Как найти значение вектора по рисунку

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

Рассмотрим некоторые свойства нулевого вектора.

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство – параллельный перенос.

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Наша цель – найти такой вектор, который будет являться суммой двух данных:

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

Тогда нам лишь остается найти сумму с обратным вектором:

А сделать это очень легко по правилу треугольника:

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

Скалярное произведение векторов

Еще одной важной операцией является произведение векторов. Рассмотрим скалярное произведение. Его результатом является скаляр.

Уравнение очень простое: произведение длин этих векторов на косинус угла между ними.

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора – словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, – большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

Если угол тупой, проекция отрицательна:

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180 О ). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

Если вектор направлен в другую сторону, проекция отрицательна:

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

(vec) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Тогда обозначим прямой угол и угол между вектором и осью:

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Затем запишем, чему равна сумма этих векторов.

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

Убедимся в этом.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Рассмотрим (vec). Заметим, что он является обратным для (vec): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Поступаем с (vec) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

С (vec) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Обозначим угол (alpha ), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол (beta ). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла (beta ) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла (beta ) из 180 градусов найдем угол (alpha ):

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Заключение

Итак, теперь мы знаем о векторах очень много! Мы выяснили, зачем они нужны и как с ними работать, а еще разобрали их роль в решении различных задач. Теперь векторы — наша прочная опора.

Именно из таких знаний складывается порой нечто более сложное и комплексное, что-то, что безусловно нам однажды поможет.

Физика

Тестирование онлайн

Вектор

Вектор – это отрезок, который имеет направление. Конец вектора совпадает со стрелкой, начало – точка. Модуль вектора (абсолютная величина) – длина этого направленного отрезка.

Если начало вектора совпадает с его концом, получим нулевой вектор.

Два вектора являются равными, если их длина одинаковая и они имеют одинаковое направление. Они совмещаются при переносе.

На рисунке только вектор a равен вектору b. Вектор c им не равен, так как направлен в противоположную сторону

Вектор -c – это вектор c, но противоположного направления. Тогда

Проекция вектора

Проекция вектора на ось имеет положительное значение в том случае, когда направление вектора совпадает с направлением оси. Отрицательное значение – в противоположном случае.

Спроецируем вектор перемещения на ось Ox и на ось Oy. Для того, чтобы получить проекцию необходимо из координаты конца вектора отнять координату начала. На ось ОХ: sx=x-x0, на ось ОУ: sy=y-y0.

Частные случаи, когда проекция на ось Ox или Oy нулевая.

Сумма составляющих вектора по осям равна данному вектору, т.е.

Сложение векторов

Правило параллелограмма: диагональ параллелограмма – сумма двух векторов с общим началом.

Правило треугольника: от конца первого вектора отложить второй вектор, тогда их суммой будет вектор, начало которого совпадает с началом первого вектора, а конец с концом второго вектора.

Рассмотрим правила на примерах.

Вычитание векторов

Вычитание векторов – это сумма положительного и отрицательного вектора.

Упражнения

Может ли при сложении двух векторов по правилу параллелограмма равнодействующая быть численно равной одному из составляющих векторов?

Может ли при сложении двух векторов по правилу параллелограмма равнодействующая быть меньше меньшего из составляющих векторов?

[spoiler title=”источники:”]

http://fizmat.by/kursy/jelementy_mat/vektor

[/spoiler]

Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i→ должно совпадать с осью Ox, а направление вектора j→ с осью Oy.

Определение 1

Векторы i→ и j→ называют координатными векторами.

Координатные векторы неколлинеарны. Поэтому любой вектор p→ можно разложить по векторам p→=xi→+yj→. Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p→ по координатным векторам называются координатами вектора p→ в данной системе координат.

Нахождение координат вектора через координаты точек

Координаты вектора записываются в фигурных скобках p→x; y. На рисунке вектор OA→ имеет координаты 2; 1, а вектор b→ имеет координаты 3;-2. Нулевой вектор представляется в виде 0→0; 0.

Если векторы a→ и b→ равны, то и y1=y2. Запишем это так: a→=x1i→+y1j→=b→=x2i→+y2j→, значит x1=x2, y1=y2 .

Таким образом, координаты равных векторов соответственно равны.

Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на Oxy заданы координаты точек начала и конца AB→: Axa, ya, Bxb, yb. Найти координаты заданного вектора.

Изобразим координатную ось.

Нахождение координат вектора через координаты точек

Из формулы сложения векторов имеем OA→+AB→=OB→, где O – начало координат. Отсюда следует, что AB→=OB→-OA→.

OA→ и OB→ – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения OA→=xa, ya, OB→=xb, yb.

По правилу операций над векторами найдем AB→=OB→-OA→=xb-xa, yb-ya.

Нахождение координат вектора через координаты точек

Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.

Для нахождения координат вектора, необходимо найти разность его точек конца и начала.

Пример 1

Найти координаты OA→ и AB→ при значении координат точек A(2,-3), B(-4,-1).

Решение

Для начала определяется радиус-вектор точки A. OA→=(2,-3). Чтобы найти AB→, нужно вычесть значение координат точек начала из координат точек конца.

Получаем: AB→=(-4-2,-1-(-3))=(-6, 2).

Ответ: OA→=(2,-3), AB→=(-6,-2).

Пример 2

Задано трехмерное пространство с точкой A=(3, 5, 7), AB→=(2, 0,-2). Найти координаты конца AB→.

Решение

Подставляем координаты точки A: AB→=(xb-3, yb-5, zb-7).

По условию известно, что AB→=(2, 0,-2).

Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: xb-3=2yb-5=0zb-7=-2

Отсюда следует, что координаты точки B AB→равны: xb=5yb=5zb=5 

Ответ:  B(5, 5, 5).

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Содержание:

Определение: Вектором называется направленный отрезок прямой Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

где А начало, а В конец вектора.

Замечание: Векторы в основном обозначают одной прописной буквой латинского алфавита со стрелочкой (или черточкой) наверху Вектор - определение и основные понятия с примерами решения.

Определение: Если начало и конец вектора Вектор - определение и основные понятия с примерами решения не закреплены, то он называется свободным.

Замечание: Свободный вектор можно перемещать как вдоль его прямой, так и параллельно самому себе.

Определение: Если зафиксирована точка, которая определяет начало вектора, то она называется точкой приложения вектора.

Определение: Длиной (модулем) вектора а называется расстояние от его начала до его конца: Вектор - определение и основные понятия с примерами решения

Определение: Векторы называются коллинеарными (Рис. 1), если они лежат на одной прямой или в параллельных прямых.

Вектор - определение и основные понятия с примерами решения

Рис.1. Коллинеарные векторы.

Определение: Векторы называются компланарными (Рис. 2), если они лежат в одной плоскости или параллельных плоскостях.

Вектор - определение и основные понятия с примерами решения

Рис.2. Компланарные векторы.

Определение: Два коллинеарных вектора Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения называются равными, если они со-направлены и имеют одинаковую длину.

Определение вектора и основные свойства

Многие величины, например, масса, длина, время, температура и др. характеризуются только числовыми значениями. Такие величины называются скалярными величинами. Некоторые же величины, например, скорость, ускорение, сила и др. определяются как числовыми значениями, так и направлением. Такие величины называются векторными величинами. Перемещение – самый простой пример векторных величин. Перемещение тела из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения изображается с помощью направленного от Вектор - определение и основные понятия с примерами решения до Вектор - определение и основные понятия с примерами решения отрезка – вектора. Вектор изображается с помощью направленного отрезка.

Вектор - определение и основные понятия с примерами решения

Длина этого отрезка, называется длиной или модулем вектора. Вектор обозначается указанием начальной и конечной точки. Например, вектор Вектор - определение и основные понятия с примерами решения, здесь Вектор - определение и основные понятия с примерами решения – начало, Вектор - определение и основные понятия с примерами решения вектора. Вектор обозначается также и маленькими буквами, например, вектор Вектор - определение и основные понятия с примерами решения. Длину вектора Вектор - определение и основные понятия с примерами решения обозначают, как: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Два вектора называется равными, если они равны по модулю и одинаково направлены. На рисунке векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения равны: Вектор - определение и основные понятия с примерами решения.

• Два вектора называются противоположными, если они равны по модулю и противоположно направлены.

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения противоположны: Вектор - определение и основные понятия с примерами решения

Если начало и конец вектора совпадают, то такой вектор называется нулевым и обозначается Вектор - определение и основные понятия с примерами решения Длина нулевого вектора равна 0, а направление не определено. Если направленные отрезки, изображающие векторы, параллельны или лежат на одной и той же прямой, то они называются коллинеарными векторами. Коллинеарные вектора могут быть одинаково направлены или противоположно направлены. Одинаково направленные вектора обозначаются как Вектор - определение и основные понятия с примерами решения, а противоположно направленные Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решения

На рисунке векторы Вектор - определение и основные понятия с примерами решения -коллинеарные векторы. Здесь Вектор - определение и основные понятия с примерами решения

Выражения вектора компонентами в координатной плоскости

Рассмотрим вектор Вектор - определение и основные понятия с примерами решения на координатной плоскости. Конечная точка Вектор - определение и основные понятия с примерами решения относительно начальной точки Вектор - определение и основные понятия с примерами решения изменила свое положение вдоль оси Вектор - определение и основные понятия с примерами решения на Вектор - определение и основные понятия с примерами решения (при Вектор - определение и основные понятия с примерами решения направо, при Вектор - определение и основные понятия с примерами решения налево), вдоль оси Вектор - определение и основные понятия с примерами решения на Вектор - определение и основные понятия с примерами решения (при Вектор - определение и основные понятия с примерами решения вверх, при Вектор - определение и основные понятия с примерами решения вниз). Векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения, определенные (и по модулю, и по направлению) парами чисел Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения(как указано выше), являются компонентами вектора Вектор - определение и основные понятия с примерами решения. На координатной плоскости вектор записывается как Вектор - определение и основные понятия с примерами решения. Эта запись называется записью вектора с компонентами.

Вектор - определение и основные понятия с примерами решения

Равные векторы имеют равные компоненты. Наоборот, если, соответствующие компоненты векторов равны, то эти векторы равны. На рисунке Вектор - определение и основные понятия с примерами решения. Если дан какой либо вектор Вектор - определение и основные понятия с примерами решения, то выбрав любую точку плоскости как начало, можно построить вектор равный данному, причем только один. Значит, выбирая разные начальные точки можно построить бесконечно много векторов равных данному.

Вектор - определение и основные понятия с примерами решения

На координатной плоскости вектор Вектор - определение и основные понятия с примерами решения с начальной точкой Вектор - определение и основные понятия с примерами решения и конечной точкой Вектор - определение и основные понятия с примерами решения согласно координатам этих точек можно выразить с компонентами. Так как Вектор - определение и основные понятия с примерами решения, то Вектор - определение и основные понятия с примерами решения. Здесь Вектор - определение и основные понятия с примерами решения называются также координатами вектора.

Вектор - определение и основные понятия с примерами решения

Длина вектора

Длину вектора можно найти по координатам начальной у и конечной точек, используя формулу расстояния между точками.

Вектор - определение и основные понятия с примерами решения

Длину вектора данными с компонентами можно найти по формуле: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 1.

Напишите вектор Вектор - определение и основные понятия с примерами решения начальная точка которого Вектор - определение и основные понятия с примерами решения, конечная Вектор - определение и основные понятия с примерами решения в виде Вектор - определение и основные понятия с примерами решения

Решение: Напишем вектор с компонентами: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 2.

Точка Вектор - определение и основные понятия с примерами решения начальная точка вектора Вектор - определение и основные понятия с примерами решения Найдите координаты конечной точки этого вектора.

Решение: Примем за координаты конечной точки вектора Вектор - определение и основные понятия с примерами решения – точку Вектор - определение и основные понятия с примерами решения: Тогда Вектор - определение и основные понятия с примерами решения. Конечная точка этого вектора Вектор - определение и основные понятия с примерами решения

Пример 3.

В координатной плоскости нарисуйте несколько векторов равных вектору Вектор - определение и основные понятия с примерами решения начальными точками которых являются точки Вектор - определение и основные понятия с примерами решения.

Решение: Данные точки отмечаются на координатной плоскости. Начиная с этих точек изображаются векторы равные Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 4.

Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения соответственно начальная и конечная точка вектора Вектор - определение и основные понятия с примерами решения. Напишите этот вектор в виде Вектор - определение и основные понятия с примерами решения и найдите длину Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Направление вектора

В соответствии с областями применения существуют различные способы определения направления вектора. В повседневной жизни мы выражаем направление словами налево, направо, вниз, вверх или же восток, запад, север, юг. На координатной плоскости направление вектора определяется углом с положительным направлением оси Вектор - определение и основные понятия с примерами решения против часовой стрелки. Этот угол назовем углом наклона.

На рисунке длина вектора Вектор - определение и основные понятия с примерами решения обозначена Вектор - определение и основные понятия с примерами решения а угол, определяющий направление, через Вектор - определение и основные понятия с примерами решения.

длина вектора: Вектор - определение и основные понятия с примерами решения

направление вектора: Вектор - определение и основные понятия с примерами решения или Вектор - определение и основные понятия с примерами решения

Иногда для простоты вектор изображается на плоскости только указанием положительного направления Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Пример 1.

Вектор перемещения, модуль которого 200 м, направлен под углом наклона Вектор - определение и основные понятия с примерами решения Выбрав масштаб 1 см : 100 м, нарисуйте этот вектор.

Решение: От начала луча, образующий с положительным направлением оси Вектор - определение и основные понятия с примерами решения угол в Вектор - определение и основные понятия с примерами решения, соответственно масштабу 1 см : 100 м линейкой отложим отрезок длиной 2 см.

Пример 2.

Определите длину и угол наклона вектора Вектор - определение и основные понятия с примерами решения

Решение: Произвольную точку на координатной плоскости примем за начало вектора. От этой точки по горизонтальной оси отложим компоненту Вектор - определение и основные понятия с примерами решения, равную 3 единицам, по вертикальной оси отложим компоненту Вектор - определение и основные понятия с примерами решения, равную 4 единицам, и построим вектор Вектор - определение и основные понятия с примерами решения как показано на рисунке. Если измерить транспортиром угол Вектор - определение и основные понятия с примерами решения, то можно увидеть, что его приближенное значение равно Вектор - определение и основные понятия с примерами решения Это можно проверить вычислениями.

Вектор - определение и основные понятия с примерами решения

Длина вектора: Вектор - определение и основные понятия с примерами решения Угол наклона: Вектор - определение и основные понятия с примерами решения

Сложение и вычитание коллинеарных векторов

Вектор, показывающий сумму одинаково направленных коллинеарных векторов называется результирующим. Его абсолютная величина равна сумме абсолютных величин данных векторов, а сам вектор имеет одинаковое направление с данными векторами.

Вектор - определение и основные понятия с примерами решения

Абсолютная величина результирующего вектора 2-х противоположно-направленных коллинеарных векторов равна разности абсолютных величин этих векторов, а направление совпадает с направлением вектора большего по абсолютной величине.

Вектор - определение и основные понятия с примерами решения

Выполним графически сложение векторов, соответствующее реальным жизненным ситуациям.

Задача 1.

Для того, чтобы достичь финиша, Джамиля должна пройти 3 знака. Если она пройдет 10 м на восток, то доберется до 1-го знака, потом пройдя 50 м вперед до 2-го знака и, пройдя в том же направлении еще 20 м, сможет добраться до финиша. Изобразите движение Джамили графически – векторами. Выберем масштаб:

1 см : 10 м и на числовой оси нарисуем векторы так, чтобы начало второго вектора совпало с концом первого, а начало третьего с концом второго.

Вектор - определение и основные понятия с примерами решения

Результирующий вектор обозначим через Вектор - определение и основные понятия с примерами решения Его длину можно выразить как: Вектор - определение и основные понятия с примерами решения

Общее перемещение: 10 м + 50 м + 20 м = 80 м (на восток) Изображается вектор Вектор - определение и основные понятия с примерами решения длиной 8 см согласно выбранному масштабу.

Задача 2.

Представьте, что вы прошли 100 м на восток, еще 200 метров на запад.

Нарисуем данные вектора в масштабе

По определению, модуль результирующего вектора равен разности модулей векторов. А направление будет на запад.

В этом случае длина результирующего вектора Вектор - определение и основные понятия с примерами решения равна: Вектор - определение и основные понятия с примерами решения

200 м 100 м = 100 м (на запад)

Вектор - определение и основные понятия с примерами решения

Пусть векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения противоположно направленные, а Вектор - определение и основные понятия с примерами решения их результирующий вектор. При Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения одинаково направлен с вектором Вектор - определение и основные понятия с примерами решения.

При Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения одинаково направлен с вектором Вектор - определение и основные понятия с примерами решения.

При Вектор - определение и основные понятия с примерами решения то есть сумма противоположных векторов равна Вектор - определение и основные понятия с примерами решения вектору.

Для того, чтобы найти разность Вектор - определение и основные понятия с примерами решения нужно к вектору Вектор - определение и основные понятия с примерами решения прибавить вектор Вектор - определение и основные понятия с примерами решения, противоположный вектору Вектор - определение и основные понятия с примерами решения.

То есть выражения Вектор - определение и основные понятия с примерами решения эквивалентные.

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Жившие в XVII веке ученые-математики Рене Декарт и Пьер Ферма, взаимосвязывая алгебру и геометрию, создали новую область науки-аналитическую геометрию. Аналитическая геометрия, благодаря методу координат, позволила, с одной стороны, посредством алгебраических выкладок легко доказывать геометрические теоремы, а с другой стороны, в силу наглядности геометрических представлений упрощает решение задач над векторами.

Сложение векторов

Существуют различные способы сложения неколлинеарных векторов. Рассмотрим два графических способа. При сложении векторов графическим способом данные вектора и результирующий вектор, показывающий их сумму строятся с помощью линейки (модуль) и транспортира(направление).

Вектор - определение и основные понятия с примерами решения

Вектора можно складывать в любой последовательности. Переместительное свойство сложения верно и для векторов. По этому правилу можно складывать три и более вектора. Определим графическим способом вектор Вектор - определение и основные понятия с примерами решения Для этого: 1) нарисуем вектор Вектор - определение и основные понятия с примерами решенияпротивоположный вектору Вектор - определение и основные понятия с примерами решения 2) Вектор - определение и основные понятия с примерами решения переместим так, чтобы конечная точка вектора Вектор - определение и основные понятия с примерами решения совпадала с начальной точкой вектора Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

3. Соединим начальную точку вектора Вектор - определение и основные понятия с примерами решения и конечную точку вектора Вектор - определение и основные понятия с примерами решения Это будет вектор Вектор - определение и основные понятия с примерами решения

Пример 1.

Джамал прошел от палатки, разбитой в лагере 60 метров на юг, 120 м на восток, еще 100 м на север и дошел до озера. Какое наименьшее расстояние от палатки до озера?

Вектор - определение и основные понятия с примерами решения

Решение:

Выберем масштаб: 1 см : 40 м

Движение Джамала изобразим последовательно соответствующими векторами по выбранному масштабу.

Начальную точку 1-го вектора, показывающего движение Джамала, соединим с конечной точкой 3-го вектора. Полученный результирующий вектор Вектор - определение и основные понятия с примерами решения выражает сумму векторов Вектор - определение и основные понятия с примерами решения Длина этого вектора приблизительно 126,4 метров, а направление под углом Вектор - определение и основные понятия с примерами решения

Ответ: Озеро находится на расстоянии 126,4 м от палатки.

Правило параллелограмма

1. Даны вектора: Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

2. Переместим вектор Вектор - определение и основные понятия с примерами решения так, чтобы начальные точки векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения совпадали.

3. Построим параллелограмм со сторонами Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения параллельным переносом соответствующих векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения Диагональ этого параллелограмма, которая соединяет начальную и конечную точку векторов Вектор - определение и основные понятия с примерами решения показывает их сумму: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Переместительные и сочетательные свойства сложения векторов

Для любых векторов Вектор - определение и основные понятия с примерами решения верно следующее:

Переместительное свойство: Вектор - определение и основные понятия с примерами решения

Сочетательное свойство: Вектор - определение и основные понятия с примерами решения

Свойство идентичности: Вектор - определение и основные понятия с примерами решения

Сумма противоположенных векторов: Вектор - определение и основные понятия с примерами решения

Пример:

Вектор - определение и основные понятия с примерами решения

Сложение векторов, заданных компонентами

Выполним сложение двух векторов на координатной плоскости, используя их компоненты.

Суммой векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения будет вектор: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 1.

Если Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения выразите через компоненты.

Решение: Для того, чтобы найти компоненты вектора Вектор - определение и основные понятия с примерами решения нужно по горизонтали (оси абсцисс) и по вертикали (оси ординат) сложить соответствующие компоненты векторов Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 2.

Самолет летит в направлении северо-востока со скоростью 707 миль/час. Скорость самолета выражается вектором Вектор - определение и основные понятия с примерами решения В восточном направлении дует ветер со скоростью 40 миль/час. Скорость ветра выражается вектором Вектор - определение и основные понятия с примерами решения Как изменится скорость самолета под воздействием ветра? Вектор - определение и основные понятия с примерами решения

Конечная скорость самолета:Вектор - определение и основные понятия с примерами решения

Аналогично можно показать, что Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 3.

Если Вектор - определение и основные понятия с примерами решения, то Вектор - определение и основные понятия с примерами решения

Тригонометрические отношения и компоненты вектора

Найдем компоненты вектора Вектор - определение и основные понятия с примерами решения в координатной плоскости, используя тригонометрические отношения. Обозначим Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения имеем: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Запись Вектор - определение и основные понятия с примерами решения также является записью вектора с компонентами. Угол наклона можно найти по формуле Вектор - определение и основные понятия с примерами решения

Пример 1.

Автомобиль движется в северо-восточном направлении под углом Вектор - определение и основные понятия с примерами решения со скоростью 80 км/ч. Напишите вектор скорости с компонентами.

Вектор - определение и основные понятия с примерами решения

Решение: По данным Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

скорость в вост. напр. Вектор - определение и основные понятия с примерами решения

скорость в север, напр. Вектор - определение и основные понятия с примерами решения

Пример 2.

Движения мяча изображены двумя векторами: Вектор - определение и основные понятия с примерами решения с углом наклона Вектор - определение и основные понятия с примерами решения и модулем равным 18 м и Вектор - определение и основные понятия с примерами решения с углом наклона Вектор - определение и основные понятия с примерами решения и модулем равным 10 м. Определите вектор, показывающий перемещение мяча (модуль и направление).

Вектор - определение и основные понятия с примерами решения

Решение: Перемещение мяча: Вектор - определение и основные понятия с примерами решения Запишем векторы Вектор - определение и основные понятия с примерами решения c компонентами: Вектор - определение и основные понятия с примерами решения

Здесь Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пусть Вектор - определение и основные понятия с примерами решения

По правилу сложения векторов с заданными компонентами имеем: Вектор - определение и основные понятия с примерами решения

Найдем длину и угол наклона вектора перемежения Вектор - определение и основные понятия с примерами решения мяча, изобразив этот вектор в новой системе координат.

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Умножение вектора на число

Произведение вектораВектор - определение и основные понятия с примерами решения на число Вектор - определение и основные понятия с примерами решения записывается как Вектор - определение и основные понятия с примерами решения а его длина равна Вектор - определение и основные понятия с примерами решения при Вектор - определение и основные понятия с примерами решения вектора Вектор - определение и основные понятия с примерами решения имеют одинаковое направление, при Вектор - определение и основные понятия с примерами решения вектора Вектор - определение и основные понятия с примерами решения имеют противоположное направление. Вектор - определение и основные понятия с примерами решения Любой вектор коллинеарен вектору, выражающему произведение этого вектора на число (отличное от нуля). Если Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения коллинеарные векторы, то существует единственное число Вектор - определение и основные понятия с примерами решения что Вектор - определение и основные понятия с примерами решения

Свойство умножения вектора на число

1. Сочетательное свойство.

Для любых чисел Вектор - определение и основные понятия с примерами решения и вектора Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

2. Распределительное свойство.

Для любых чисел Вектор - определение и основные понятия с примерами решения и вектора Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Для любого числа Вектор - определение и основные понятия с примерами решения и векторов Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Действия над векторами, заданным над координатами

Для вектора Вектор - определение и основные понятия с примерами решения заданного компонентами и для любого числа Вектор - определение и основные понятия с примерами решения верно: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример: Если Вектор - определение и основные понятия с примерами решения

Пример: Если Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

• Соответствующие координаты коллинеарных векторов пропорциональны.

• Наоборот, если соответствующие координаты векторов пропорциональны, то эти векторы коллинеарные.

Условие коллинеарности векторов Вектор - определение и основные понятия с примерами решения (при Вектор - определение и основные понятия с примерами решения)

Вектор - определение и основные понятия с примерами решения

Пример: При каком значении Вектор - определение и основные понятия с примерами решения векторы Вектор - определение и основные понятия с примерами решения коллинеарны?

Вектор - определение и основные понятия с примерами решения

Подробное объяснение вектора:

Определение: Вектор — Упорядоченную совокупность Вектор - определение и основные понятия с примерами решения n вещественных чисел называют n-мерным вектором, а числа Вектор - определение и основные понятия с примерами решения – компонентами, или координатами, вектора.

Пример:

Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения:

Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, Вектор - определение и основные понятия с примерами решения Два вектора называются равными, если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) Вектор - определение и основные понятия с примерами решения(2, 3, 5, 0, 1).

Операции над векторами. Произведением вектора Вектор - определение и основные понятия с примерами решения на действительное число Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения Суммой векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решенияназывается вектор Вектор - определение и основные понятия с примерами решения

Пространство векторов. N-мерное векторное пространство Вектор - определение и основные понятия с примерами решения определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

Вектор - определение и основные понятия с примерами решения

где через Вектор - определение и основные понятия с примерами решения обозначается количество Вектор - определение и основные понятия с примерами решения блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров Вектор - определение и основные понятия с примерами решения

Линейная независимость. Система Вектор - определение и основные понятия с примерами решения n-мерных векторов называется линейно зависимой, если найдутся такие числа Вектор - определение и основные понятия с примерами решения из которых хотя бы одно отлично от нуля, что выполняется равенство Вектор - определение и основные понятия с примерами решения в противном случае данная система векторов называется линейно независимой, то есть указанное равенство возможно лишь в случае, когда все Вектор - определение и основные понятия с примерами решения Геометрический смысл линейной зависимости векторов в Вектор - определение и основные понятия с примерами решения интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Левая и правая тройки векторов. Тройка некомпланарных векторов Вектор - определение и основные понятия с примерами решенияназывается правой, если наблюдателю из их общего начала обход концов векторов Вектор - определение и основные понятия с примерами решения в указанном порядке кажется совершающимся по часовой стрелке. В противном случае Вектор - определение и основные понятия с примерами решения – левая тройка. Все правые (или левые) тройки векторов называются одинаково ориентированными.

Базис и координаты. Тройка Вектор - определение и основные понятия с примерами решения некомпланарных векторов в Вектор - определение и основные понятия с примерами решения называется базисом, а сами векторы Вектор - определение и основные понятия с примерами решения – базисными. Любой вектор Вектор - определение и основные понятия с примерами решения может быть единственным образом разложен по базисным векторам, то есть представлен в виде Вектор - определение и основные понятия с примерами решения (1.1) числа Вектор - определение и основные понятия с примерами решения в разложении (1.1) называются координатами вектора Вектор - определение и основные понятия с примерами решения в базисе Вектор - определение и основные понятия с примерами решения и обозначаются Вектор - определение и основные понятия с примерами решения

Ортонормированный базис. Если векторы Вектор - определение и основные понятия с примерами решения попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным, а координаты Вектор - определение и основные понятия с примерами решения прямоугольными. Базисные векторы ортонормированного базиса будем обозначать Вектор - определение и основные понятия с примерами решения Будем предполагать, что в пространстве Вектор - определение и основные понятия с примерами решения выбрана правая система декартовых прямоугольных координат Вектор - определение и основные понятия с примерами решения

Векторное произведение. Векторным произведением вектора Вектор - определение и основные понятия с примерами решения на вектор Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения , который определяется следующими тремя условиями:

  1. Длина вектора Вектор - определение и основные понятия с примерами решения численно равна площади параллелограмма, построенного на векторах Вектор - определение и основные понятия с примерами решения
  2. Вектор Вектор - определение и основные понятия с примерами решения перпендикулярен к каждому из векторов Вектор - определение и основные понятия с примерами решения
  3. Векторы Вектор - определение и основные понятия с примерами решениявзятые в указанном порядке, образуют правую тройку.

Для векторного произведения Вектор - определение и основные понятия с примерами решения вводится обозначение Вектор - определение и основные понятия с примерами решения

Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, тo Вектор - определение и основные понятия с примерами решения в частности, Вектор - определение и основные понятия с примерами решения Векторные произведения ортов: Вектор - определение и основные понятия с примерами решения Если векторы Вектор - определение и основные понятия с примерами решения заданы в базисе Вектор - определение и основные понятия с примерами решения координатами Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения Смешанное произведение. Если векторное произведение двух векторов Вектор - определение и основные понятия с примерами решения скалярно умножается на третий вектор Вектор - определение и основные понятия с примерами решения, то такое произведение трех векторов называется смешанным произведением и обозначается символом Вектор - определение и основные понятия с примерами решения Если векторы Вектор - определение и основные понятия с примерами решения в базисе Вектор - определение и основные понятия с примерами решения заданы своими координатами Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Смешанное произведение имеет простое геометрическое толкование – это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка Вектор - определение и основные понятия с примерами решения – левая, то Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения следовательно Вектор - определение и основные понятия с примерами решения

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору Вектор - определение и основные понятия с примерами решения обозначается символом Вектор - определение и основные понятия с примерами решения Символом Вектор - определение и основные понятия с примерами решения обозначается радиус-вектор точки М, символами Вектор - определение и основные понятия с примерами решения обозначаются модули векторов Вектор - определение и основные понятия с примерами решения

Пример №1

Найдите угол между векторамиВектор - определение и основные понятия с примерами решенияединичные векторы и угол между Вектор - определение и основные понятия с примерами решения равен 120°.

Решение:

Имеем: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Окончательно имеем: Вектор - определение и основные понятия с примерами решения

Пример №2

Зная векторы АВ(-3,-2,6) и ВС(-2,4,4), вычислите длину высоты AD треугольника АВС.

Решение:

Обозначая площадь треугольника АВС через S, получим:

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения значит, вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения (—5,2,10).

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример №3

Даны два вектора Вектор - определение и основные понятия с примерами решения Найдите единичный вектор Вектор - определение и основные понятия с примерами решения, ортогональный векторам Вектор - определение и основные понятия с примерами решения и направленный так, чтобы упорядоченная тройка векторов Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения была правой.

Решение:

Обозначим координаты вектора Вектор - определение и основные понятия с примерами решенияотносительно данного правого ортонормированного базиса через Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решения По условию задачи требуется, чтобы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения Имеем систему уравнений для нахождения Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Из первого и второго уравнений системы получим Вектор - определение и основные понятия с примерами решенияПодставляя Вектор - определение и основные понятия с примерами решения в третье уравнение, будем иметь: Вектор - определение и основные понятия с примерами решения

Используя условие Вектор - определение и основные понятия с примерами решенияполучим неравенство Вектор - определение и основные понятия с примерами решения

С учетом выражений для Вектор - определение и основные понятия с примерами решения перепишем полученное неравенство в виде: Вектор - определение и основные понятия с примерами решения откуда следует, что Вектор - определение и основные понятия с примерами решения

Линейные операции над векторами

1. Сумма векторов. Для нахождения суммы векторов существует два правила: а) правило треугольника. Пусть векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения неколлинеарные и пусть начало вектора Вектор - определение и основные понятия с примерами решения совмещено с концом вектора Вектор - определение и основные понятия с примерами решения, тогда их суммой будет вектор Вектор - определение и основные понятия с примерами решения начало которого совпадает с началом вектора Вектор - определение и основные понятия с примерами решения, а его конец – с концом вектора Вектор - определение и основные понятия с примерами решения(Рис. 3):

Вектор - определение и основные понятия с примерами решения

Рис. 3. Сложение векторов по правилу треугольника.

б) правило параллелограмма. Пусть векторы Вектор - определение и основные понятия с примерами решения неколлинеарные и пусть начала векторов Вектор - определение и основные понятия с примерами решения совпадают. Построим на векторах Вектор - определение и основные понятия с примерами решения параллелограмм (Рис. 4), тогда их суммой будет вектор Вектор - определение и основные понятия с примерами решения начало которого совпадает с общим началом векторов Вектор - определение и основные понятия с примерами решения, а его конец лежит в противоположной вершине параллелограмма: Вектор - определение и основные понятия с примерами решения

Рис. 4. Сложение векторов по правилу параллелограмма.

Сумма векторов обладает следующими свойствами:

-переместительным Вектор - определение и основные понятия с примерами решения; – сочетательным Вектор - определение и основные понятия с примерами решения

2. Разность векторов. Разностью векторов Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения сумма которого с вектором Вектор - определение и основные понятия с примерами решениядает вектор Вектор - определение и основные понятия с примерами решения (Рис. 5): Вектор - определение и основные понятия с примерами решения Рис. 5. Разность векторов.

3. Умножение вектора на вещественное число. При умножении веществе иного числа k на вектор Вектор - определение и основные понятия с примерами решения получают ему коллинеарный вектор Вектор - определение и основные понятия с примерами решения длина которого равна Вектор - определение и основные понятия с примерами решения сонаправленный с вектором Вектор - определение и основные понятия с примерами решения если Вектор - определение и основные понятия с примерами решения и антинаправленный вектору Вектор - определение и основные понятия с примерами решения если Вектор - определение и основные понятия с примерами решения

Замечание: Числа в векторной алгебре называют скалярами. Отметим здесь, что векторы и скаляры нельзя складывать и вычитать, так как это объекты разной природы.

Замечание: Из определения операции 3 следует первое условие коллинеарности векторов: Вектор - определение и основные понятия с примерами решения – отношения соответствующих проекции векторов должны быть равны между собой (о проекциях векторов см. ниже пункты 3 и 4).

Пример №4

Найти произведение вектора Вектор - определение и основные понятия с примерами решения на 2 и (-3).

Решение:

Используя вышеприведенное правило, получим Вектор - определение и основные понятия с примерами решения

Произведение числа на вектор обладает следующими свойствами:

  • – сочетательным Вектор - определение и основные понятия с примерами решения
  • – распределительным относительно скаляров Вектор - определение и основные понятия с примерами решения
  • -распределительным относительно векторов Вектор - определение и основные понятия с примерами решения

Замечание: Если k = 0, то в результате умножения Вектор - определение и основные понятия с примерами решения, получают нулевой вектор.

Определение: Нулевым вектором называется вектор, начало и конец которого совпадают, т.е. расположены в одной точке.

Проекция вектора на произвольную ось

Пусть дана ось l и вектор Вектор - определение и основные понятия с примерами решения Проведем через начало вектора Вектор - определение и основные понятия с примерами решения прямую,

которая параллельна оси l, угол между прямой и вектором Вектор - определение и основные понятия с примерами решения обозначим через Вектор - определение и основные понятия с примерами решения (Рис. 6):

Вектор - определение и основные понятия с примерами решения

Рис. 6. Проекция вектора на заданную ось.

Из начала и конца вектора Вектор - определение и основные понятия с примерами решения опустим на ось l перпендикуляры, получим отрезок Вектор - определение и основные понятия с примерами решения

Определение: Проекцией вектора Вектор - определение и основные понятия с примерами решения на ось l называется длина отрезка Вектор - определение и основные понятия с примерами решения взятая со знаком «+», если угол Вектор - определение и основные понятия с примерами решения и со знаком «-», если Вектор - определение и основные понятия с примерами решения Из рисунка видно, что отрезок Вектор - определение и основные понятия с примерами решения следовательно, Вектор - определение и основные понятия с примерами решения Из этой формулы видно, что при Вектор - определение и основные понятия с примерами решения величина Вектор - определение и основные понятия с примерами решения а при Вектор - определение и основные понятия с примерами решения величина Вектор - определение и основные понятия с примерами решения При Вектор - определение и основные понятия с примерами решения проекция равна нулю, Т. е. Вектор - определение и основные понятия с примерами решения

Проекции обладают свойствами:

– если Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения

Декартова система координат и вектора

Определение: Направленная прямая с выбранным началом отсчета и масштабом измерения называется числовой осью.

Определение: Две (три) взаимно перпендикулярные числовые оси называются декартовой системой координат на плоскости (в пространстве).

Рассмотрим декартову систему координат и спроектируем вектор Вектор - определение и основные понятия с примерами решения на координатные оси (Рис. 7). Вектор - определение и основные понятия с примерами решения

Рис. 7. Проекции вектора на оси декартовой системы координат.

Из рисунка видно, что проекции вектора Вектор - определение и основные понятия с примерами решения на:

  • – ось абсцисс (Ох) равна Вектор - определение и основные понятия с примерами решения
  • – ось ординат (Оу) Вектор - определение и основные понятия с примерами решения

(в пространстве – ось аппликат (Oz) Вектор - определение и основные понятия с примерами решения).

Определение: Проекции Вектор - определение и основные понятия с примерами решения называются координатами вектора Вектор - определение и основные понятия с примерами решения Используя теорему Пифагора, найдем длину вектора Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Направляющие косинусы вектора Вектор - определение и основные понятия с примерами решения

Обозначим углы, которые образует вектор Вектор - определение и основные понятия с примерами решенияс положительными направлениями координатных осей пространственной декартовой системы отсчета через Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения

Определение: Величины Вектор - определение и основные понятия с примерами решения называются направляющими косинусами вектора Вектор - определение и основные понятия с примерами решения

Вычислив квадрат модуля вектора Вектор - определение и основные понятия с примерами решения найдем соотношение, которое связывает направляющие косинусы вектора Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Способы задания вектора

  1. Задаются координаты начальной и конечной точек вектора Вектор - определение и основные понятия с примерами решения иВектор - определение и основные понятия с примерами решения. Тогда Вектор - определение и основные понятия с примерами решения
  2. Задаются аффинные координаты вектора Вектор - определение и основные понятия с примерами решения
  3. Задаются длина вектора и два любых угла, которые образует вектор Вектор - определение и основные понятия с примерами решения с какими-либо координатными осями и знак одной из проекций:Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения, но так как по условию Вектор - определение и основные понятия с примерами решения, то Вектор - определение и основные понятия с примерами решения. Следовательно, Вектор - определение и основные понятия с примерами решения

Деление отрезка в заданном отношении

Пусть в пространственной декартовой системе отсчета даны две точки Вектор - определение и основные понятия с примерами решенияи Вектор - определение и основные понятия с примерами решения Требуется найти на заданном отрезке Вектор - определение и основные понятия с примерами решения такую точку Вектор - определение и основные понятия с примерами решениячтобы Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения – заданное число (Рис. 8). Вектор - определение и основные понятия с примерами решения

Рис. 8. Деление отрезка в заданном отношении.

Из рисунка видно, чтоВектор - определение и основные понятия с примерами решения В силу того, что Вектор - определение и основные понятия с примерами решения Подставляя это равенство в систему и исключая вектор Вектор - определение и основные понятия с примерами решения найдем, что Вектор - определение и основные понятия с примерами решения.

Отсюда найдем вектор Вектор - определение и основные понятия с примерами решения В проекциях на координатные оси это равенство равносильно системе равенств Вектор - определение и основные понятия с примерами решения которая определяет деление отрезка в заданном отношении. Если точка Вектор - определение и основные понятия с примерами решения делит отрезок Вектор - определение и основные понятия с примерами решения пополам Вектор - определение и основные понятия с примерами решения то система полученных равенств принимает вид известный из курса математики средней школы Вектор - определение и основные понятия с примерами решения

Понятие базиса векторов

Определение: Любые два (три) неколлинеарных (некомпланарных) вектора образуют базис.

Теорема: Пусть даны два неколлинеарных вектора Вектор - определение и основные понятия с примерами решенияи Вектор - определение и основные понятия с примерами решения. Любой другой компланарный им вектор может быть единственным образом представлен в виде линейной комбинации векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения: Вектор - определение и основные понятия с примерами решения, где Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения – вещественные числа.

Доказательство: Пусть векторы Вектор - определение и основные понятия с примерами решения, Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения приведены к общему началу (Рис. 9), т.е.

Вектор - определение и основные понятия с примерами решения

Рис. 9. Разложение вектора по заданному базису.

Из рисунка видно, что Вектор - определение и основные понятия с примерами решения (правило параллелограмма, Лекция .№ 4). Вектор Вектор - определение и основные понятия с примерами решения коллинеарен вектору Вектор - определение и основные понятия с примерами решения а вектор Вектор - определение и основные понятия с примерами решения вектору Вектор - определение и основные понятия с примерами решения Следовательно, найдутся 2 вещественных числа Вектор - определение и основные понятия с примерами решения такие, что будут выполняться равенства: Вектор - определение и основные понятия с примерами решения Отсюда следует, что Вектор - определение и основные понятия с примерами решения

Докажем единственность разложения вектора Вектор - определение и основные понятия с примерами решенияпо базису Вектор - определение и основные понятия с примерами решения Пусть существуют другие вещественные числа Вектор - определение и основные понятия с примерами решения такие что Вектор - определение и основные понятия с примерами решения и пусть хотя бы одна из пар Вектор - определение и основные понятия с примерами решения содержит разные числа, например, Вектор - определение и основные понятия с примерами решения Вычитая из первого разложения второе, получим

Вектор - определение и основные понятия с примерами решения

Это означает, что векторы Вектор - определение и основные понятия с примерами решения коллинеарные, что противоречит условию теоремы о том, что они образуют базис. Таким образом, разложение вектора Вектор - определение и основные понятия с примерами решения по базису Вектор - определение и основные понятия с примерами решения единственно и имеет ВИД Вектор - определение и основные понятия с примерами решения В силу произвольности вектора Вектор - определение и основные понятия с примерами решения данная теорема справедлива для любого вектора компланарного с векторами Вектор - определение и основные понятия с примерами решения

Замечание: С геометрической точки зрения числа Вектор - определение и основные понятия с примерами решения определяют те числа, на которые надо умножить базисные вектора Вектор - определение и основные понятия с примерами решения чтобы по правилу параллелограмма получить вектор Вектор - определение и основные понятия с примерами решения В трехмерном пространстве произвольный вектор Вектор - определение и основные понятия с примерами решения может быть разложен по некомпланарной тройке векторов Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения причем единственным образом.

Определение: Ортом направления оси Вектор - определение и основные понятия с примерами решения называется вектор единичной длины в выбранном масштабе измерения, сонаправленный с этой осью Вектор - определение и основные понятия с примерами решения Рассмотрим пространственную декартову систему координат, по всем осям (абсцисс – Ох, ординат – Оу и аппликат – Oz) выберем одинаковый масштаб измерения. Вдоль направления каждой оси отложим отрезки единичной длины. Обозначим орты осей:Вектор - определение и основные понятия с примерами решения – черезВектор - определение и основные понятия с примерами решения – через Вектор - определение и основные понятия с примерами решения – через Вектор - определение и основные понятия с примерами решения(Рис. 10): Вектор - определение и основные понятия с примерами решения

Рис. 10. Орты (единичные векторы) декартовой системы координат.

Из Рис. 10 видно, что орты осей имеют следующие проекции:

Вектор - определение и основные понятия с примерами решения

Так как векторы Вектор - определение и основные понятия с примерами решения некомпланарные, то они образуют базис и любой пространственный вектор может быть единственным образом разложен по этому базису, причем в качестве чисел Вектор - определение и основные понятия с примерами решения выступают проекции вектора: Вектор - определение и основные понятия с примерами решения

Векторы в геометрии

Изучая материал этого параграфа, вы узнаете, что векторы используются не только в физике, но и в геометрии. Вы научитесь складывать и вычитать векторы, умножать вектор на число, находить угол между двумя векторами, применять свойства векторов для решения задач.

Понятие вектора в геометрии

Вы знаете много величин, которые определяются своими числовыми значениями: масса, площадь, длина, объем, время, температура и т. д. Такие величины называют скалярными величинами или скалярами.

Из курса физики вам знакомы величины, для задания которых недостаточно знать только их числовое значение. Например, если на пружину действует сила 5 Вектор - определение и основные понятия с примерами решения то непонятно, будет ли пружина сжиматься или растягиваться (рис. 12.1). Надо еще знать, в каком направлении действует сила.

Вектор - определение и основные понятия с примерами решения

Величины, которые определяются не только числовым значением, но и направлением, называют векторными величинами или векторами.

Сила, перемещение, скорость, ускорение, вес — примеры векторных величин.

Есть векторы и в геометрии.

Рассмотрим отрезок Вектор - определение и основные понятия с примерами решения Если мы договоримся точку Вектор - определение и основные понятия с примерами решения считать началом отрезка, а точку Вектор - определение и основные понятия с примерами решения — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки Вектор - определение и основные понятия с примерами решения к точке Вектор - определение и основные понятия с примерами решения

Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.

Вектор с началом в точке Вектор - определение и основные понятия с примерами решения и концом в точке Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения (читают: «вектор Вектор - определение и основные понятия с примерами решения

На рисунках вектор изображают отрезком со стрелкой, указывающей его конец. На рисунке 12.2 изображены векторы Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения Для обозначения векторов также используют строчные буквы латинского алфавита со стрелкой сверху. На рисунке 12.3 изображены векторы Вектор - определение и основные понятия с примерами решения

Вектор, у которого начало и конец — одна и та же точка, называют нулевым вектором или нуль-вектором и обозначают Вектор - определение и основные понятия с примерами решения Если начало и конец нулевого вектора — это точка Вектор - определение и основные понятия с примерами решения то его можно обозначить и так: Вектор - определение и основные понятия с примерами решения На рисунке нулевой вектор изображают точкой.

Модулем вектора Вектор - определение и основные понятия с примерами решения называют длину отрезка Вектор - определение и основные понятия с примерами решения Модуль вектора Вектор - определение и основные понятия с примерами решенияобозначают так: Вектор - определение и основные понятия с примерами решения а модуль вектора Вектор - определение и основные понятия с примерами решения — так: Вектор - определение и основные понятия с примерами решения

Модуль нулевого вектора считают равным нулю: Вектор - определение и основные понятия с примерами решения

Определение. Ненулевые векторы называют коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Нулевой вектор считают коллинеарным любому вектору.

На рисунке 12.4 изображены коллинеарные векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Тот факт, что векторы Вектор - определение и основные понятия с примерами решения коллинеарны, обозначают так: Вектор - определение и основные понятия с примерами решения

На рисунке 12.5 ненулевые коллинеарные векторы Вектор - определение и основные понятия с примерами решения одинаково направлены. Такие векторы называют сонаправленными и пишут: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения

Аналогичным свойством обладают и сонаправленные векторы, то есть если Вектор - определение и основные понятия с примерами решения (рис. 12.6).

На рисунке 12.7 ненулевые коллинеарные векторы Вектор - определение и основные понятия с примерами решения противоположно направлены. Этот факт обозначают так: Вектор - определение и основные понятия с примерами решения

Определение. Ненулевые векторы называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.

На рисунке 12.8 изображены равные векторы Вектор - определение и основные понятия с примерами решения Это обозначают так: Вектор - определение и основные понятия с примерами решения

Равенство ненулевых векторов Вектор - определение и основные понятия с примерами решения означает, что Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Нетрудно доказать, что если Вектор - определение и основные понятия с примерами решения Убедитесь в этом самостоятельно.

Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 12.9 изображены вектор а и векторы, равные вектору Вектор - определение и основные понятия с примерами решения Каждый из них также принято называть вектором Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

На рисунке 12.10, а изображены вектор Вектор - определение и основные понятия с примерами решения и точка Вектор - определение и основные понятия с примерами решения Если построен вектор Вектор - определение и основные понятия с примерами решенияравный вектору Вектор - определение и основные понятия с примерами решения то говорят, что вектор Вектор - определение и основные понятия с примерами решения отложен от точки Вектор - определение и основные понятия с примерами решения (рис. 12.10, б).

Покажем, как от произвольной точки Вектор - определение и основные понятия с примерами решения отложить вектор, равный данному вектору Вектор - определение и основные понятия с примерами решения

Если вектор Вектор - определение и основные понятия с примерами решения нулевой, то искомым вектором будет вектор Вектор - определение и основные понятия с примерами решения

Теперь рассмотрим случай, когда Вектор - определение и основные понятия с примерами решения Пусть точка Вектор - определение и основные понятия с примерами решения лежит на прямой, содержащей вектор Вектор - определение и основные понятия с примерами решения (рис. 12.11). На этой прямой существуют две точки Вектор - определение и основные понятия с примерами решения такие, что Вектор - определение и основные понятия с примерами решения На указанном рисунке вектор Вектор - определение и основные понятия с примерами решения будет равным вектору Вектор - определение и основные понятия с примерами решения Его и следует выбрать.

Вектор - определение и основные понятия с примерами решения

Если точка Вектор - определение и основные понятия с примерами решения не принадлежит прямой, содержащей вектор Вектор - определение и основные понятия с примерами решения то через точку Вектор - определение и основные понятия с примерами решения проведем прямую, ей параллельную (рис. 12.12). Дальнейшее построение аналогично уже рассмотренному.

От заданной точки можно отложить только один вектор, равный данному.

Пример №5

Дан четырехугольник Вектор - определение и основные понятия с примерами решения Известно, что Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решенияОпределите вид четырехугольника Вектор - определение и основные понятия с примерами решения

Решение:

Из условия Вектор - определение и основные понятия с примерами решения следует, что Вектор - определение и основные понятия с примерами решения Следовательно, четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм.

Равенство Вектор - определение и основные понятия с примерами решения означает, что диагонали четырехугольника Вектор - определение и основные понятия с примерами решения равны. А параллелограмм с равными диагоналями — прямоугольник. Вектор - определение и основные понятия с примерами решения

Координаты вектора

Рассмотрим на координатной плоскости вектор Вектор - определение и основные понятия с примерами решения Отложим от начала координат равный ему вектор Вектор - определение и основные понятия с примерами решения (рис. 13.1). Координатами вектора Вектор - определение и основные понятия с примерами решения называют координаты точки Вектор - определение и основные понятия с примерами решения Запись Вектор - определение и основные понятия с примерами решения означает, что вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Числа Вектор - определение и основные понятия с примерами решения называют соответственно первой и второй координатами вектора Вектор - определение и основные понятия с примерами решения

Из определения следует, что равные векторы имеют равные соответствующие координаты. Например, каждый из равных векторов Вектор - определение и основные понятия с примерами решения (рис. 13.2) имеет координаты Вектор - определение и основные понятия с примерами решения

Справедливо и обратное утверждение: если соответствующие координаты векторов равны, то равны и сами векторы.

Действительно, если отложить такие векторы от начала координат, то их концы совпадут.

Очевидно, что нулевой вектор имеет координаты Вектор - определение и основные понятия с примерами решения

Теорема 13.1. Если точки Вектор - определение и основные понятия с примерами решения соответственно являются началом и концом вектора Вектор - определение и основные понятия с примерами решения то числа Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения равны соответственно первой и второй координатам вектора Вектор - определение и основные понятия с примерами решения

Доказательство: Пусть вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения Докажем, что Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то утверждение теоремы очевидно.

Пусть Вектор - определение и основные понятия с примерами решения Отложим от начала координат вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Тогда координаты точки Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения то, воспользовавшись результатом задачи 12.32, можем сделать вывод, что середины отрезков Вектор - определение и основные понятия с примерами решения совпадают. Координаты середин отрезков Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения Тогда

Вектор - определение и основные понятия с примерами решения

Эти равенства выполняются и тогда, когда точка Вектор - определение и основные понятия с примерами решения совпадает с точкой Вектор - определение и основные понятия с примерами решения или точка Вектор - определение и основные понятия с примерами решения совпадает с точкой Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Из формулы расстояния между двумя точками следует, что если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то

Вектор - определение и основные понятия с примерами решения

Пример №6

Даны координаты трех вершин параллелограмма Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения Найдите координаты вершины Вектор - определение и основные понятия с примерами решения

Решение:

Поскольку четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм, то Вектор - определение и основные понятия с примерами решения Следовательно, координаты этих векторов равны.

Пусть координаты точки Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения Для нахождения координат векторов Вектор - определение и основные понятия с примерами решения воспользуемся теоремой 13.1.

Имеем:

Вектор - определение и основные понятия с примерами решения

Отсюда: Вектор - определение и основные понятия с примерами решения

Ответ: Вектор - определение и основные понятия с примерами решения

Сложение и вычитание векторов

Если тело переместилось из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения а затем из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения то суммарное перемещение из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения естественно представить в виде вектора Вектор - определение и основные понятия с примерами решения считая этот вектор суммой векторов Вектор - определение и основные понятия с примерами решения то есть Вектор - определение и основные понятия с примерами решения (рис. 14.1).

Вектор - определение и основные понятия с примерами решения

Этот пример подсказывает, как ввести понятие суммы векторов, то есть как сложить два данных вектора Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Далее от точки Вектор - определение и основные понятия с примерами решения отложим вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Вектор Вектор - определение и основные понятия с примерами решения называют суммой векторов Вектор - определение и основные понятия с примерами решения (рис. 14.2) и записывают: Вектор - определение и основные понятия с примерами решения

Описанный алгоритм сложения двух векторов называют правилом треугольника.

Это название связано с тем, что если векторы Вектор - определение и основные понятия с примерами решения не коллинеарны, то точки Вектор - определение и основные понятия с примерами решения являются вершинами треугольника (рис. 14.2).

Вектор - определение и основные понятия с примерами решения

По правилу треугольника можно складывать и коллинеарные векторы. На рисунке 14.3 вектор Вектор - определение и основные понятия с примерами решения равен сумме коллинеарных векторов Вектор - определение и основные понятия с примерами решения

Следовательно, для любых трех точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения которое выражает правило треугольника для сложения векторов.

Теорема 14.1. Если координаты векторов Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения то координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Доказательство: Пусть точки Вектор - определение и основные понятия с примерами решения таковы, что Вектор - определение и основные понятия с примерами решения Имеем: Вектор - определение и основные понятия с примерами решения Докажем, что координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Найдем координаты векторов Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Имеем:

Вектор - определение и основные понятия с примерами решения

С учетом того, что Вектор - определение и основные понятия с примерами решения получаем: Вектор - определение и основные понятия с примерами решения

Замечание. Описывая правило треугольника для нахождения суммы векторов Вектор - определение и основные понятия с примерами решения мы отложили вектор Вектор - определение и основные понятия с примерами решения от произвольной точки. Если точку Вектор - определение и основные понятия с примерами решения заменить точкой Вектор - определение и основные понятия с примерами решения то вместо вектора Вектор - определение и основные понятия с примерами решения равного сумме векторов Вектор - определение и основные понятия с примерами решения получим некоторый вектор Вектор - определение и основные понятия с примерами решения Из теоремы 14.1 следует, что координаты векторов Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения следовательно, Вектор - определение и основные понятия с примерами решения Это означает, что сумма векторов Вектор - определение и основные понятия с примерами решения не зависит от того, от какой точки отложен вектор Вектор - определение и основные понятия с примерами решенияСвойства сложения векторов аналогичны свойствам сложения чисел.

Для любых векторов Вектор - определение и основные понятия с примерами решения выполняются равенства:

  • Вектор - определение и основные понятия с примерами решения
  • Вектор - определение и основные понятия с примерами решения — переместительное свойство;
  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство.

Для доказательства этих свойств достаточно сравнить соответствующие координаты векторов, записанных в правой и левой частях равенств. Сделайте это самостоятельно.

Сумму трех и более векторов находят так: сначала складывают первый и второй векторы, затем складывают полученный вектор с третьим и т. д. Например, Вектор - определение и основные понятия с примерами решения

Из переместительного и сочетательного свойств сложения векторов следует, что при сложении нескольких векторов можно менять местами слагаемые и расставлять скобки любым способом.

В физике часто приходится складывать векторы, отложенные от одной точки. Так, если к телу приложены силы Вектор - определение и основные понятия с примерами решения (рис. 14.4), то равнодействующая этих сил равна сумме Вектор - определение и основные понятия с примерами решения

Для нахождения суммы двух неколлинеарных векторов, отложенных от одной точки, удобно пользоваться правилом параллелограмма для сложения векторов.

Вектор - определение и основные понятия с примерами решения Пусть надо найти сумму неколлинеарных векторов Вектор - определение и основные понятия с примерами решения (рис. 14.5). Отложим вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения Поскольку векторы Вектор - определение и основные понятия с примерами решения равны, то четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм с диагональю Вектор - определение и основные понятия с примерами решения

Приведенные соображения позволяют сформулировать правило параллелограмма для сложения неколлинеарных векторов Вектор - определение и основные понятия с примерами решения

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Построим параллелограмм Вектор - определение и основные понятия с примерами решения (рис. 14.6). Тогда искомая сумма Вектор - определение и основные понятия с примерами решения равна вектору Вектор - определение и основные понятия с примерами решения

Определение. Разностью векторов Вектор - определение и основные понятия с примерами решения называют такой вектор Вектор - определение и основные понятия с примерами решения сумма которого с вектором Вектор - определение и основные понятия с примерами решения равна вектору Вектор - определение и основные понятия с примерами решения

Пишут: Вектор - определение и основные понятия с примерами решения

Покажем, как построить вектор, равный разности данных векторов Вектор - определение и основные понятия с примерами решения

От произвольной точки Вектор - определение и основные понятия с примерами решения отложим векторы Вектор - определение и основные понятия с примерами решения соответственно равные векторам Вектор - определение и основные понятия с примерами решения (рис. 14.7). Тогда вектор Вектор - определение и основные понятия с примерами решения равен разности Вектор - определение и основные понятия с примерами решенияДействительно, Вектор - определение и основные понятия с примерами решения Следовательно, по определению разности двух векторов Вектор - определение и основные понятия с примерами решения то есть Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

На рисунке 14.7 векторы Вектор - определение и основные понятия с примерами решения неколлинеарны. Однако описанный алгоритм применим и для нахождения разности кол-линеарных векторов. На рисунке 14.8 вектор Вектор - определение и основные понятия с примерами решения равен разности коллинеарных векторов Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения Следовательно, для любых трех точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения которое выражает правило нахождения разности двух векторов, отложенных от одной точки.

Теорема 14.2. Если координаты векторов Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения то координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Докажите эту теорему самостоятельно.

Из теоремы 14.2 следует, что для любых векторов Вектор - определение и основные понятия с примерами решения существует единственный вектор Вектор - определение и основные понятия с примерами решения такой, что Вектор - определение и основные понятия с примерами решения

Определение. Два ненулевых вектора называют противоположными, если их модули равны и векторы противоположно направлены.

Если векторы Вектор - определение и основные понятия с примерами решения противоположны, то говорят, что вектор Вектор - определение и основные понятия с примерами решения противоположный вектору Вектор - определение и основные понятия с примерами решения а вектор Вектор - определение и основные понятия с примерами решения противоположный вектору Вектор - определение и основные понятия с примерами решения

Вектором, противоположным нулевому вектору, считают нулевой вектор.

Вектор, противоположный вектору Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения

Из определения следует, что противоположным вектору Вектор - определение и основные понятия с примерами решения является вектор Вектор - определение и основные понятия с примерами решения Тогда для любых точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Из правила треугольника следует, что

Вектор - определение и основные понятия с примерами решения

А из этого равенства следует, что если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Теорема 14.3. Для любых векторов Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Для доказательства достаточно сравнить соответствующие координаты векторов, записанных в правой и левой частях равенства. Сделайте это самостоятельно.

Теорема 14.3 позволяет свести вычитание векторов к сложению: чтобы из вектора Вектор - определение и основные понятия с примерами решения вычесть вектор Вектор - определение и основные понятия с примерами решения можно к вектору Вектор - определение и основные понятия с примерами решения прибавить вектор Вектор - определение и основные понятия с примерами решения (рис. 14.9).

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Пример №7

Диагонали параллелограмма Вектор - определение и основные понятия с примерами решения пересекаются в точке Вектор - определение и основные понятия с примерами решения (рис. 14.10). Выразите векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения через векторы Вектор - определение и основные понятия с примерами решения

Решение:

Поскольку точка Вектор - определение и основные понятия с примерами решения — середина отрезков Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Имеем:

Вектор - определение и основные понятия с примерами решения

Умножение вектора на число

Пусть дан ненулевой вектор Вектор - определение и основные понятия с примерами решения На рисунке 15.1 изображены вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Очевидно, что Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор Вектор - определение и основные понятия с примерами решения обозначают Вектор - определение и основные понятия с примерами решения и считают, что он получен в результате умножения вектора Вектор - определение и основные понятия с примерами решения на число 2. Аналогично считают, что вектор Вектор - определение и основные понятия с примерами решения получен в результате умножения вектора Вектор - определение и основные понятия с примерами решения на число -3, и записывают: Вектор - определение и основные понятия с примерами решения

Этот пример подсказывает, как ввести понятие «умножение вектора на число».

Определение. Произведением ненулевого вектора Вектор - определение и основные понятия с примерами решения и числа Вектор - определение и основные понятия с примерами решения отличного от нуля, называют такой вектор Вектор - определение и основные понятия с примерами решения что:

Вектор - определение и основные понятия с примерами решения

2) если Вектор - определение и основные понятия с примерами решения если Вектор - определение и основные понятия с примерами решения

Пишут: Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то считают, что Вектор - определение и основные понятия с примерами решения

На рисунке 15.2 изображены векторы Вектор - определение и основные понятия с примерами решения

Из определения следует, что

Вектор - определение и основные понятия с примерами решения

Также из определения следует, что если Вектор - определение и основные понятия с примерами решения то векторы Вектор - определение и основные понятия с примерами решения коллинеарны.

А если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, то можно ли представить вектор Вектор - определение и основные понятия с примерами решения в виде произведения Вектор - определение и основные понятия с примерами решения Ответ дает следующая теорема.

Теорема 15.1. Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны и Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решения что Вектор - определение и основные понятия с примерами решения

Доказательство: Если Вектор - определение и основные понятия с примерами решения то при Вектор - определение и основные понятия с примерами решения получаем, что Вектор - определение и основные понятия с примерами решения Если Вектор - определение и основные понятия с примерами решения то или Вектор - определение и основные понятия с примерами решения

1) Пусть Вектор - определение и основные понятия с примерами решения Рассмотрим вектор Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решения следовательно, Вектор - определение и основные понятия с примерами решения Кроме того, Вектор - определение и основные понятия с примерами решения Таким образом, векторы Вектор - определение и основные понятия с примерами решения сонаправлены и их модули равны. Отсюда Вектор - определение и основные понятия с примерами решения

2) Пусть Вектор - определение и основные понятия с примерами решения Рассмотрим вектор Вектор - определение и основные понятия с примерами решения Для этого случая завершите доказательство самостоятельно. Вектор - определение и основные понятия с примерами решения

Теорема 15.2. Если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Доказательство: Если Вектор - определение и основные понятия с примерами решения то утверждение теоремы очевидно.

Пусть Вектор - определение и основные понятия с примерами решения Рассмотрим вектор Вектор - определение и основные понятия с примерами решения. Покажем, что Вектор - определение и основные понятия с примерами решения Имеем:

Вектор - определение и основные понятия с примерами решения

Отложим от начала координат векторы Вектор - определение и основные понятия с примерами решения равные соответственно векторам Вектор - определение и основные понятия с примерами решения Поскольку прямая Вектор - определение и основные понятия с примерами решения проходит через начало координат, то ее уравнение имеет вид Вектор - определение и основные понятия с примерами решения Этой прямой принадлежит точка Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Следовательно, точка Вектор - определение и основные понятия с примерами решения также принадлежит прямой Вектор - определение и основные понятия с примерами решения поэтому векторы Вектор - определение и основные понятия с примерами решения коллинеарны, то есть Вектор - определение и основные понятия с примерами решения

При Вектор - определение и основные понятия с примерами решения числа Вектор - определение и основные понятия с примерами решения имеют одинаковые знаки (или оба равны нулю). Таким же свойством обладают числа Вектор - определение и основные понятия с примерами решенияСледовательно, при Вектор - определение и основные понятия с примерами решения точки Вектор - определение и основные понятия с примерами решения лежат в одной координатной четверти (или на одном координатном луче), поэтому векторы Вектор - определение и основные понятия с примерами решения сонаправлены (рис. 15.3), то есть Вектор - определение и основные понятия с примерами решения При Вектор - определение и основные понятия с примерами решения векторы Вектор - определение и основные понятия с примерами решения будут противоположно направленными, то есть Вектор - определение и основные понятия с примерами решения Следовательно, мы получили, что Вектор - определение и основные понятия с примерами решения

Следствие 1. Векторы Вектор - определение и основные понятия с примерами решения коллинеарны.

Следствие 2. Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, причем Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

С помощью теоремы 15.2 можно доказать такие свойства умножения вектора на число.

Для любых чисел Вектор - определение и основные понятия с примерами решения и любых векторов Вектор - определение и основные понятия с примерами решения выполняются равенства:

  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство;
  • Вектор - определение и основные понятия с примерами решения — первое распределительное свойство;
  • Вектор - определение и основные понятия с примерами решения — второе распределительное свойство.

Для доказательства этих свойств достаточно сравнить соответствующие координаты векторов, записанных в правых и левых частях равенств. Сделайте это самостоятельно.

Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, разность векторов и произведение векторов на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,

Вектор - определение и основные понятия с примерами решения

Пример №8

Докажите, что если Вектор - определение и основные понятия с примерами решения то точки Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения лежат на одной прямой.

Решение:

Из условия следует, что векторы Вектор - определение и основные понятия с примерами решения коллинеарны. Кроме того, эти векторы отложены от одной точки Вектор - определение и основные понятия с примерами решения Следовательно, точки Вектор - определение и основные понятия с примерами решения лежат на одной прямой. Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример №9

Точка Вектор - определение и основные понятия с примерами решения — середина отрезка Вектор - определение и основные понятия с примерами решения— произвольная точка (рис. 15.4). Докажите, что Вектор - определение и основные понятия с примерами решения

Решение:

Применяя правило треугольника, запишем:

Вектор - определение и основные понятия с примерами решения

Сложим эти два равенства:

Вектор - определение и основные понятия с примерами решения

Поскольку векторы Вектор - определение и основные понятия с примерами решения противоположны, то Вектор - определение и основные понятия с примерами решения Имеем: Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример №10

Докажите, что середины оснований трапеции и точка пересечения продолжение ее боковых сторон лежат на одной прямой.

Решение:

Пусть точки Вектор - определение и основные понятия с примерами решения — середины оснований Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения трапеции Вектор - определение и основные понятия с примерами решения — точка пересечения прямых Вектор - определение и основные понятия с примерами решения (рис. 15.5).

Применяя ключевую задачу 2, запишем: Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения —некоторые числа.

Поскольку Вектор - определение и основные понятия с примерами решения Следовательно, Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения

Из ключевой задачи 1 следует, что точки Вектор - определение и основные понятия с примерами решения лежат на одной прямой. Вектор - определение и основные понятия с примерами решения

Пример №11

Докажите, что если Вектор - определение и основные понятия с примерами решения — точка пересечения медиан треугольника Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения

Решение:

Пусть отрезки Вектор - определение и основные понятия с примерами решения — медианы треугольника Вектор - определение и основные понятия с примерами решения (рис. 15.6). Имеем:

Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Из свойства медиан треугольника следует, что Вектор - определение и основные понятия с примерами решения

Тогда Вектор - определение и основные понятия с примерами решения Аналогично Вектор - определение и основные понятия с примерами решения

Отсюда

Вектор - определение и основные понятия с примерами решения

Применение векторов

Применяя векторы к решению задач, часто используют следующую лемму.

Лемма. Пусть Вектор - определение и основные понятия с примерами решения — такая точка отрезка Вектор - определение и основные понятия с примерами решения что Вектор - определение и основные понятия с примерами решения (рис. 15.9). Тогда для любой точки Вектор - определение и основные понятия с примерами решения выполняется равенство

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Доказательство: Имеем:

Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения то

Вектор - определение и основные понятия с примерами решения

Запишем: Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения то имеем:

Вектор - определение и основные понятия с примерами решения

Заметим, что эта лемма является обобщением ключевой задачи 2 п. 15.

Пример №12

Пусть Вектор - определение и основные понятия с примерами решения — точка пересечения медиан треугольника Вектор - определение и основные понятия с примерами решения — произвольная точка (рис. 15.10). Докажите, что

Вектор - определение и основные понятия с примерами решения

Решение:

Пусть точка Вектор - определение и основные понятия с примерами решения — середина отрезка Вектор - определение и основные понятия с примерами решения Имеем: Вектор - определение и основные понятия с примерами решения Тогда, используя лемму, можно записать:

Вектор - определение и основные понятия с примерами решения

Докажем векторное равенство, связывающее две замечательныеВектор - определение и основные понятия с примерами решения точки треугольника.

Теорема. Если точка Вектор - определение и основные понятия с примерами решения — ортоцентр треугольника Вектор - определение и основные понятия с примерами решения а точка Вектор - определение и основные понятия с примерами решения — центр его описанной окружности, то

Вектор - определение и основные понятия с примерами решения

Доказательство: Для прямоугольного треугольника равенство Вектор - определение и основные понятия с примерами решения очевидно.

Пусть треугольник Вектор - определение и основные понятия с примерами решения не является прямоугольным. Опустим из точки Вектор - определение и основные понятия с примерами решения перпендикуляр Вектор - определение и основные понятия с примерами решения на сторону Вектор - определение и основные понятия с примерами решения треугольника Вектор - определение и основные понятия с примерами решения (рис. 15.11). В курсе геометрии 8 класса было доказано, что Вектор - определение и основные понятия с примерами решения

На луче Вектор - определение и основные понятия с примерами решения отметим точку Вектор - определение и основные понятия с примерами решения такую, что Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решения то четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм.

По правилу параллелограмма Вектор - определение и основные понятия с примерами решения

Поскольку точка Вектор - определение и основные понятия с примерами решения является серединой отрезка Вектор - определение и основные понятия с примерами решения то в четырехугольнике Вектор - определение и основные понятия с примерами решения диагонали точкой пересечения делятся пополам. Вектор - определение и основные понятия с примерами решения

Следовательно, этот четырехугольник — параллелограмм. Отсюда Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения

Обратимся к векторному равенству Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения — точка пересечения медиан треугольника Вектор - определение и основные понятия с примерами решения Так как Вектор - определение и основные понятия с примерами решения — произвольная точка, то равенство остается справедливым, если в качестве точки Вектор - определение и основные понятия с примерами решения выбрать точку Вектор - определение и основные понятия с примерами решения — центр описанной окружности треугольника Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения

Учитывая равенство Вектор - определение и основные понятия с примерами решения получаем: Вектор - определение и основные понятия с примерами решения

Это равенство означает, что точки Вектор - определение и основные понятия с примерами решения лежат на одной прямой, которую называют прямой Эйлера. Напомним, что это замечательное свойство было доказано в курсе геометрии 8 класса, но другим способом.

Скалярное произведение векторов

Пусть Вектор - определение и основные понятия с примерами решения — два ненулевых и несонаправленных вектора (рис. 16.1). От произвольной точки Вектор - определение и основные понятия с примерами решения отложим векторы Вектор - определение и основные понятия с примерами решения соответственно равные векторам Вектор - определение и основные понятия с примерами решения Величину угла Вектор - определение и основные понятия с примерами решения будем называть углом между векторами Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Угол между векторами Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения Например, на рисунке 16.1 Вектор - определение и основные понятия с примерами решения а на рисунке 16.2 Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Если векторы Вектор - определение и основные понятия с примерами решения сонаправлены, то считают, что Вектор - определение и основные понятия с примерами решения Если хотя бы один из векторов Вектор - определение и основные понятия с примерами решения нулевой, то так же считают, что Вектор - определение и основные понятия с примерами решения

Следовательно, для любых векторов Вектор - определение и основные понятия с примерами решения имеет место неравенство:

Вектор - определение и основные понятия с примерами решения

Векторы Вектор - определение и основные понятия с примерами решения называют перпендикулярными, если угол между ними равен Вектор - определение и основные понятия с примерами решения Пишут: Вектор - определение и основные понятия с примерами решения

Вы умеете складывать и вычитать векторы, умножать вектор на число. Также из курса физики вы знаете, что если под действием постоянной силы Вектор - определение и основные понятия с примерами решения тело переместилось из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения (рис. 16.3), то совершенная механическая работа равна Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Изложенное выше подсказывает, что целесообразно ввести еще одно действие над векторами.

Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение векторов Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения

Имеем:

Вектор - определение и основные понятия с примерами решения

Если хотя бы один из векторов Вектор - определение и основные понятия с примерами решения нулевой, то очевидно, что Вектор - определение и основные понятия с примерами решения

Пусть Вектор - определение и основные понятия с примерами решения

Скалярное произведение Вектор - определение и основные понятия с примерами решения называют скалярным квадратом вектора Вектор - определение и основные понятия с примерами решения и обозначают Вектор - определение и основные понятия с примерами решения

Мы получили, что Вектор - определение и основные понятия с примерами решения то есть скалярный квадрат, вектора равен квадрату его модуля.

Теорема 16.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.

Доказательство: Пусть Вектор - определение и основные понятия с примерами решения Докажем, что Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Пусть теперь Вектор - определение и основные понятия с примерами решения Докажем, что Вектор - определение и основные понятия с примерами решения

Запишем: Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Теорема 16.2. Скалярное произведение векторов Вектор - определение и основные понятия с примерами решения можно вычислить по формуле

Вектор - определение и основные понятия с примерами решения

Доказательство: Сначала рассмотрим случай, когда векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решениянеколлинеарны.

Отложим от начала координат векторы Вектор - определение и основные понятия с примерами решения соответственно равные векторам Вектор - определение и основные понятия с примерами решения (рис. 16.4). Тогда

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Применим теорему косинусов к треугольнику Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения

Кроме того, Вектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения Воспользовавшись формулой нахождения модуля вектора по его координатам, запишем:

Вектор - определение и основные понятия с примерами решения

Упрощая выражение, записанное в правой части последнего равенства, получаем:

Вектор - определение и основные понятия с примерами решения

Рассмотрим случай, когда векторы Вектор - определение и основные понятия с примерами решения коллинеарны.

Если Вектор - определение и основные понятия с примерами решения то очевидно, что Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решения то есть Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения Имеем:

Вектор - определение и основные понятия с примерами решения

Случай, когда Вектор - определение и основные понятия с примерами решения рассмотрите самостоятельно. Вектор - определение и основные понятия с примерами решения

Следствие. Косинус угла между ненулевыми векторами Вектор - определение и основные понятия с примерами решенияможно вычислить по формуле

Вектор - определение и основные понятия с примерами решения

Доказательство: Из определения скалярного произведения векторов Вектор - определение и основные понятия с примерами решенияследует, что Вектор - определение и основные понятия с примерами решения Воспользовавшись теоремой 16.2 и формулой нахождения модуля вектора по его координатам, получаем формулу Вектор - определение и основные понятия с примерами решения

С помощью теоремы 16.2 легко доказать следующие свойства скалярного произведения векторов.

Для любых векторов Вектор - определение и основные понятия с примерами решения и любого числа Вектор - определение и основные понятия с примерами решения справедливы равенства:

Вектор - определение и основные понятия с примерами решения— переместительное свойство;

Вектор - определение и основные понятия с примерами решения — сочетательное свойство;

Вектор - определение и основные понятия с примерами решения — распределительное свойство.

Для доказательства этих свойств достаточно выразить через координаты векторов скалярные произведения, записанные в правых и левых частях равенств, и сравнить их. Сделайте это самостоятельно.

Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, аналогично тому, как мы преобразовываем алгебраические выражения.

Например, Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Пример №13

С помощью векторов докажите, что диагонали ромба перпендикулярны.

Вектор - определение и основные понятия с примерами решения

Решение:

На рисунке 16.5 изображен ромб Вектор - определение и основные понятия с примерами решения Пусть Вектор - определение и основные понятия с примерами решения Очевидно, что Вектор - определение и основные понятия с примерами решения По правилу параллелограмма имеем: Вектор - определение и основные понятия с примерами решения

Отсюда

Вектор - определение и основные понятия с примерами решения

Следовательно, Вектор - определение и основные понятия с примерами решения

Пример №14

Известно, что Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Найдите Вектор - определение и основные понятия с примерами решения

Решение:

Поскольку скалярный квадрат вектора равен квадрату его модуля, то Вектор - определение и основные понятия с примерами решения Отсюда

Вектор - определение и основные понятия с примерами решения

Ответ: Вектор - определение и основные понятия с примерами решения

Пример №15

В треугольнике Вектор - определение и основные понятия с примерами решения известно, что Вектор - определение и основные понятия с примерами решения Найдите медиану Вектор - определение и основные понятия с примерами решения

Решение. Применяя ключевую задачу 2 п. 15, запишем: Вектор - определение и основные понятия с примерами решения (рис. 16.6).

Вектор - определение и основные понятия с примерами решения

Отсюда:

Вектор - определение и основные понятия с примерами решения

Следовательно, Вектор - определение и основные понятия с примерами решения

Ответ: Вектор - определение и основные понятия с примерами решения

Справочный материал

Вектор

Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.

Коллинеарные векторы

Ненулевые векторы называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.

Равные векторы

Ненулевые векторы называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. Равные векторы имеют равные соответствующие координаты. Если соответствующие координаты векторов равны, то равны и сами векторы.

Координаты вектора

Если точки Вектор - определение и основные понятия с примерами решения соответственно являются началом и концом вектора Вектор - определение и основные понятия с примерами решения то числа Вектор - определение и основные понятия с примерами решения равны соответственно первой и второй координатам вектора Вектор - определение и основные понятия с примерами решения

Модуль вектора

Если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Правила сложения двух векторов

Правило треугольника

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения а от точки Вектор - определение и основные понятия с примерами решения — вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Вектор Вектор - определение и основные понятия с примерами решения