ветви параболы касаются графика модуля. 2 общие точки
2. Ветви параболы касаются графика модуля. 2 общие точки
3. Каждая ветвь параболы дважды пересекает график модуля - 4 общие точки
3. Каждая ветвь параболы дважды пересекает график модуля – 4 общие точки
4. Вершина параболы - в начале координат. 3 общие точки
4. Вершина параболы – в начале координат. 3 общие точки
5. Каждая ветвь параболы пересекает график модуля в одной точке. 2 общие точки.
5. Каждая ветвь параболы пересекает график модуля в одной точке. 2 общие точки.

Значение параметра а в двух последних случаях легко найти. Т.к. вершина параболы, в четвертом случае, должна находиться в начале координат, то а=0. Следовательно, для 5-го графика – a<0.

С первыми тремя случаями все не так очевидно. Нам нужно понять, в каком случае ветви параболы касаются графика модуля? Так как и модуль и парабола, симметричны, относительно оси ординат, то будем рассматривать только правую половину графиков:

Графический способ решения задания с параметром из №22 ОГЭ

Для этого случая, значения иксов – неотрицательные, тогда после раскрытия модуля, знак подмодульного выражения не меняется. Т.к. на графике – одна общая точки, то, получившееся квадратное уравнение будет иметь один корень:

Графический способ решения задания с параметром из №22 ОГЭ

Квадратное уравнение имеет один корень только в том случае, когда его дискриминант равен нулю. Вычислим дискриминант, приравняем его к нулю и найдем значение параметра а:

Графический способ решения задания с параметром из №22 ОГЭ

Таким образом, при а=1/4 уравнение имеет два корня. Если а>1/4, то уравнение не имеет корней. Если a принадлежит интервалу от 0 до 1/4 – то уравнение имеет 4 корня. Если а<0 – уравнение имеет 2 корня.

Если Вам понравилась статья – ставьте лайки и подписывайтесь на канал.

Помните – ОГЭ близко. Чтобы лучше к нему подготовиться – читайте разборы других заданий на моем канале.

Парабола: определение, свойства, построение

Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d, не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы.

Директориальное свойство параболы

Точка F называется фокусом параболы, прямая d — директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, — вершиной параболы, расстояние p от фокуса до директрисы — параметром параболы, а расстояние frac{p}{2} от вершины параболы до её фокуса — фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM, соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки M. Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице (e=1).

Геометрическое определение параболы, выражающее её директориальное свойство, эквивалентно её аналитическому определению — линии, задаваемой каноническим уравнением параболы:

y^2=2cdot pcdot x,

(3.51)

Действительно, введем прямоугольную систему координат (рис.3.45,б). Вершину O параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки O к точке F); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Парабола, её фокус и фокусное расстояние, радиус, параметр, директрисса, эксцентриситет параболы

Составим уравнение параболы, используя её геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса F!left(frac{p}{2};,0right) и уравнение директрисы x=-frac{p}{2}. Для произвольной точки M(x,y), принадлежащей параболе, имеем:

FM=MM_d,

где M_d!left(frac{p}{2};,yright) — ортогональная проекция точки M(x,y) на директрису. Записываем это уравнение в координатной форме:

sqrt{{left(x-frac{p}{2}right)!}^2+y^2}=x+frac{p}{2}.

Возводим обе части уравнения в квадрат: {left(x-frac{p}{2}right)!}^2+y^2=x^2+px+frac{p^2}{4}. Приводя подобные члены, получаем каноническое уравнение параболы

y^2=2cdot pcdot x, т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.


Уравнение параболы в полярной системе координат

Уравнение параболы в полярной системе координат Frvarphi (рис.3.45,в) имеет вид

r=frac{p}{1-ecdotcosvarphi}, где p — параметр параболы, а e=1 — её эксцентриситет.

В самом деле, в качестве полюса полярной системы координат выберем фокус F параболы, а в качестве полярной оси — луч с началом в точке F, перпендикулярный директрисе и не пересекающий её (рис.3.45,в). Тогда для произвольной точки M(r,varphi), принадлежащей параболе, согласно геометрическому определению (директориальному свойству) параболы, имеем MM_d=r. Поскольку MM_d=p+rcosvarphi, получаем уравнение параболы в координатной форме:

p+rcdotcosvarphi quad Leftrightarrow quad r=frac{p}{1-cosvarphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения эллипса, гиперболы и параболы совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (0leqslant e&lt;1 для эллипса, e=1 для параболы, e&gt;1 для гиперболы).


Геометрический смысл параметра в уравнении параболы

Поясним геометрический смысл параметра p в каноническом уравнении параболы. Подставляя в уравнение (3.51) x=frac{p}{2}, получаем y^2=p^2, т.е. y=pm p . Следовательно, параметр p — это половина длины хорды параболы, проходящей через её фокус перпендикулярно оси параболы.

Фокальным параметром параболы, так же как для эллипса и для гиперболы, называется половина длины хорды, проходящей через её фокус перпендикулярно фокальной оси (см. рис.3.45,в). Из уравнения параболы в полярных координатах при varphi=frac{pi}{2} получаем r=p, т.е. параметр параболы совпадает с её фокальным параметром.


Геометрический смысл параметра в каноническом уравнении параболы

Замечания 3.11.

1. Параметр p параболы характеризует её форму. Чем больше p, тем шире ветви параболы, чем ближе p к нулю, тем ветви параболы уже (рис.3.46).

2. Уравнение y^2=-2px (при p&gt;0) определяет параболу, которая расположена слева от оси ординат (рис. 3.47,a). Это уравнение сводится к каноническому при помощи изменения направления оси абсцисс (3.37). На рис. 3.47,a изображены заданная система координат Oxy и каноническая Ox'y'.

3. Уравнение (y-y_0)^2=2p(x-x_0),,p&gt;0 определяет параболу с вершиной O'(x_0,y_0), ось которой параллельна оси абсцисс (рис.3.47,6). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

Уравнение (x-x_0)^2=2p(y-y_0),,p&gt;0, также определяет параболу с вершиной O'(x_0,y_0), ось которой параллельна оси ординат (рис.3.47,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36) и переименования координатных осей (3.38). На рис. 3.47,б,в изображены заданные системы координат Oxy и канонические системы координат Ox'y'.

Параллельный перенос параболы

4. График квадратного трехчлена y=ax^2+bx+c,~ane0 является параболой с вершиной в точке O'!left(-frac{b}{2a};,-frac{b^2-4ac}{4a}right), ось которой параллельна оси ординат, ветви параболы направлены вверх (при a&gt;0) или вниз (при a&lt;0). Действительно, выделяя полный квадрат, получаем уравнение

y=aleft(x+frac{b}{2a}right)^2-frac{b^2}{4a}+c quad Leftrightarrow quad !left(x+frac{b}{2a}right)^2=frac{1}{a}left(y+frac{b^2-4ac}{4a}right)!,

которое приводится к каноническому виду (y')^2=2px', где p=left|frac{1}{2a}right|, при помощи замены y'=x+frac{b}{2a} и x'=pm!left(y+frac{b^2-4ac}{4a}right).

График квадратного трехчлена

Знак выбирается совпадающим со знаком старшего коэффициента a. Эта замена соответствует композиции: параллельного переноса (3.36) с x_0=-frac{b}{2a} и y_0=-frac{b^2-4ac}{4a}, переименования координатных осей (3.38), а в случае a&lt;0 еще и изменения направления координатной оси (3.37). На рис.3.48,а,б изображены заданные системы координат Oxy и канонические системы координат O'x'y' для случаев a&gt;0 и a&lt;0 соответственно.

5. Ось абсцисс канонической системы координат является осью симметрии параболы, поскольку замена переменной y на -y не изменяет уравнения (3.51). Другими словами, координаты точки M(x,y), принадлежащей параболе, и координаты точки M'(x,-y), симметричной точке M относительно оси абсцисс, удовлетворяют уравнению (3.S1). Оси канонической системы координат называются главными осями параболы.


Построение параболы в канонической системе координат

Пример 3.22. Изобразить параболу y^2=2x в канонической системе координат Oxy. Найти фокальный параметр, координаты фокуса и уравнение директрисы.

Решение. Строим параболу, учитывая её симметрию относительно оси абсцисс (рис.3.49). При необходимости определяем координаты некоторых точек параболы. Например, подставляя x=2 в уравнение параболы, получаем y^2=4~Leftrightarrow~y=pm2. Следовательно, точки с координатами (2;2),,(2;-2) принадлежат параболе.

Сравнивая заданное уравнение с каноническим (3.S1), определяем фокальный параметр: p=1. Координаты фокуса x_F=frac{p}{2}=frac{1}{2},~y_F=0, т.е. F!left(frac{1}{2},,0right). Составляем уравнение директрисы x=-frac{p}{2}, т.е. x=-frac{1}{2}.


Общие свойства эллипса, гиперболы, параболы

Директориальное свойство эллипса, гиперболы, параболы

1. Директориальное свойство может быть использовано как единое определение эллипса, гиперболы, параболы (см. рис.3.50): геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e, называется:

а) эллипсом, если 0leqslant e&lt;1;

б) гиперболой, если e&gt;1;

в) параболой, если e=1.

2. Эллипс, гипербола, парабола получаются в сечениях кругового конуса плоскостями и поэтому называются коническими сечениями. Это свойство также может служить геометрическим определением эллипса, гиперболы, параболы.

3. К числу общих свойств эллипса, гиперболы и параболы можно отнести биссекториальное свойство их касательных. Под касательной к линии в некоторой её точке K понимается предельное положение секущей KM, когда точка M, оставаясь на рассматриваемой линии, стремится к точке K. Прямая, перпендикулярная касательной к линии и проходящая через точку касания, называется нормалью к этой линии.

Биссекториальное свойство касательных (и нормалей) к эллипсу, гиперболе и параболе формулируется следующим образом: касательная (нормаль) к эллипсу или к гиперболе образует равные углы с фокальными радиусами точки касания (рис.3.51,а,б); касательная (нормаль) к параболе образует равные углы с фокальным радиусом точки касания и перпендикуляром, опущенным из нее на директрису (рис.3.51,в). Другими словами, касательная к эллипсу в точке K является биссектрисой внешнего угла треугольника F_1KF_2 (а нормаль — биссектрисой внутреннего угла F_1KF_2 треугольника); касательная к гиперболе является биссектрисой внутреннего угла треугольника F_1KF_2 (а нормаль — биссектрисой внешнего угла); касательная к параболе является биссектрисой внутреннего угла треугольника FKK_d (а нормаль — биссектрисой внешнего угла). Биссекториальное свойство касательной к параболе можно сформулировать так же, как для эллипса и гиперболы, если считать, что у параболы имеется второй фокус в бесконечно удаленной точке.

Биссекториальное свойство касательных и нормалей к эллипсу, гиперболе и параболе

4. Из биссекториальных свойств следуют оптические свойства эллипса, гиперболы и параболы, поясняющие физический смысл термина “фокус”. Представим себе поверхности, образованные вращением эллипса, гиперболы или параболы вокруг фокальной оси. Если на эти поверхности нанести отражающее покрытие, то получаются эллиптическое, гиперболическое и параболическое зеркала. Согласно закону оптики, угол падения луча света на зеркало равен углу отражения, т.е. падающий и отраженный лучи образуют равные углы с нормалью к поверхности, причем оба луча и ось вращения находятся в одной плоскости. Отсюда получаем следующие свойства:

– если источник света находится в одном из фокусов эллиптического зеркала, то лучи света, отразившись от зеркала, собираются в другом фокусе (рис.3.52,а);

– если источник света находится в одном из фокусов гиперболического зеркала, то лучи света, отразившись от зеркала, расходятся так, как если бы они исходили из другого фокуса (рис.3.52,б);

– если источник света находится в фокусе параболического зеркала, то лучи света, отразившись от зеркала, идут параллельно фокальной оси (рис.3.52,в).

Оптические свойства эллипса, гиперболы и параболы

5. Диаметральное свойство эллипса, гиперболы и параболы можно сформулировать следующим образом:

середины параллельных хорд эллипса (гиперболы) лежат на одной прямой, проходящей через центр эллипса (гиперболы);

середины параллельных хорд параболы лежат на прямой, коллинеарной оси симметрии параболы.

Геометрическое место середин всех параллельных хорд эллипса (гиперболы, параболы) называют диаметром эллипса (гиперболы, параболы), сопряженным к этим хордам.

Это определение диаметра в узком смысле (см. пример 2.8). Ранее было дано определение диаметра в широком смысле, где диаметром эллипса, гиперболы, параболы, а также других линий второго порядка называется прямая, содержащая середины всех параллельных хорд. В узком смысле диаметром эллипса является любая хорда, проходящая через его центр (рис.3.53,а); диаметром гиперболы является любая прямая, проходящая через центр гиперболы (за исключением асимптот), либо часть такой прямой (рис.3.53,6); диаметром параболы является любой луч, исходящий из некоторой точки параболы и коллинеарный оси симметрии (рис.3.53,в).

Два диаметра, каждый их которых делит пополам все хорды, параллельные другому диаметру, называются сопряженными. На рис.3.53 полужирными линиями изображены сопряженные диаметры эллипса, гиперболы, параболы.

Диаметральное свойство эллипса, гиперболы и параболы

Касательную к эллипсу (гиперболе, параболе) в точке K можно определить как предельное положение параллельных секущих M_1M_2, когда точки M_1 и M_2, оставаясь на рассматриваемой линии, стремятся к точке K. Из этого определения следует, что касательная, параллельная хордам, проходит через конец диаметра, сопряженного к этим хордам.

6. Эллипс, гипербола и парабола имеют, кроме приведенных выше, многочисленные геометрические свойства и физические приложения. Например, рис.3.50 может служить иллюстрацией траекторий движения космических объектов, находящихся в окрестности центра F притяжения.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Параметры параболы

Точка F(p/2, 0) называется фокусомпараболы, величина pпараметром, точка О(0, 0) – вершиной (рис. 9.15). При этом прямая OF, относительно которой парабола симметрична, задает ось этой кривой.

Величина где M(x, y) – произвольная точка параболы, называется фокальным радиусом, прямая D: x = –p/2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетомпараболы.

Основное характеристическое свойство параболы: все точки параболы равноудалены от директрисы и фокуса (рис. 9.15).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 9.16):

а) б) в)

Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1.Определить параметры и форму параболы по ее каноническому уравнению:

1) 2)

Решение.1) Уравнение y 2 = –8x определяет параболу с вершиной в точке О(0; 0), симметричную относительно оси Оx. Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2 = –2px, находим: 2p = 8, p = 4, p/2 = 2. Следовательно, фокус находится в точке F(–2; 0), уравнение директрисы D: x = 2 (рис. 9.17).

2) Уравнение x 2 = –4y задает параболу с вершиной в точке O(0; 0), симметричную относительно оси Oy. Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2py, находим: 2p = 4, p = 2, p/2 = 1. Следовательно, фокус находится в точке F(0; –1), уравнение директрисы D: y = 1 (рис. 9.18).

Пример 2.Определить параметры и вид кривой x 2 + 8x – 16y – 32 = 0. Сделать рисунок.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

(x + 4) 2 – 16 – 16y – 32 = 0;

В результате получим:

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх осью x = –4. Фокус находится в точке F(–4; –3 + p/2), т. е. F(–4; 1) Директриса D задается уравнением y = –3 – p/2 или y = –7 (рис. 9.19).

Пример 3. Написать уравнение кривой, все точки которой равноудалены от прямой y = –3 и точки F(0; 3).

Решение. Точка F(0; 3) лежит на оси Oy и находится с прямой y = –3 по разные стороны от начала координат, причем на одинаковом расстоянии (d = 3). Это позволяет заключить, что искомой кривой является парабола x 2 = 2py с параметром p = 2 × 3 = 6, т. е. x 2 = 12y (рис. 9.20).

Пример 4.Составить уравнение параболы с вершиной в точке V(3; –2) и фокусом в точке F(1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p/2 = 3 – 1 = 2, p = 4. Следовательно, искомое уравнение

Дата добавления: 2015-09-29 ; просмотров: 8107 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Парабола свойства и график квадратичной функции

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

  1. Любая прямая пересекает на плоскости искомую линию в 2-х точках – так называемые, «нули» (кроме основного экстремума графика).
  2. Множество точек плоскости ХОY (М), расстояние FM которых до F = расстоянию MN до прямой Где F – фокус, AN – директриса. Эти понятия рассмотрим ниже.

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x2 + b x + c (узнаваемый шаблон: y = x2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

Пример.

Имеется функция у = 4 * x2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2,
  • y = 4 * 4 — 16 * 2 — 25 = 16 — 32 — 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0, 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х1, 2 = (-b ± D0,5) / (2 * a),
  • D = 0, то х1, 2 = -b / (2 * a),
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей,
  • найти координаты вершины,
  • найти пересечение с осью ординат,
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х2 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх,
  2. координаты экстремума: х = (-5) / 2 = 5/2, y = (5/2)2 — 5 * (5/2) + 4 = -15/4,
  3. с осью ординат пересекается в значении у = 4,
  4. найдем дискриминант: D = 25 — 16 = 9,
  5. ищем корни:
  • Х1 = (5 + 3) / 2 = 4, (4, 0),
  • Х2 = (5 — 3) / 2 = 1, (1, 0).

По полученным точкам можно построить параболу.

Пример 2.

Для функции у = 3 * х2 2 * х 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх,
  2. координаты экстремума: х = (-2) / 2 * 3 = 1/3, y = 3 * (1/3)2 — 2 * (1/3) — 1 = -4/3,
  3. с осью у будет пересекаться в значении у = -1,
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х1 = (2 + 4) / 6 = 1, (1,0),
  • Х2 = (2 — 4) / 6 = -1/3, (-1/3, 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Кривые второго порядка в математике с примерами решения и образцами выполнения

1) всякая прямая в прямоугольной системе координат определяется уравнением первой степени относительно переменных и ;

2) всякое уравнение первой степени в прямоугольной системе координат определяет прямую и притом единственную.

Мы займемся изучением линий, определяемых уравнениями второй степени относительно текущих
координат и :

Такие линии называются линиями (кривыми) второго порядка. Коэффициенты уравнения (1) могут принимать различные действительные значения, исключая одновременное равенство и нулю (в противном случае уравнение (1) не будет уравнением второй степени).

Окружность и ее уравнения

Как известно, Окружностью называется множество всех точек плоскости, одинаково удаленных от данной точки, называемой центром.

Пусть дана окружность радиуса с центром в точке требуется составить ее уравнение.

Возьмем на данной окружности произвольную точку
(рис. 38). Имеем

удовлетворяют координаты произвольной точки окружности. Более того, этому уравнению не удовлетворяют координаты никакой точки, не лежащей на окружности, так как и . Следовательно, (I) есть уравнение окружности радиуса с центром в точке . Если центр окружности находится на оси , т. е. если , то уравнение (I) примет вид

Если центр окружности находится на оси т. е. если то уравнение (I) примет вид

Наконец, если центр окружности находится в начале координат, т. е. если , то уравнение (I) примет вид

Пример:

Составить уравнение окружности радиуса с центром в точке .

Решение:

Имеем: . Подставив эти значения в уравнение (I), найдем .

Из изложенного выше следует, что уравнение окружности является уравнением второй степени относительно переменных и , как бы она ни была расположена в плоскости . Уравнение окружности (I) является частным случаем общего уравнения второй степени с
переменными

В самом деле, раскрыв скобки в уравнении (1), получим

Справедливо следующее утверждение: если в уравнении (5) , то Уравнение (5) определяет окружность.

Действительно, разделив уравнение (5) почленно на , получим:

Дополним группы членов, стоящие в скобках, до полного квадрата:

Положим Так как, по условию, то можно положить
Получим

Если в уравнении то оно определяет точку (говорят также, что окружность вырождается в точку). Если же то уравнению (5) не удовлетворяет ни одна пара действительных чисел (говорят также, что уравнение (5) определяет «мнимую» окружность).

Пример:

Найти координаты центра и радиус окружности

Решение:

Сравнивая данное уравнение с уравнением (1), находим: . Следовательно, .

Пример:

Установить, какое из уравнений:

определяет окружность. Найти координаты центра и радиус каждой из них.

Решение:

Первое уравнение не определяет окружность, потому что . Во втором уравнении . Однако и оно не определяет окружность, потому что . В третьем уравнении условия выполняются. Для окончательного вывода преобразуем его так:

Это уравнение, а следовательно, и уравнение 3), определяет окружность с центром и радиусом .

В четвертом уравнении также выполняются условия Однако преобразовав его к виду
, устанавливаем, что оно не определяет никакой линии.

Эллипс и его каноническое уравнение

Определение:

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.

Составим уравнение эллипса, фокусы и которого лежат на оси
и находятся на одинаковом расстоянии от
начала координат (рис. 39).

Обозначив , получим Пусть произвольная точка эллипса. Расстояния называются фокальными радиусами точки . Положим

тогда, согласно определению эллипса, — величина постоянная и По формуле расстояния между двумя точками находим:

Подставив найденные значения и в равенство (1), получим уравнение эллипса:

Преобразуем уравнение (3) следующим образом!

Имеем: положим

последнее уравнение примет вид

Так как координаты и любой точки эллипса удовлетворяют уравнению (3),то они удовлетворяют уравнению (5).

Покажем, что справедливо и обратное: если координаты точки удовлетворяют уравнению (5) то она принадлежит эллипсу.

Пусть — произвольная точка, координаты которой удовлетворяют уравнению (5). Так как из (5)

то откуда

Подставив (6) в соотношения (2) и проведя необходимые упрощения, получим

Но так как то

т. е. точка действительно принадлежит эллипсу.

Уравнение (5) называется каноническим уравнением
эллипса.

Исследование формы эллипса по его уравнению

Определим форму эллипса по его каноническому
уравнению

1. Координаты точки не удовлетворяют уравнению (1), поэтому эллипс, определяемый этим уравнением не проходит через начало координат.

Найдем точки пересечения эллипса с осями координат. Положив в уравнении (1) , найдем Следовательно, эллипс пересекает ось в точках . Положив в уравнении (1) , найдем точки пересечения эллипса с осью :
(рис.40).

3. Так как в уравнение (1) переменные и входят только в четных степенях, то эллипс симметричен относительно координатных осей, а следовательно, и относительно начала координат.

4. Определим область изменения переменных и . В предыдущем параграфе (см. (7)) мы уже показали, что

Аналогично, переписав уравнение эллипса (1) в виде

получим откуда или

Таким образом, все точки эллипса находятся внутри прямоугольника, ограниченного прямыми
(см. рис, 40).

5. Переписав уравнение (1) соответственно в вида

мы видим, что при возрастании от 0 до величина убывает от до 0, а при возрастании от 0 до величина убывает от до 0. Эллипс имеет форму, изображенную на рис. 41.

Точки пересечения эллипса с осями координат
называются вершинами эллипса. Отрезок называется
большой осью эллипса, а отрезок малой осью. Оси являются осями симметрии эллипса, а точка центром симметрии (или просто центром) эллипса.

Пример:

Определить длину осей и координаты фокусов эллипса

Решение:

Разделив обе части данного уравнения на 1176, приведем его к каноническому виду

Следовательно,

Пример:

Составить каноническое уравнение эллипса, если фокусное расстояние равно 10, а малая ось равна 6.

Решение:

Другие сведения об эллипсе

Мы рассмотрели эллипс, у которого Если же то уравнение

определяет эллипс, фокусы которого лежат на оси (рис. 42). В этом случае длина большой оси равна , а малой . Кроме того, связаны между собой равенством

Определение:

Эксцентриситетом эллипса называется отношение расстояния между фокусами к длине большой оси и обозначается буквой .

Если , то, по определению,

При имеем

Из формул (3) и (4) следует . При этом с
увеличением разности между полуосями и увеличивается соответствующим образом и эксцентриситет

эллипса, приближаясь к единице; при уменьшении разности между и уменьшается и эксцентриситет, приближаясь к нулю. Таким образом, по величине эксцентриситета можно судить о форме эллипса: чем больше эксцентриситет, тем более вытянут эллипс; чем меньше эксцентриситет, тем круглее эллипс. В частности, если и уравнение эллипса примет вид , которое определяет окружность с центром в начале координат. Таким образом, окружность можно рассматривать как частный случай эллипса, у которого полуоси равны между собой, а следовательно, эксцентриситет равен нулю.

Из рис. 43, на котором изображены эллипсы и окружность , хорошо видна зависимость формы эллипса от его эксцентриситета. В заключение поясним, как можно построить эллипс

Для этого на осях координат строим вершины эллипса . Затем из вершины (можно из ) радиусом, равным а, на большой оси делаем засечки (рис. 44). Это будут фокусы эллипса, потому что . Далее, берем нерастяжимую нить, длина которой равна , и закрепляем ее концы в найденных фокусах. Натягиваем нить

острием карандаша и описываем кривую, оставляя нить все время в натянутом состоянии.

Пример:

Составить каноническое уравнение эллипса, фокусы которого лежат на оси , если его большая ось равна 14 и

Решение. Так как фокусы лежат на оси , то По
формуле (2) находим:

Следовательно, искомое уравнение, будет

Гипербола и ее каноническое уравнение

Определение:

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Составим уравнение гиперболы, фокусы которой лежат на оси и находятся на одинаковом расстоянии от начала координат (рис. 45).

Обозначив получим , Пусть
— произвольная точка гиперболы.

Расстояния называются фокальными радиусами точки . Согласно определению гиперболы

где — величина постоянная и Подставив

в равенство (1), получим уравнение гиперболы

Уравнение (2) можно привести к более простому виду; для этого преобразуем его следующим образом:

Имеем: . Положим

тогда последнее равенство принимает вид

Так как координаты и любой точки гиперболы удовлетворяют уравнению (2), то они удовлетворяют и уравнению (4).

Как и в случае эллипса (см. конец § 2), можно показать, что справедливо и обратное: если координаты точки удовлетворяют уравнению (4), то она принадлежит гиперболе.

Уравнение (4) называется каноническим уравнением гиперболы.

Исследование формы гиперболы по ее уравнению

Определим форму гиперболы по ее каноническому уравнению

1. Координаты точки (0; 0) не удовлетворяют уравнению (1), поэтому гипербола, определяемая этим уравнением, не проходит через начало координат.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (1) , найдем . Следовательно, гипербола пересекает ось в точках . Положив в уравнение (1) , получим , а это означает, что система

не имеет действительных решений. Следовательно, гипербола не пересекает ось .

3. Так как в уравнение (1) переменные и входят только в четных степенях, то гипербола симметрична относительно координатных осей, а следовательно, и относительно начала координат.

4. Определим область изменения переменных и ; для этого из уравнения. (1) находим:

Имеем: или ; из (3) следует, что — любое действительное число. Таким образом, все точки гиперболы расположены слева от прямой и справа от прямой

5. Из (2) следует также, что

Это означает, что гипербола состоит из двух ветвей, одна из которых расположена справа от прямой , а другая слева от прямой .

Гипербола имеет форму, изображенную на рис. 46.

Точки пересечения гиперболы с осью называются вершинами гиперболы. Отрезок Рис. 46.

соединяющий вершины гиперболы, называется действительной осью. Отрезок , , называется мнимой осью. Число называется действительной полуосью, число мнимой полуосью. Оси являются осями симметрии гиперболы. Точка пересечения осей симметрии называется центром гиперболы. У гиперболы (1) фокусы всегда находятся на действительной оси.

Пример:

Составить уравнение гиперболы, вершины которой находятся в точках , а расстояние между фокусами равно 14.

Решение:

Имеем: . По формуле находим

Следовательно, искомое уравнение будет

Пример:

Составить каноническое уравнение гиперболы с фокусами на оси , если длина ее действительной оси равна 16 и гипербола проходит через точку .

Решение:

Имеем: . Положив в уравнении (1) , получим

Другие сведения о гиперболе

Асимптоты гиперболы

Определение:

Прямая называется
асимптотой кривой при , если

Аналогично определяется асимптота при . Докажем, что прямые

являются асимптотами гиперболы

при

Так как прямые (2) и гипербола (3) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти (рис. 47). Напишем уравнения прямых (2) и гиперболы (3), соответствую*
щие первой четверти:

Положив найдем:

Следовательно, прямые (2) являются асимптотами гиперболы (3).

Отметим, что асимптоты (2) совпадают с диагоналям прямоугольника, стороны которого параллельны осям и и равны соответственно и , а его центр находится в начале координат. При этом ветви гиперболы расположены внутри вертикальных углов,
образуемых асимптотами, и приближаются сколь угодно близко к асимптотам (рис.48).

Пример:

Составить уравнение гиперболы, проходящей через точку и, имеющей асимптоты

Решение:

Из данных уравнений асимптот имеем:

Заменив в уравнении гиперболы переменные и координатами точки и его найденным значением, получим:

Следовательно, искомое уравнение будет

Эксцентриситет гиперболы

Определение:

Эксцентриситетом гиперболы называется отношение расстояния между фокусами

к длине действительной оси и обозначается буквой :

Из формулы (§ 5) имеем поэтому

Пример:

Найти эксцентриситет гиперболы .

Решение:

По формуле (5) находим

Равносторонняя гипербола

Гипербола называется равносторонней, если длины ее полуосей равны между собой, т. е. . В этом случае уравнение гиперболы принимает вид

Равносторонняя гипербола определяется одним пара*
метром и асимптотами являются биссектрисы координатных углов:

У всех равносторонних гипербол один и тот же эксцентриситет:

Так как асимптоты равносторонней гиперболы взаимно перпендикулярны, их можно принять за оси новой системы координат полученной в результате поворота осей старой системы вокруг начала координат на угол (рис.49).

Составим уравнение равносторонней гиперболы относительно новой системы координат . Для этого воспользуемся формулами
(4) § 3 гл. 2:

Положив , получим:

Учитывая равенство (6), получим

Уравнение (8) называется уравнением равносторонней гиперболы, отнесенной к своим асимптотам.

Из уравнения (8) следует, что переменные — величины обратно пропорциональные. Таким образом, равносторонняя гипербола, отнесенная к своим асимптотам, представляет собой график обратно пропорциональной зависимости.

Пример:

Составить каноническое уравнение
равносторонней гиперболы, проходящей через точку .

Решение:

Заменив в уравнении (6) переменные координатами точки , получим:

Следовательно, искомое уравнение будет

Парабола и ее каноническое уравнение

Определение:

Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, не проходящей через данную точку и
называемой директрисой.

Составим уравнение параболы, фокус которой лежит на оси , а
директриса параллельна оси и удалена от нее на такое же расстояние, как и фокус от начала координат (рис.50).

Расстояние от фокуса до директрисы называется параметром параболы и обозначается через . Из рис. 50 видно, что следовательно, фокус имеет координаты , а уравнение директрисы имеет вид , или

Пусть — произвольная точка параболы. Соединим точки
и и проведем . Непосредственно из рис. 50 видно, что

а по формуле расстояния между двумя точками

согласно определению параболы

Уравнение (1) является искомым уравнением параболы. Для упрощения уравнения (1) преобразуем его следующим образом:

Последнее уравнение эквивалентно

Координаты точки параболы удовлетворяют уравнению (1), а следовательно, и уравнению (3).

Покажем, что справедливо и обратное: если координаты точки удовлетворяют уравнению (3), то она принадлежит параболе.

Но так как из (3) , и в левой части последнего уравнения можно оставить знак «плюс», т. е. оно является исходным уравнением параболы (1).

Уравнение (3) называется каноническим уравнением параболы.

Исследование формы параболы по ее уравнению

Определим форму параболы по ее каноническому уравнению

1. Координаты точки удовлетворяют уравнению (1), следовательно, парабола, определяемая этим уравнением, проходит через начало координат.

2. Так как в уравнение (1) переменная входит только в четной степени, то парабола симметрична относительно оси абсцисс.

Так как . Следовательно, парабола расположена справа от оси .

4. При возрастании абсциссы ордината изменяется от , т. е. точки параболы неограниченно удаляются как от оси , так и от оси .

Парабола имеет форму, изображенную на рис. 51.

Ось является осью симметрии параболы. Точка пересечения параболы с осью симметрии называется вершиной параболы. Отрезок называется фокальным радиусом точки .

5. Если фокус параболы лежит слева от оси , а директриса справа от нее, то ветви параболы расположены слева от оси (рис. 52, а). Уравнение такой параболы имеет вид

Координаты ее фокуса будут ; директриса определяется уравнением .

6. Если фокус параболы имеет координаты , а директриса задана уравнением , то ветви параболы направлены вверх (рис. 52,6), а ее уравнение имеет вид

7. Наконец, если фокус параболы имеет координаты а директриса задана уравнением , то ветви параболы направлены вниз (рис. 52, в), а ее уравнение имеет вид

Пример:

Дана парабола . Найти координаты ее фокуса и составить уравнение директрисы.

Решение:

Данная парабола симметрична относительно оси , ветви направлены вверх. Сравнивая данное уравнение с уравнением (3), находим:

Следовательно, фокус имеет координаты , а уравнение директрисы будет , или .

Пример:

Составить уравнение параболы с вершиной в начале координат, директриса которой задана уравнением .

Решение:

Из условия задачи следует, что парабола симметрична относительно оси и ветви расположены слева от оси , поэтому искомое уравнение имеет вид . Так как и, следовательно,

Параллельный перенос параболы

Пусть дана парабола с вершиной в точке , ось симметрии которой параллельна оси , а ветви направлены вверх (рис. 53).

Требуется составить ее уравнение. Сделаем параллельный перенос осей координат, поместив начало в точке . Относительно новой системы координат парабола определяется уравнением

Чтобы получить уравнение данной параболы относительно старой системы, воспользуемся формулами преобразования прямоугольных координат при параллельном переносе;

Подставив значения из формул (2) в уравнение (1), получим

Преобразуем это уравнение следующим образом:

С уравнением параболы вида (5) читатель хорошо знаком по школьному курсу.

Пример 1. Составить уравнение параболы с вершиной в точке и с фокусом в точке .

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси (у них абсциссы одинаковы), ветви параболы направлены вверх (ордината фокуса больше ординаты вершины), расстояние фокуса от вершины равно

Заменив в уравнении (3) и координатами точки и его найденным значением, получим:

Пример:

Дано уравнение параболы

Привести его к каноническому виду.

Решение:

Разрешив данное уравнение относительно переменной , получим

Сравнивая это уравнение с уравнением (5), находим Из формул (4) имеем:
следовательно, Подставляем найденные значения в уравнение (3):

Положив получим т. е, каноническое уравнение данной параболы.

Уравнения кривых второго порядка как частные случаи общего уравнения второй степени с двумя переменными

Выше было установлено, что уравнение окружности есть частный случай общего уравнения второй степени с переменными и :

Покажем, что и канонические уравнения эллипса, гиперболы и параболы являются частными случаями уравнения (1). В самом деле:
1) при и уравнение (1) примет вид

т. е. определяет эллипс;
2) при и уравнение (1) примет вид

т. е. определяет гиперболу;
3) при и уравнение (1) примет вид т. е. определяет параболу.

Дополнение к кривым второго порядка

Пусть задана кривая, определяемая уравнением второй степени

где — действительные числа; и одновременно не равны нулю. Эта кривая называется кривой второго порядка.

Приведем еще одно определение кривой второго порядка.

Геометрическое место точек плоскости, для которых отношение их расстояний до заданной точки, называемой фокусом, и до заданной прямой, называемой директрисой, есть величина постоянная, равная , является кривой 2-го порядка с эксцентриситетом, равным . Если , то кривая второго порядка — эллипс; — парабола; — гипербола.

Эллипс

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек и этой плоскости, называемых фокусами, есть величина постоянная, равная . Если фокусы совпадают, то эллипс представляет собой окружность.

Каноническое уравнение эллипса: .

Если , то эллипс расположен вдоль оси ; если , то эллипс расположен вдоль оси (рис. 9а, 9б).

Если , то, сделав замену , перейдем в «штрихованную» систему координат, в которой уравнение будет иметь канонический вид:

Декартова прямоугольная система координат, в которой уравнение эллипса имеет канонический вид, называется канонической.

Точки пересечения эллипса с осями координат называются вершинами эллипса. Расстояния от начала координат до вершин и называются соответственно большой и малой полуосями эллипса.

Центр симметрии эллипса, совпадающий с началом координат, называется центром эллипса.

Если — расстояние от начала координат канонической системы координат до фокусов, то .

Отношение называется эксцентриситетом эллипса.

Расстояние от произвольной точки , лежащей на эллипсе, до каждого из фокусов является линейной функцией от ее абсциссы, т.е. .

С эллипсом связаны две замечательные прямые, называемые его директрисами. Их уравнения в канонической системе имеют вид .

Гипербола

Гиперболой называется геометрическое место точек плоскости, для которых абсолютная величина разности расстояний до двух фиксированных точек и этой плоскости, называемых фокусами, есть величина постоянная, равная (рис. 10).

Декартова прямоугольная система координат, в которой уравнение гиперболы имеет канонический вид, называется канонической. Каноническое уравнение гиперболы:

Ось абсцисс канонической системы пересекает гиперболу в точках, называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. и называются вещественной и мнимой полуосями гиперболы. Центр симметрии гиперболы, совпадающий с началом координат, называется центром гиперболы.

Если — расстояние от начала координат канонической системы координат до фокусов гиперболы, то .

Отношение называется эксцентриситетом гиперболы.

Расстояние от произвольной точки , лежащей на гиперболе, до каждого из фокусов равно .

Гипербола с равными полуосями называется равносторонней.

Прямые с уравнениями в канонической системе называются асимптотами гиперболы.

Прямые называют директрисами гиперболы в канонической системе координат.

Парабола

Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки этой плоскости равно расстоянию до некоторой фиксированной прямой, также расположенной в рассматриваемой плоскости (рис. 11).

Указанная точка называется фокусом параболы, а фиксированная прямая — директрисой параболы.

Система координат, в которой парабола имеет канонический вид, называется канонической, а ось — осью параболы.

Каноническое уравнение параболы:

Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Фокус параболы имеет координаты .

Директрисой параболы называется прямая в канонической системе координат.

Расстояние от произвольной точки параболы до фокуса равно .

Пример задачи решаемой с применением кривых второго порядка

Линия задана уравнением в полярной системе координат. Требуется: 1) построить линию по точкам, начиная от до и придавая значения через промежуток ; 2) найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс — с полярной осью, привести его к каноническому виду; 3) по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Решение:

1) Вычисляя значения с точностью до сотых при указанных значениях , получим таблицу:

Используя полученные табличные значения, построим кривую в полярной системе координат (рис. 17).

2) Используя формулы перехода

из полярной в декартовую систему координат, получим: .

Возведем левую и правую части в квадрат: Выделим полный квадрат и приведем к каноническому виду: , где

3) Это эллипс, смещенный на вдоль оси .

Ответ: эллипс , где

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Возможно вам будут полезны эти страницы:

Кривая второго порядка и её определение

Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением

Окружность и ее уравнение

Окружностью называется геометрическое место точек, одинаково удаленных от одной точки, называемой центром.

Пользуясь этим определением, выведем уравнение окружности. Пусть радиус ее равен r, а центр находится в точке

О1(а; b). Возьмем на окружности произвольную точку М(х; у) (рис. 27).

По формуле расстояния между двумя точками можем написать:

или, после возведения обеих частей равенства в квадрат,

Так как точка М нами взята произвольно, а радиус r — величина постоянная, то равенство (1) справедливо для всех точек окружности, т. е. координаты любой ее точки удовлетворяют этому равенству. А если так, то равенство (1) нужно рассматривать как уравнение окружности.

В уравнении (1) а и bкоординаты центра окружности, а х и утекущие координаты.

Если положить а = 0, то уравнение (1) обратится в следующее:

и будет определять окружность с центром на оси Оу (рис. 28).

При b = 0 уравнение (1) примет вид

и будет определять окружность с центром на оси Ох (рис. 29).

Наконец, при а = 0 и b = 0 уравнение (1) преобразуется в следующее:

и будет определять окружность с центром в начале координат (рис. 30).

Можно построить окружность, имея ее уравнение. Пусть, например, требуется построить окружность

Перепишем это уравнение в следующем виде:

сравнивая это уравнение с(1), видим, что координаты центра окружности суть (2; — 3) и радиус ее r = 3. Построив

точку О1(2;—3), опишем из нее радиусом, равным 3 единицам масштаба, искомую окружность (рис. 31).

Уравнение окружности как частный вид общего уравнения второй степени

Раскрыв скобки в уравнении (1) , можем написать:

Умножив все члены последнего равенства на А, получим:

тогда уравнение (1) окружности примет вид

Уравнение (2) является частным случаем общего уравнения второй степени с двумя переменными. В самом деле, сравним уравнение (2) с общим уравнением второй степени с двумя переменными, имеющим, как известно, следующий вид:

Мы видим, что уравнение (2) отличается от уравнения (3) только тем, что у первого коэффициенты при х2 и у2 одинаковы и отсутствует член, содержащий произведение ху.

Таким образом, окружность определяется общим уравнением второй степени с двумя переменными, если в нем коэффициенты при х2 и у2 равны между собой и отсутствует член с произведением ху.

Обратно, уравнение вида (2), вообще говоря, определяет окружность. Убедимся в этом на примере. Пусть дано уравнение

Перепишем его в следующем виде:

и преобразуем двучлены, стоящие в скобках, в полные квадраты суммы и разности, прибавив к первому 4, ко второму 16. Чтобы равенство при этом не нарушилось, увеличим и правую часть его на сумму 4+16. Получим:

Последнее равенство является уравнением окружности, имеющей радиус, равный 5, и центр в точке О1(-2; 4).

Бывают однако случаи, когда уравнение (2) при некоторых значениях коэффициентов не определяет окружности; например, уравнению

удовлетворяют координаты единственной точки (0; 0), а уравнению

не удовлетворяют координаты ни одной точки, так как сумма квадратов действительных чисел не может иметь отрицательного значения.

Пример:

и хорда Найти длину этой хорды.

Решение:

Так как концы хорды являются общими точками окружности и хорды, то их координаты удовлетворяют как уравнению первой, так и уравнению второй линии. Поэтому, чтобы найти эти координаты, нужно решить совместно уравнения окружности и хорды. Подставив значение

в уравнение окружности, получим:

Находим значение у:

Итак, концами хорды служат точки с координатами (4; 3) и (6; 1).

По формуле расстояния между двумя точками можем определить искомую длину хорды

Эллипс и его уравнение

Эллипсом называется геометрическое место точек, сумма расстояний каждой из которых от двух данных точек, называемых фокусами, есть величина постоянная (и болыиая, чем расстояние между фокусами).

Пусть, например, на эллипсе взяты точки М1, M2, M3, М4 и т. д. (рис. 32). Если фокусы обозначить через F и F1, то согласно данному определению можно написать:

Геометрическое место точек, обладающих вышеуказанным свойствам (1), и есть эллипс.

На основании определения эллипса составим его уравнение. Для этого выберем систему координат следующим образом. За ось Ох примем прямую, проходящую через фокусы F и F1, а за ось Оу — прямую перпендикулярную

к FF1 и проведенную через середину отрезка FF1 (рис. 33). Обозначим расстояние F1F между фокусами через 2с, тогда координаты фокусов будут:

Возьмем на эллипсе произвольную точку М(х;у). Обозначим постоянную величину суммы расстояний каждой точки от фокусов через 2а, тогда

По формуле расстояния между двумя точками найдем:

Теперь равенство (2) перепишется следующим образом:

и будет представлять уравнение эллипса в принятой системе координат.

Упростим уравнение (3). Для этого перенесем один из радикалов в правую часть уравнения:

Возведем обе части этого равенства в квадрат:

Приведем подобные члены:

Сократив на 4 и снова возведя в квадрат обе части равенства, получим:

Перенесем все члены, содержащие х и у, в левую часть равенства, остальные члены — в правую:

Но согласно определению эллипса

Из последнего неравенства следует, что а потому эту разность можно обозначить через Подставив это обозначение в равенство (4), найдем:

Наконец, разделим все члены последнего равенства на окончательно получим:

где х и у — текущие координаты точек эллипса, а

Уравнение (6) и есть простейший вид уравнения эллипса *).

*) Уравнение (6) получилось в результате двукратного возведения в квадрат уравнения (3), благодаря чему, вообще говоря, возможно появление посторонних корней. Можно показать, что уравнение (6) не имеет посторонних корней, т. е. любая точка, координаты которой удовлетворяют уравнению (6), лежит на эллипсе.

Исследование уравнения эллипса

Определим сначала у из уравнения (5) :

Из того же уравнения (5) найдем:

Рассмотрим теперь равенства (1) и (2).

I. Пусть

*) | х | означает, что х берется по абсолютной величине; таким образом, запись | х |

Тогда каждому значению у, как мы видим из равенства (2), отвечают два значения х равные по абсолютной величине, но с разными знаками. Отсюда следует, что каждому значению у соответствуют на эллипсе две точки, симметричные относительно оси Оу.

Из сказанного заключаем: эллипс симметричен относительно координатных осей.

II. Найдем точки пересечения эллипса с осью Ох. Пусть

тогда из равенства (2) имеем:

Отсюда следует: эллипс пересекает ось Ох в двух точках, координаты которых (а; 0) и (— а; 0) (точки А и А1 на рис. 34).

III. Найдем точки пересечения эллипса с осью Оу. Пусть

тогда из равенства (1) имеем:

Отсюда заключаем, что эллипс пересекает ось Оу в двух точках, координаты которых (0; b) и (0; —b) (точки В и В1 на рис. 35).

IV. Пусть х принимает такие значения, что

тогда выражение под корнем в равенстве (1) будет отрицательным, и, следовательно, у будет иметь мнимые значения. А это значит, что не существует точек эллипса, абсциссы которых удовлетворяют условию (3), т. е. эллипс расположен внутри полосы, заключенной между прямыми х = + а и х = — а (рис. 34, прямые КL и РQ).

Если же положить

то из равенства (2) получим для х мнимые значения. Это говорит о том, что точки, удовлетворяющие условию (4), на эллипсе не лежат, т. е. эллипс заключен между прямыми у = + b и у = — b (рис. 35, прямые РК и QL .

Из сказанного следует, что все точка эллипса лежат внутри прямоугольника, стороны которого параллельны координатным осям и имеют длины, равные 2а и 2b, а диагонали пересекаются в начале координат (рис. 36).

Эллипс имеет форму, показанную на рис. 37, Точки A,, A1, В и В1 называются вершинами эллипса, а точка Оего центром. Отрезок А1А = 2а называется его большой осью, а отрезок В1В = 2bмалой осью, Отрезки и F1М носят название фокальных радиусов точки М.

Эксцентриситет эллипса

Эксцентриситетом эллипса называется отношение расстояния между его фокусами к длине большой оси, т. e.

Эксцентриситет обычно обозначают буквой е. Таким образом,

Но согласно формуле (7)

Поэтому для определения эксцентриситета может служить

Так как 0 а уравнение (6) представляет эллипс, фокусы которого лежат на оси Оу; в этом случае его большая ось равна 2 b , а малая 2 а . В соответствии с этим формула (7) и формулы (1) и (2) настоящей лекции примут такой вид:

Пример:

Определить длину его осей, координаты вершин и фокусов, а также величину эксцентриситета.

Решение:

Разделив обе части данного уравнения на 400, получим:

Итак, большая ось эллипса а малая

Координаты вершин его будут:

Чтобы найти координаты фокусов, нужно узнать величину

Из равенства (7) имеем:

Следовательно, координаты фокусов будут:

Наконец, по формуле (1) настоящей лекции находим:

Связь эллипса с окружностью

Положим, что полуоси эллипса равны между собой, т. е. а = b, тогда уравнение эллипса примет вид

Полученное уравнение, как известно, определяет окружность радиуса, равного а.

Посмотрим, чему будет равен эксцентриситет в этом случае; полагая в формуле (2)

Отсюда заключаем, что окружность есть частный случай эллипса, у которого полуоси равны между собой, а следовательно, эксцентриситет равен нулю.

Гипербола и ее уравнение

Гиперболой называется геометрическое место точек, разность расстояний каждой из которых от двух данных точек, называемых фокусами, есть величина постоянная (эта постоянная берется по абсолютному значению, причем она меньше расстояния между фокусами и не равна нулю).

Пусть, например, точки М1, М2, M3, М4 лежат на гиперболе, фокусы которой находятся в точках F и F1 (рис. 39). Тогда, согласно данному выше определению, можно написать:

Пользуясь определением гиперболы, выведем ее уравнение.

Примем за ось Ох прямую, проходящую через фокусы F и F1 (рис. 40), а за ось Оу — прямую, перпендикулярную к отрезку F1F и делящую его пополам.

Положим F1F = 2c тогда координаты фокусов будут

Возьмем на гиперболе произвольную точку М(х; у) и обозначим величину разности расстояний каждой точки от фокусов через 2а; тогда

По формуле расстояния между двумя точками найдем:

и, заменив в равенстве (2) F1М и их выражениями, напишем:

Это и есть уравнение гиперболы относительно выбранной системы координат, так как оно согласно равенствам (1) справедливо для любой ее точки.
*) Знак + берется в случае, если F1М > , и знак —, если F1М

Возведем обе части уравнения в квадрат:

Приведем подобные члены:

Сократив на 4, снова возведем в квадрат обе части уравнения; получим:

Перенесем в левую часть члены, содержащие х и у, а остальные члены в правую:

Согласно определению гиперболы

При условии (5) разность имеет только положительное значение, а потому ее можно обозначить через

Сделав это в равенстве (4), получим:

Разделив последнее равенство на найдем окончательно:

где х и у— текущие координаты точек гиперболы, а

Равенство (7) представляет собой простейший вид уравнения гиперболы *).

*) Как и в случае эллипса, можно показать, что уравнение (7) равносильно уравнению (3), т. е. не имеет посторонних корней.

Исследование уравнения гиперболы

Из уравнения (6) имеем:

Из этого же уравнения (6) находим:

Исследуем уравнения (1) и (2) для выяснения геометрической формы гиперболы.

I. Найдем точки пересечения гиперболы с осью Ох. Для этого полагаем, у = 0 и из уравнения (2) получаем:

Отсюда следует: гипербола пересекает ось Ох в двух точках, координаты которых (а; 0) и (— а; 0) (рис. 41, точки А и А1).

II. Положим в уравнении (1)

тогда у получит мнимое значение, а это значит, что на гиперболе нет точек, удовлетворяющих условию (3). Следовательно, в полосе между прямыми х = + а и х = — а (прямые KL и РQ на рис. 41) нет точек гиперболы

III. Пусть

тогда из равенства (1) найдем для каждого х два действительных значения у, равных по абсолютной величине, но с противоположными знаками. А это значит, что каждому значению х, удовлетворяющему неравенству (4), соответствуют на нашей кривой две точки, симметричные относительно оси Ох.

Следовательно, гипербола симметрична относительно оси Ох.

С другой стороны, для каждого значения у из равенства (2) найдем два действительных значения х, равных по абсолютной величине, но противоположных по знаку, т. е. каждому значению у на гиперболе соответствуют две точки, симметричные относительно оси Оу.

Следовательно, гипербола 1 симметрична относительно оси Оу.

IV. Если в уравнении (1) давать х значения, заключенные между +a и то величина у будет изменяться от 0 до : т. е. в этом случае каждому значению х соответствуют на кривой две точки, симметричные относительно оси Ох и отстоящие друг от друга тем дальше, чем больше величина абсциссы. Таким образом, можно сказать, что гипербола имеет бесконечную ветвь, расположенную справа от прямой х = с.

Если же давать х значения, заключенные между — а и , то у будет изменяться опять от 0 до а это значит, что, как в предыдущем случае, гипербола имеет бесконечную ветвь, но идущую влево от прямой х = — а. Итак, гипербола есть кривая, состоящая из двух ветвей, простирающихся в бесконечность.

Из всего изложенного следует, что гипербола

состоит из двух симметричных относительно оси Оу бесконечных ветвей, одна из которых расположена справа от

прямой х = + а, а другая слева от прямой х = — а. Каждая из этих ветвей симметрична относительно оси Ох (рис. 42).

Точки А(а; 0) и А1(- а; 0) называются вершинами гиперболы, а точка О (0; 0) — ее центром.

Отрезок АА1 = 2а носит название действительной или вещественной оси гиперболы в отличие от оси ВВ1 = 2b, называемой мнимой *).

*) Отрезок ВВ1 = 2b называется мнимой осью, так как на нем нет точек гиперболы.

Отрезки F1М и фокальные радиусы точки М.

Эксцентриситет гиперболы

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к длине вещественной оси, т. е.

Эксцентриситет гиперболы, так же как и для эллипса, обозначается буквой е:

Но согласно равенству (8)

поэтому формулу (1) можно представить в следующем виде:

Так как для гиперболы с > а , то дробь

а потому эксцентриситет гиперболы больше единицы.

Асимптоты гиперболы

Построим на осях гиперболы

прямоугольник LQRS со сторонами, равными 2а и 2b и проведем его диагонали LR и QS продолжив их по обе стороны (рис. 43).

Прямая LR проходит через начало координат, поэтому ее уравнение будет:

Но угловой коэффициент

Заменив в уравнении (1) найденным его значением, получим уравнение прямой LR в следующем виде:

Прямая QS также определяется уравнением (1), но угловой коэффициент ее будет уже другой, а именно:

Таким образом, уравнение прямой QS будет:

Обычно уравнения (2) и (3) записывают следующим образом:

Между прямыми, представленными уравнениями (4), и гиперболой существует связь; выясним ее.

Решим совместно способом подстановки уравнения (4) и

уравнение гиперболы

что невозможно, так как

Таким образом, прямые (4) х2 уа

и гипербола не имеют общих точек, т. е. прямые (4) не пересекают гиперболу.

Возьмем на прямой LR и на гиперболе точки М и N, расположенные в первом координатном углу и имеющие одну и ту же абсциссу. Ординатой точки М служит РМ; обозначим ее через Y в отличие от ординаты точки N которую обозначим буквой у. Из уравнения (2) можно написать:

Из уравнения гиперболы имеем:

и посмотрим, как она будет изменяться при возрастании абсциссы. Для этого умножим и разделим правую часть последнего равенства на выражение

Пусть величина х в равенстве (5) бесконечно возрастает, тогда знаменатель дроби также бесконечно растет, а сама дробь уменьшается, приближаясь к нулю. Таким образом, гипотенуза и, следовательно, катет NT в прямоугольном треугольнике МNТ стремится к нулю. Из сказанного делаем вывод: при неограниченном возрастании абсциссы х гипербола приближается к прямой LR как угодно близко, нигде ее не пересекая.

Так как прямые LR и QS, а также точки гиперболы симметричны относительно оси Ох, то можно сказать, что и часть гиперболы, расположенная в четвертом координатном углу, как угодно близко подходит к прямой QS , нигде ее не пересекая.

Вывод, сделанный для правой ветви гиперболы, справедлив и для ее левой ветви благодаря той же симметричности прямых (4) и гиперболы относительно координатных осей.

называются асимптотами гиперболы.

Из сказанного в настоящей лекции можно сделать заключение, что гипербола расположена всеми своими точками внутри вертикальных углов, образуемых асимптотами, и нигде не выходит за их границы. Этим обстоятельством можно воспользоваться для построения гиперболы в случае, если не требуется точного, а достаточно только приближенного ее изображения; для этого, нарисив асимптоты, нужно провести плавную кривую линию, постепенно приближая ее к асимптотам.

Пример:

Дана гипербола

Узнать, лежит ли точка A(2; 1,5) на какой-либо ее асимптоте.

Решение:

Из данного уравнения имеем:

Следовательно, уравнения асимптот будут:

Так как точка А лежит согласно условию в первом координатном углу, то она может принадлежать только асимптоте, определяемой уравнением

Подставив в него вместо х и у координаты точки А, получим тождество:

Значит, точка А лежит на указанной асимптоте гиперболы.

Равносторонняя гипербола

Если в уравнении гиперболы

положим а = b то это уравнение примет вид

Уравнение (1) определяет гиперболу, у которой полуоси равны между собой. Такая гипербола называется равносторонней. Уравнения асимптот в этом случае будут:

так как отношение

Как видно из уравнения (2), угловые коэффициенты асимптот равны + 1 и —1 . Если обозначить углы, образуемые асимптотами с положительным направлением оси Ох, соответственно через а и а1 (рис. 44), то

Следовательно, угол между асимптотами будет:

Отсюда заключаем: асимптоты равносторонней гиперболы взаимно перпендикулярны.

Уравнение равносторонней гиперболы, отнесенной к асимптотам

Так как асимптоты равносторонней гиперболы взаимно перпендикулярны, то их можно принять за оси прямоугольной системы координат и рассматривать гиперболу по отношению к этим новым осям. Выведем уравнение равносторонней гиперболы для этого случая.

Пусть дана равносторонняя гипербола. Тогда ее уравнение по отношению к координатным осям Ох и Оу (рис. 45)

выразится, как было пока-* у зано в , в виде

Взяв на гиперболе произвольную точку М (х; у) и построив ее координаты, будем иметь:

Примем теперь за оси координат асимптоты гиперболы: ОХ— за ось абсцисс, ОY — за ось ординат. Опустив перпендикуляр МС на новую ось абсцисс, найдем:

Выразим новые координаты X н Y точки М через старые х и у. Для этого из точки А проведем и

Обратим внимание на то, что в образовавшихся прямоугольных треугольниках АМВ и АОD

как углы, образованные взаимно перпендикулярными прямыми. Но

Из рисежа имеем:

Перемножив равенства (2) и (3) и приняв во внимание равенство (1), получим:

Положим для краткости

тогда равенство (4) перепишется так:

где m— постоянная величина.

Таково уравнение равносторонней гиперболы, если за оси координат принять ее асимптоты.

Как видно из уравнения (5), переменные X и Y — величины обратно пропорциональные, а потому можно сказать, что равносторонняя гипербола ху = m представляет собой график обратно пропорциональной зависимости между переменными величинами.

Парабола и ее простейшее уравнение

Параболой называется геометрическое место точек, каждая из которых одинаково удалена от точки, называемой фокусом, и от прямой, называемой директрисой <при условии, что фокус не лежит на директрисе).

Пусть точки М1 М2, М3, М4 лежат на параболе (рис. 46).

Если точка F изображает фокус, а прямая АВ— директрису, то согласно данному выше определению можем написать:

Выведем уравнение параболы, пользуясь ее определением. Для этого выберем систему координат, приняв за ось Ох прямую, проведенную через точку F (фокус) перпендикулярно к директрисе АВ, а за

ось Оу — прямую, проходящую через середину отрезка КF перпендикулярно к последнему (рис. 47). Обозначим

тогда координаты фокуса F будут

Возьмем на параболе произвольную точку М(x; у) расстояния ее от фокуса F и от директрисы АВ будут выражаться соответственно отрезками и МN. Согласно определению параболы, можем написать:

Применяя формулу расстояния между двумя точками и приняв во внимание, что точка N имеет координаты , найдем:

Заменив и МN в равенстве (1) их выражениями, получим:

Это и есть уравнение параболы относительно выбранной системы координат, так как оно справедливо для любой ее точки.

Упростим уравнение (2). Для этого возведем обе части его в квадрат:

Приведя подобные члены, получим простейшее уравнение параболы

*) Можно показать, что уравнение (3) равносильно уравнению (2). Величина р называется параметром параболы.

Исследование уравнения параболы

Из уравнения (3) найдем:

Исследуем уравнение (1) для выяснения геометрической формы нашей кривой, полагая р > 0.

I. Положим

Отсюда следует: парабола проходит через начало координат.

II. Если х 0, то у имеет два действительных значения, равных по абсолютной величине, но с разными знаками. Это значит, что каждому положительному значению х на параболе соответствуют две точки, расположенные симметрично относительно оси Ох.

Следовательно, парабола симметрична относительно оси Ох.

IV. Пусть х неограниченно возрастает, тогда и будет неограниченно расти, т. е. точки параболы с перемещением вправо от оси Оу неограниченно удаляются вверх и вниз от оси Ох.

Итак, парабола состоит из бесконечных ветвей.

Вышеизложенное позволяет представить параболу, как показано на рис. 48.

Точка О называется вершиной параболы, отрезок фокальным радиусом точки М параболы, а бесконечная прямая Ох является ее осью симметрии.

Если директрису параболы поместить справа от начала координат, то фокус и ветви ее расположатся как показано на рисеже 49.

При этом абсциссы точек параболы будут удовлетворять условию

а потому ее уравнение примет вид:

Парабола может быть симметрична и относительно оси Оу в этом случае фокус ее будет лежать па оси ординат, а директрисой будет прямая, параллельная оси Ох. Как видно при этом условии координатные оси поменяются ролями, и уравнение параболы примет вид

если ветви ее направлены вверх (рис. 50), и

если ветви направлены вниз (рис. 51).

Пример:

Найти координаты ее фокуса и написать уравнение директрисы.

Решение:

Данная парабола симметрична относительно оси Ох и расположена направо от оси Оу. Из уравнения находим:

Расстояние фокуса от начала координат равно , поэтому абсцисса фокуса будет Итак, фокус находится в точке

Директрисой служит прямая, параллельная оси Оу и отстоящая от последней на расстоянии Следовательно,

уравнение директрисы параболы будет х = — 3.

Пример:

Фокус параболы с вершиной в начале координат лежит в точке F(0; —4). Написать уравнение этой параболы.

Решение:

Согласно условию данная парабола симметрична относительно оси Оу, а ветви ее направлены вниз, поэтому искомое уравнение найдется из (3). Так как

и уравнение параболы будет:

Уравнение параболы со смещенной вершиной и осью, параллельной оси Оу

Возьмем уравнения параболы (2) и (3) и запишем их в следующем виде:

Положив в уравнении (1)

Уравнение (2) определяет параболу, ветви которой направлены вверх, если А > О, вниз, если А

Возьмем на параболе произвольную точку М(х; у). Опустив из нее перпендикуляр МР на ось Ох, будем иметь:

Проведем через О1 прямые О1Х и QY, параллельные координатным осям Ох и Оу, и положим временно, что прямые О1Х и О1Y служат осями новой системы координат. Обозначим координаты точки М в этой системе через X и Y, т. е.

Уравнение параболы в новой системе координат напишется следующим образом:

Чтобы найти ее уравнение относительно прежних осей Ох и Оу, нужно X и Y выразить через х и y. Так как

Подставив в уравнение (3) найденные значения X и Y, получим:

Упростим уравнение (4); для этого раскроем в нем скобки.

тогда уравнение (5) примет вид

Это—уравнение параболы с вершиной, лежащей в любой точке плоскости, и с осью симметрии, параллельной оси Оу.

Рассмотрим частные случаи.

Пусть абсцисса вершины параболы a = 0; тогда величина В в равенстве (6) также будет нулем и уравнение (8) примет следующий вид:

Полученное уравнение определяет параболу, у которой вершина лежит на оси Оу, являющейся в то же время и ее осью симметрии (рис. 53).

Положим, что одна из точек параболы (исключая ее вершину) лежит в начале координат; тогда координаты (0; 0) должны удовлетворять уравнению (8). Заменив в нем х и у нулями, найдем С=0. В этом случае уравнение (8) получит вид

и будет определять параболу, проходящую через начало координат (рис. 54).

Заметим, что и уравнение (2) можно рассматривать как частный случай уравнения (8). Действительно, положив в равенствах (6) и (7)

вследствие чего уравнение (8) преобразуется в следующее:

Из сказанного следует, что парабола, у которой ось симметрии параллельна оси Оу или совпадает с ней, определяется уравнением

при любых значениях А, В и С, кроме А = 0.

Убедимся на примере, что справедливо и обратное утверждение: всякое уравнение вида (8) определяет параболу с осью симметрии, параллельной оси Оу.

Пусть дано уравнение

Преобразуем его следующим образом:

тогда уравнение (10) примет вид:

Уравнение (11) имеет такой же вид, как и уравнение (2), поэтому оно, а следовательно, и уравнение (9) определяют параболу, у которой ось симметрии параллельна оси Оу.

Для построения параболы, определяемой уравнением вида (8), можно использовать обычный прием, применяемый для вычерчивания графиков функций, а именно: дав х ряд значений, вычислить значения у, а затем, построив точки по найденным координатам, провести через них плавную линию.

Пример:

Решение:

Прежде всего найдем абсциссы точек пересечения данной параболы с осью Ох; положив у = 0, получим:

Так как найденные точки симметричны относительно оси параболы, то вершина последней, находясь на этой оси, имеет 0 + 4 0

абсциссу, равную ордината же ее

Этих трех точек достаточно для приближенного изображения параболы.

Для более точного ее представления нужны дополнительные точки. Составим следующую таблицу:

Построив эти точки и прозедя через них плавную линию, получим искомую параболу (рис. 55).

Пример:

Решение:

мнимые, а потому ось Ох не пересекает данную параболу. В этом случае следует найти абсциссы точек пересечения параболы с прямой

(-1 — свободный член данного уравнения параболы)

Решая для этой цели систему уравнений

Полученные точки симметричны относительно оси параболы, поэтому абсцисса ее вершины равна ордината же ее

Присоединим к этим точкам несколько дополнительных точек. Составим таблицу:

Конические сечения

Окружность, эллипс, гипербола и парабола определяются, как мы установили в предыдущих лекциях уравнениями второй степени относительно текущих координат; поэтому их называют кривыми второго порядка. Они были известны еще древним грекам, которые изучали эти кривые, рассматривая их как результат сечения прямого кругового конуса плоскостью в следующих четырех случаях.

I. Секущая плоскость перпендикулярна к оси конуса; в сечении получается окружность (рис. 57).

II. Секущая плоскость образует с осью конуса угол, не равный 90°, и пересекает все его образующие по одну сторону от вершины S; в сечении получается эллипс (рис. 58).

III. Секущая плоскость параллельна какой-либо образующей конуса; при этом получается кривая, называемая параболой (рис. 59).

IV. Секущая плоскость пересекает обе полости конуса; при этом получаются две бесконечные ветви, образующие гиперболу (рис. 60).

Окружность, эллипс, гипербола и парабола называются коническими сечениями.

Конические сечения изучались в древности исключительно геометрическим путем, что представляло большие трудности, и только со времени Декарта, давшего метод координат, изучение их значительно упростилось.

Кривая второго порядка и её вычисление

Уравнение линии. Кривые второго порядка. Окружность. Эллипс. Гипербола. Парабола. Приведение к каноническому виду.

Уравнение линии в декартовых и полярных координатах

В лекции 3 было введено понятие неявной функции, задаваемой уравнением вида F(x,y) = 0.

Определение 6.1. Множество точек плоскости, координаты которых удовлетворяют некоторому уравнению
(6.1) F(x;y) = 0
называется линией (плоской кривой).

Не всякое уравнение определяет линию. Например, уравнение x² + y² = -1 не определяет никакой линии. Кроме того, линия может состоять из отдельных точек. Так, например, уравнению x² + y² = 0 удовлетворяет только начало координат.

Линия не обязательно является графиком функции. Так, например, уравнение x² + y² = 1 определяет окружность с центром в начале координат и радиуса 1 (т.к. d = = 1, расстояние от начала координат равно 1). Однако это не будет графиком функции у от х, т.к. каждому х, |x| ≤ 1, соответствует два значения у: у = ±, т.е. линия задается двумя функциями у = (верхняя полуокружность) и у = — (нижняя полуокружность).

Уравнение произвольной окружности с центром в точке M(a;b) и радиусом R будет иметь вид:
(6.2) (х — а)² + (у- b)² = R²,
т.к. окружность радиусом R есть геометрическое место точек плоскости, находящихся на расстоянии R от центра, т.е. в соответствии с формулой ( 6.2) d = = R.

В частности, окружность с центром в начале координат, радиусом R, описывается уравнением
x² + y² = R².

Пример 6.1. Какую линию описывает уравнение x² + y² = Rx?

Решение: Перенося Rx в левую часть и выделяя полный квадрат, получаем:
x² + y² = Rx ⇔ X2 — Rx + у² = 0 ⇔ x² — Rx +
(х — ) + y² = .

Ответ: данное уравнение описывает окружность с центром в точке M(;0) и радиусом .

Линия может определяться на плоскости уравнением как в декартовых, так и в полярных координатах: F(; r) = 0. Если при этом зависимость r от обладает тем свойством, что каждому значению из области определения соответствует единственное значение r, то данная линия будет графиком функции r от : r = f().

Пример 6.2. Построить график функции, заданной в полярных координатах уравнением r = 2 sin3, ∈ (—∞; ∞).

Решение: Составим таблицу некоторых значений этой функции:

0
r 0 1 2 1 0 -2

Рис. 70. График функции r = 2 sin 3 в декартовых координатах

Далее, пользуясь тем, что из вида графика функции r = 2 sin 3, приведенного в декартовых координатах на рис. 70, следует, что неотрицательные значения г повторяются на промежутках ∈ [0; ], ∈ [;π], ∈ [-;] и т. д.. Отсюда заключаем, что если в полярных координатах построить график в секторе ∈ [0; ], то в секторах ∈ [; π], ∈ [— ; ] и т. д. вид графика будет аналогичный, а в секторах ∈ (; ), ;0) и т.д. графика не будет, т.к. там r Рис. 71. График функции r = 2 sin 3 в полярных координатах

Такой график называют называют “трехлепестковая роза”.

Кривые второго порядка:

Определение 6.2. Кривой второго порядка называется линия, определяемая в декартовых координатах уравнением:
(6.3) Ax² + 2Bxy + Cy² + 2Dx + 2Ey + F = O.

Здесь коэффициенты — действительные числа и, по крайней мере, одно из чисел A₁B или C не равно нулю. Удобство таких обозначений для коэффициентов (2В, 2D, 2Е) станет ясно позже.

Всего существует три ’’реальных” кривых второго порядка: эллипс, (окружность — частный случай эллипса) гипербола и парабола, не считая такие линии, как ’’пара пересекающихся прямых” (ху = 0), «пара параллельных прямых” ((x — у)² — 4), ’’точка” ((x — 5)² + (у — 1)² = 0), ’’прямая” (х — 1)² = 0) и ’’мнимые кривые” (x² + y² + 5 = 0), которым не соответствует ни одна точка.

Окружность

Ранее было получено уравнение ( 6.2) окружности с центром в точке M(а; b), радиусом R. Это уравнение вида ( 6.3), т.е. окружность есть кривая второго порядка — можно показать, что уравнение (6.3), в котором A = C и B = O c помощью дополнения до полного квадрата каждой группы членов Ax² + 2Dx и By² + 2Еу приводится к виду (6.2), определяющему окружность радиуса R, или к виду: (х — а)² + (у — b)² = -R², не определяющему линию при R ≠ 0. Покажем это на примере.

Пример:

Показать, что уравнение 2x² + 2y² — 4x + 8y — 13 = 0 определяет окружность.

Решение: Поделив обе части на 2, получим уравнение в виде: x² + y² — 2x + 4y — 6,5 = 0 или, выделяя полный квадрат: (x² — 2х + 1) + (у² + 4y + 4) = 11,5 ⇔ (х — 1)² + (у + 2)² =11,5. Мы получим уравнение окружности с центром M(1; —2) и радиусом R = √11,5.

Пример:

Показать, что уравнение х² + у² + 6х — 6у + 22 = 0 не определяет никакой линии.

Решение:

Аналогично предыдущему, выделяя полный квадрат, получаем: х² + у² + 6х — 6у + 22 = 0 ⇔ (х² + 6х + 9) + (у² — 6у + 9) = — 4 ⇔ (x + 3)² + (y — 3)² =-4.

Эллипс

Определение:

Эллипсом называется множество всех точек плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами, равна постоянной величине.

Обозначим фокусы F₁ и F₁, расстояние между ними 2с, а сумму расстояний до них от точек эллипса через 2а (2а > 2с). Выберем декартову систему координат как показано на рис. 72. По определению эллипса: MF₁ + MF₂ = 2а. Пользуясь формулой (2.6) получаем:



Рис. 72. Фокусы эллипса и гиперболы

Обозначив b² = a² — с² > 0, получаем: b²x² + a²y² — a²b² или:
(6.4)

Уравнение ( 6.4) называется каноническим уравнением эллипса, а и b — полуосями, а — большая полуось, b — малая, т.к. b = Рис. 73. Эллипс

Так как 2а > 2с, то ε т.е. тем меньше эллипс вытянут вдоль фокальной оси Ох. В пределе, при ε → 0,a = b и получается окружность x² + у² = а² радиусом а При этом с = = 0, т.е. F₁ — F₂ = 0. Если эллипс расположен так, что центр его симметрии находится в точке P(x₀; y₀), а полуоси параллельны осям координат, то, перейдя к новым координатам X = х — х₀, У = у — у₀, начало которых совпадает с точкой Р, а оси параллельны исходным (см. п. 2.8), получим, что в новых координатах эллипс описывается каноническим уравнением Уравнение такого эллипса в старых координатах будет:
(6.5)

Гипербола

Определение 6.4. Гиперболой называется множество всех точек плоскости, модуль разности расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами, равен постоянной величине.

Обозначим фокусы F₁ и F₂, расстояние между ними 2с, а модуль разности расстояний до них от точек гиперболы через 2a (2c > 2a > 0). Выберем декартову систему координат, как показано на рис. 72. По определению гиперболы: MF₁ — MF₂ = ±2а. Пользуясь формулой (2.6), аналогично тому, как это было сделано для эллипса, получаем:
= ±2a ⇒ (а² — c²)x² + a²y² = a²(a² — с²). Обозначив b² = с² — a² > 0 (сравните с выводом формулы ( 6.4) для эллипса), получаем: -b²x² + a²y² = -b²a², или:

Уравнение (6.6) называется каноническим уравнением гиперболы, а и b — полуосями, а — действительной полуосью, b — мнимой. Так как х и у входят в уравнение только в четных степенях, гипербола симметрична относительно осей Ox и Оу. Выразив у из уравнения ( 6.6), получаем: , |x| ≥ а, что означает, что гипербола состоит из двух симметричных половин, верхней у = и нижней у = — . При х = а у = 0, при возрастании х от 0 до +∞, у для верхней части возрастает от 0 до +∞. C учетом симметрии, получаем линию, изображенную на рис. 74.

Точки пересечения гиперболы с осью Ox (фокальной осью) называются ее вершинами A₂(а;0), A₁(-a;0). C осью ординат гипербола не пересекается, поэтому фокальная ось называется действительной осью (а — действительная полуось), а перпендикулярная ей ось — мнимой осью (b — мнимая полуось). Можно показать, что при неограниченном возрастании абсциссы точка гиперболы неограниченно приближается к прямой у = (изображена на рис. 74 пунктиром). Такая прямая, к которой неограниченно приближается некоторая линия, называется асимптотой. Из соображений симметрии вытекает, что у гиперболы две асимптоты: у = и у =-, изображенные на рис. 74 пунктиром. Прямоугольник, с центром в начале координат, со сторонами 2а и 2b, параллельными осям, называется основным. Асимптоты являются его диагоналями.

Рис. 74. Гипербола

Отношение называется эксцентриситетом гиперболы. Т.к. 2α 1. Эксцентриситет определяет форму гиперболы: чем меньше е, тем более вытянут в направлении фокальной оси ее основной прямоугольник (= = — 1 = ε² — 1). Если а = b, гипербола называется равносторонней (равнобочной). Для нее х² — у² = а², асимптоты: у = х, у = —х, ε = = √2. Если центр гиперболы (центр ее симметрии) находится в точке P(x₀; y₀), a оси параллельны осям координат, то, применяя параллельный перенос координат (п. 2.8), аналогично тому, как это было сделано для эллипса, получим уравнение гиперболы:
(6.7)

Уравнение асимптот такой гиперболы будет: у — y₀ =

Парабола

Определение:

Параболой называется множество всех точек плоскости, равноудаленных от данной точки F, называемой фокусом, и данной прямой d, называемой директрисой (F ∉ d).

Обозначим расстояние от фокуса до директрисы р. Эта величина называется параметром параболы. Выберем декартову систему координат как показано на рис. 75.

По определению параболы MF=MN. Из рис. 75. ясно, что:

Рис. 75. Фокус и директриса параболы

Приравнивая, получаем:

(6.8) у² = 2рх

Уравнение ( 6.8) называется каноническим уравнением параболы. Т.к. у входит в уравнение в четной степени, парабола симметрична относительно оси Ох. Выразив у из уравнения, получаем: у = , х ≥ 0. При х =0 у = 0, при возрастании х от 0 до +∞ у для верхней части возрастает от 0 до +∞. C учетом симметрии получаем линию, изображенную на рис. 76.

Ось симметрии параболы называется фокальной осью (ось Ox на рис. 76), точка пересечения пораболы с ней называется вершиной пораболы (точка О на рис. 76). Если вершина параболы находится в точке P(x₀; у₀), фокальная ось параллельна и одинаково направлена с осью Ox и расстояние от директрисы до фокуса равно Р, то с помощью параллельного переноса осей координат нетрудно получить уравнение такой параболы:
(6.9) (y — y₀)² = 2p(x -х₀)

Пример:

Найти фокус, директрису, фокальную ось для параболы у= 4x².

Рис. 76. Парабола

Решение:

Как известно, осью симметрии параболы у = х² является ось Оу, а вершиной — точка О, поэтому фокальной осью будет ось Оу, вершиной — начало координат.

Для определения фокуса и директрисы запишем уравнение данной параболы в виде: x² = y, откуда 2р =; р =. Поэтому фокус имеет координаты F(0; ), а директриса — уравнение у = — (см. рис. 77).

Рис. 77. График параболы у = 4х²

Понятие о приведении общего уравнения второго порядка к каноническому виду

Если в общем уравнении кривой второго порядка ( 6.3)
Ax² + 2Bxy + Cy² + 2Dx + 2Ey +F = 0
коэффициент 2B ≠ 0, то методами, которые будут изложены позже (лекция 34) это уравнение преобразуется к виду, в котором отсутствует член с произведением координат (т.е. 2В — 0).

Для приведения к каноническому виду уравнения ( 6.3), в котором 2В = 0, необходимо дополнить члены, содержащие х и у, до полных квадратов.

Если при этом (В = 0) А = С, то получится окружность (пример 6.3), точка или мнимая окружность (пример 6.4).

Если при этом (В = 0) A ≠ C и A ∙ C > 0, то получится эллипс (пример 6.8) или мнимый эллипс.

Если при этом (В = 0) A ≠ C и A ∙ C Рис. 78. Гипербола

Пример:

Приведите к каноническому виду уравнение и определите вид кривой: x² — 6x — 4y + 29 = 0.

Решение:

Выделим полный квадрат: x² — 6x — 4y + 29 = 0 ⇔ x² — 6x + 9 = 4y — 20 ⇔ (x — 3)² = 4(у — 5). Сделав замену координат X =х — 3, Y = у — 5 мы получим каноническое уравнение параболы X² = 4Y с осью OY и параметром р = 2. Таким образом исходная парабола имела вершину A(3; 5) и ось х = 3 параллельную оси Oy (рис. 79).

Пример:

Приведите к каноническому виду уравнение и определите вид кривой: x² + 4y² + 2x — 24y + 21 =0.

Решение:

Выделив полный квадрат, получим уравнение: (x + 1)² + 4(у — 3)² = 16. Сделав замену координат: X = х + 1, Y = y — 3, получим каноническое уравнение эллипса: X² + AY² ⇔ = 1 с параметрами а = 4, b = 2. Таким образом, исходный эллипс имел центр A( —1;3) и полуоси а = 4, b = 2 (рис. 80).

Рис. 79. Решение примера 6.7 Рис. 80. Решение примера 6.8

Решение заданий на тему: Кривые второго порядка

Пример:

Составьте уравнение окружности, имеющей центр 0(2; —5) и радиус R = 4.

Решение:

В соответствии с формулой (6.2) искомое уравнение имеет вид: (х — 2)² + (у + 5)² = 16.

Ответ: (х — 2)² + (у + 5)² = 16.

Пример:

Составьте уравнение эллипса, зная, что сумма полуосей равна 8 и расстояние между фокусами равно 8.

Решение:

Из условия имеем: a + b = 8, 2c = 8. C учетом того, что b² = а² — с², находим с = 4, а = 5, b = 3. Искомое уравнение эллипса будет: .

Ответ:

Пример:

Составьте уравнение гиперболы, зная, что фокусы F₁(10;0) и F₂(-10; 0) и что гипербола проходит через точку M(12; 3√5)

Решение:

Из условия имеем: с = 10, |MF₁ — MF₂|= 2а ⇔ 2а = а = 8. C учетом того, что b² = с² — а², находим а = 8, с = 10, b = 6. Искомое уравнение гиперболы будет: .
Ответ: .

Пример:

Составьте уравнение параболы, зная, что фокус имеет координаты (5;0), а ось ординат является директрисой.

Решение:

Поскольку расстояние от директрисы параболы до ее полюса равно параметру р, а вершина находится на середине, из условия следует, что р = 5 и вершина расположена в точке A(2,5;0). Таким образом, в новых координатах X = х — 2,5; У = у каноническое уравнение параболы будет: Y² = 10Х, а в старых координатах: у² = 10(х — 2,5).
Ответ: y² = 10x — 25.

Пример:

Приведите к каноническому виду уравнение x² + y² — 2х + 6у — 5 = 0, определите вид кривой и ее параметры.

Решение:

Выделим полный квадрат: х² — 2х + у² + 6у — 5 = 0 ⇔ x² — 2x + 1 + у² + 6у + 9 — 1 — 9 — 5 = 0 ⇔ (х — 1)² + (у + 3)² = 15

В соответствии с формулой (6.2) это есть уравнение окружности с центром в точке A(1; -3), радиусом √5.
Ответ: (х — 1)² + (у + 3)² = 15.

Пример:

Приведите к каноническому виду уравнение x² + 4у² + 4х — 16у — 8 = 0, определите вид кривой и ее параметры:

Решение:

Выделим полный квадрат: x² + 4х + 4у² — 16y -8 = 0 ⇔ x²+4x + 4 + 4y²- 16y + 16-4-16-8 = 0 ⇔ (x + 2)² + 4(y²-4у+ 4) -28 ⇔ (х + 2)² + 4(y — 2)² = 28 ⇔ = 1. Сделав замену координат: X = x +2, Y = у — 2, в новых координатах получим уравнение эллипса с полуосями а = √28 и b = √7. Таким образом, в старых координатах эллипс имеет центр A(—2; 2) и полуоси а = 2√7 и b = √7.
Ответ: = 1.

Пример:

Приведите к каноническому виду уравнение x² + 2y² + 8x — 4 = 0, определите вид кривой и ее параметры.

Решение:

Выделим полный квадрат:
x²+2y²+8x-4 = 0 ⇔ x²+8x+16+2y²-16-4 =0 ⇔ (x+4)²+2y2-20 = 0 ⇔ =1

Сделав замену координат X = х + 4, Y — у, убеждаемся, что эта кривая — эллипс, с полуосями a = 2√5 и b = √10 и центром A(-4;0).
Ответ: =1

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

источники:

http://tvercult.ru/nauka/parabola-svoystva-i-grafik-kvadratichnoy-funktsii

http://lfirmal.com/krivyie-vtorogo-poryadka-ellips-giperbola-parabola/

Определение.
Параболой
называется множество всех точек
плоскости, каждая из которых находится
на одинаковом расстоянии от данной
точки, называемой фокусом,
и от данной прямой, называемой директрисой
и на проходящей
через фокус.

Для
вывода уравнения параболы введем на
плоскости прямоугольную систему
координат так, чтобы ось абсцисс проходила
через фокус перпендикулярно директрисе,
и будем считать положительным направление
от директрисы к фокусу; начало координат
расположим посередине между фокусом и
директрисой. Выведем уравнение параболы
в выбранной системе координат.

Пусть
М(х;
у)
– произвольная точка параболы. Обозначим
через r
расстояние от точки М
до фокуса F
(r
= |FM|),
через d
– расстояние от точки М
до директрисы, а через р
– расстояние от фокуса до директрисы
(рис. 47). Величину р
называют параметром
параболы, ее геометрический смысл будет
раскрыт далее. Точка М
будет лежать на данной параболе тогда
и только тогда, когда

r
= d.
(26)

Чтобы
получить искомое уравнение, нужно в
равенстве (26) заменить переменные r
и d
их выражениями через координаты х
и у.
Фокус F
имеет координаты (р/2;0);
поэтому, используя формулу, выражающую
расстояние между точками М
и F,
находим

.
(27)

Обозначим
через Q
основание перпендикуляра, опущенного
из точки М
на директрису. Очевидно, точка Q
имеет координаты (–p/2;
у).
Тогда с помощью формулы, выражающей
расстояние между точками М
и Q,
находим

.
(28)

Заменяя
в равенстве (26) r
и d
выражениями (27) и (28), получим

.
(29)

Это
и есть искомое уравнение параболы.
Приведем его к более удобному виду, для
чего возведем обе части равенства (29) в
квадрат. Получаем

x2
px
+
+
y2
= x2
+ px
+

или

y2
= 2px.
(30)

Проверим,
что уравнение (30) после возведения в
квадрат обеих частей равенства (29) не
приобрело «лишних» корней. Для этого
достаточно показать, что для любой
точки, координаты х
и у
которой удовлетворяют уравнению (30),
выполнено соотношение (26). Действительно,
из уравнения (30) вытекает, что x
≥ 0, поэтому для точек, с неотрицательными
абсциссами имеем d
= p/2
+ x.
Подставляя значение y2
из (30) в выражение (27) и учитывая, что x
≥ 0, получаем r
= p/2
+ x,
т. е. величины r
и d
равны, что и требовалось доказать. Таким
образом, уравнению (30) удовлетворяют
координаты точек данной параболы и
только они, т. е. это уравнение является
уравнением данной параболы.

Уравнение
(30) называется каноническим
уравнением параболы
.
Так как это уравнение второй степени,
то парабола – линия второго порядка.

Исследуем
теперь форму параболы по ее каноническому
уравнению.

Так
как уравнение (30) содержит у
только в четной степени, то парабола
симметрична относительно оси Оx.
Следовательно, достаточно рассмотреть
только ее часть, лежащую в верхней
полуплоскости. Для этой части y
>
0, поэтому, разрешая уравнение (30)
относительно у,
получаем

.
(31)

Из равенства
(31) вытекают следующие утверждения:

1)
если x
< 0, то уравнение (31) дает мнимые значения
у
и, следовательно, левее оси Оy
ни одной точки параболы нет;

2) если х= 0, тоу= 0, т. е. начало
координат лежит на параболе и является
самой левой ее точкой;

3)
при возрастании х
возрастает и у,
причем если x
→+∞, то y
→+∞.

Таким
образом, переменная точка М(х;
у),
перемещаясь по параболе, исходит из
начала координат и с ростом х
движется «вправо» и «вверх», причем при
x
→+∞ точка М
бесконечно удаляется как от оси Oy,
так и от оси Ox.

Симметрично
отражая рассмотренную часть параболы
относительно оси Ox,
получаем всю параболу (рис. 48), заданную
уравнением (30).

Точка
О
называется вершиной
параболы
,
ось симметрии (ось Ox)
осью
параболы
.
Число р,
т. е. параметр параболы,
как известно, выражает расстояние от
фокуса до директрисы. Выясним, как влияет
параметр параболы на ее форму. Для этого
возьмем какое-нибудь определенное
значение абсциссы, напримерх
= 1, и из уравнения (30) найдем соответствующие
значения ординаты:
.
Получаем на параболе две точкии,
симметричные относительно ее оси;
расстояние между ними равно.
Отсюда заключаем, что это расстояние
тем больше, чем большер.
Следовательно параметр р
характеризует «ширину» области,
ограниченной параболой. В этом и состоит
геометрический смысл параметра р.

Парабола,
уравнение которой y2
= –2px,
где p
> 0, расположена слева от оси ординат
(рис. 49). Вершина этой параболы совпадает
с началом координат, осью симметрии
является ось Ox.

По
аналогии с предыдущим можно утверждать,
что уравнение x2
= 2py,
p
> 0 является уравнением параболы,
вершина которой совпадает с началом
координат, а осью симметрии является
ось Oy
(рис. 50). Эта парабола лежит выше оси
абсцисс.

Уравнение
x2
= –2py,
p
> 0 определяет параболу, лежащую ниже
оси Ox,
с вершиной в начале координат (рис. 51).

Уравнение
параболы, изображенной на рис. 52, имеет
вид

x2
= 2p(y
a),
p
> 0, a
< 0,

ее
вершина смещена вниз на a.

Парабола,
изображенная на рис. 53, имеет вершину
в точке (b;
0), ее уравнение имеет вид

y2
= 2p(x
b),
p
> 0, b
> 0.

Пример.
Дано уравнение параболы y2
= 6x.
Составить уравнение ее директрисы и
найти координаты ее фокуса.

Решение.
Сравнивая данное уравнение с каноническим
уравнением параболы (30), заключаем, что
2р
= 6, откуда р
= 3. Так как фокус параболы имеет координаты
(р/2;
0), а директриса – уравнение х
= –р/2,
то для данной параболы получаем:
координаты фокуса (3/2; 0) и уравнение
директрисы х
= –3/2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий